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1. Introduction 
 

The Euler–Bernoulli theory of beams provides a 
reasonable explanation of the bending behavior of long 
isotropic beams. It is based on the assumption that a rela-
tionship between bending moment and the beam curvature 
exists. 

Kopmaz et al. [1] considered different approaches 
to describing the relationship between the bending moment 
and curvature of a Euler-Bernoulli beam undergoing a 
large deformation. Then, in the case of a cantilevered beam 
subjected to a single moment at its free end, the difference 
between the linear theory and the nonlinear theory based 
on both the mathematical curvature and the physical curva-
ture was shown. Biondi and Caddemi [2] studied the prob-
lem of the integration of static governing equations of the 
uniform Euler-Bernoulli beams with discontinuities, con-
sidering the flexural stiffness and slope discontinuities. 

Many researchers have addressed the nonlinear 
vibration behavior of beams, theoretically [3-6]. The vibra-
tion problems of uniform Euler-Bernoulli beams can be 
solved by analytical or approximate approaches [7, 8]. 
Failla and Santini [9] presented the eigenvalue problem of 
Euler-Bernoulli discontinuous beams. Specifically, for 
stepped beams with internal translational and rotational 
springs, they proved that a formulation of well-established 
lumped-mass methods employing exact influence coeffi-
cients is readily feasible, based on appropriate Green’s 
functions yielding the response of the discontinuous beam 
to a static unit force. Yeih et al. [10] obtained the natural 
frequencies and natural modes for an Euler-Bernoulli beam 
using a dual multiple reciprocity method (MRM) and the 
singular value decomposition method. Yeih's method was 
able to avoid the spurious eigenvalue problem and modes 
resulted from applying the conventional MRM. 

A recent innovative method in solving these prob-
lems is presented by Lai et al. [11]. Through their contribu-
tion, the Adomian Decomposition Method was employed 
to obtain the natural frequencies and mode shapes for the 
Euler- Bernoulli beam under various supporting condi-
tions. The technique used is based on the decomposition of 
a solution of nonlinear operator equation in a series of 
functions. Each term of the series is obtained from a poly-
nomial generated from an expansion of an analytic func-
tion into a power series. Liu and Gurram [12] utilized 
variational iteration method (VIM) to solve free vibration 
of Euler-Bernoulli beam under various supporting condi-
tions. The technique they used is based on the use of re-
stricted variations and correction functionals which has 
found a wide application for the solution of nonlinear ordi-
nary and partial differential equations. The proposed 
method does not require the presence of small parameters 

in the differential equation, and provides the solution (or 
an approximation to it) as a sequence of iterates.  

Recently, researchers have been concentrated on 
approximate analytical methods such as Parameter Expan-
sion Method [13,14], Adomian Decomposition Method 
[15], Differential Transform Method [16], VIM [17,18], 
Homotopy Perturbation Method [19-24], Max-Min Ap-
proach [25-27] and other analytical techniques [28-30].  

He [31] gave a comprehensive review of the re-
cently developed nonlinear analytics techniques for solving 
nonlinear oscillations problems, which comprise the rela-
tively newer family of solutions which lie within the 
framework of periodic analytical solutions. Other methods 
have also been developed in recent years which seem to be 
just as promising in obtaining accurate solutions to gene-
rally more difficult nonlinear problems. Energy balance 
method [32] is one such method, which is actually a heu-
ristic approach valid not only for weakly nonlinear sys-
tems, but also for strongly nonlinear ones [33-35]. 

The main objective of this study is to obtain ana-
lytical expressions for geometrically nonlinear vibration of 
Euler-Bernoulli beams. First, the governing nonlinear par-
tial differential equation is reduced to a single nonlinear 
ordinary differential equation. It is assumed that only the 
fundamental mode is excited. The latter equation is solved 
analytically in time domain using Energy Balance Method 
(EBM). 

 
2. Mathematical formulation 
 

Consider a straight Euler-Bernoulli beam of 
length L , a cross-sectional area A , the mass per unit 
length of the beam m, a moment of inertia I, and modulus 
of elasticity  that is subjected to an axial force of magni-
tude 

E
P  as shown in Fig. 1. The equation of motion includ-

ing the effects of mid-plane stretching is given by 
22 4 2 2 2
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For convenience, the following nondimensional 
variables are used 

� �1 24 2,, ,x x L w w t t EI ml P PL EI5� � �� � � �   

where � �1/2I A5 � is the radius of gyration of the cross-
section. As a result Eq. (1) can be written as follows 
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Fig. 1 A schematic of an Euler-Bernoulli beam subjected 

to an axial load 
 
 Assuming ( , ) ( ) ( )w x t W t xC�  where ( )xC  is 
the first eigenmode of the beam [36] and applying the Ga-
lerkin method, the equation of motion is obtained as fol-
lows 

2
3

1 2 32
( ) ( ) ( ) ( ) 0d W t P W t W t

dt
0 0 0	 	 	 �   (3) 

Eq. (3) is the differential equation of motion gov-
erning the nonlinear vibration of Euler-Bernoulli beams. 
The center of the beam is subjected to the following initial 
conditions 

(0)(0) , 0max
dWW W

dt
� �    (4) 

where  denotes the nondimensional maximum ampli-
tude of oscillation. 

maxW

Under the transformation t
 �� , the Eq. (3) can 
be written as 

2
1 2 3( )W P W W� 0 0 0	 	 	 ��� 3 0   (5) 

where �  is the nonlinear frequency and double-dot de-
notes differentiation with respect to 
  and 1 2,0 0  and 30  
are as follows 

4

4

2

1

0

1 1

0

( ) ( )

( )

x x dx
x

x dx

C C

0
C

� � A� �� �� �� �A� ���
?

?
�   (6a) 

21

20

2 1 2

0

( ) ( )

( )

x x dx
x

x dx

C C
0

C

� � A
� �� �A� ���
?

?
�   (6b) 

22 21 1

2 20 0

3 1 2

0

1 ( ) ( ) ( )
2

( )

x x dx x dx
x x

x dx

C C C

0
C

� � � A A� � ��� � � ��� A A� � � ���


��

� ���
? ?

?
�  (6c) 

Post-buckling load-deflection relation for the 
problem can be obtained from Eq. (5) by substituting 

0� �  as 

� �2
1 3P W 20 0� � � 0   (7) 

Neglecting the contribution of W  in Eq. (7), the 

buckling load can be determined as 

1 2 .cP 0 0��   (8) 

3. Basic idea of energy balance method 
 

In the present paper, we consider a general non-
linear oscillator in the form [32] 

( ( )) 0u f u t�� 	 �    (9)  

In which  and t  are generalized dimensionless 
displacement and time variables, respectively. Its varia-
tional principle can be easily obtained 

u

2

0

1( ) ( )
2

t
J u u F u� �� � 	� �

� �? dt     (10) 

where 2T )
�

�  is period of the nonlinear oscillator, 

( ) ( ) .F u f u d� ? u  
Its Hamiltonian, therefore, can be written in the 

form 

21 ( ) ( )
2

H u F u F A�� 	 	    (11) 

or 

21( ) ( ) ( ) 0
2

R t u F u F A�� � 	 � �  (12) 

Oscillatory systems contain two important physi-
cal parameters, (i.e., the frequency �  and the amplitude of 
oscillation A ). So let us consider such initial conditions 

(0) , (0) 0u A u�� �   (13) 

We use the following trial function to determine 
the angular frequency �  

( )u t Acos t��    (14) 

Substituting (14) into u  term of (12), yield 

2 2 21( ) ( ) ( ) 0
2

R t A sin t F Acos t F A� � �� 	 � �    (15) 

If, by chance, the exact solution had been chosen 
as the trial function, then it would be possible to make R 
zero for all values of t by appropriate choice of � . Since 
Eq. (14) is only an approximation to the exact solution, 

cannot be made zero everywhere. Collocation at R
/ 4t� )�  gives 

2 2
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Its period can be written in the form 
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4. Application of the energy balance method 
 

Consider the Eqs. (3) and (4) for the vibration of 
an Euler-Bernoulli beam. Free oscillation of the system 
without damping is a periodic motion and under the trans-
formation ( ) ( )W t V 
� , Eqs. (3) and (4) become as fol-
lows 

2
2 3

1 2 32

( ) ( ) ( ) ( ) 0d V P V V
d


� 0 0 
 0 




	 	 	 �   (18) 
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Its variational formulation can be readily obtained 
as follows 
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Its Hamiltonian, therefore, can be written in the 
form 

2 2
0 1 2 3

1 ( ) 1 ( ) ( ) ( )
2 2

dVH P V
d

4V
� 0 0 
 0 




� � 	 	 	   (21) 

and 

2
0 1 2 4

1 ( )
2 4t max

41
maxH W P W0 0 0� � 	 	   (22) 

2 2
0 0 1 2

4 2 4
3 1 2 4

1 ( ) 1 ( ) (
2 2
1 1( ) ( )
2 4

t t

max max

dVH H P V
d

V W P W


 )� 0 0 




0 
 0 0 0

�� � 	 	

	 � 	 �

	
 

(23)
 

We will use the trial function to determine the an-
gular frequency� , i.e. 

( )V Acos
 � 
�        (24) 

If we substitute Eq. (24) into Eq. (23), it results 
the following residual equation 
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If we collocate at 
4

t )� � we obtain 

2 2 2 2 4
0 1 2 3

1 1 3( )
4 4 16max max maxW W P W� � 0 0 0� 	 � 0�  (26) 

The nonlinear natural frequency and deflection of 
the beam centre become as follows 
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According to Eq. (14) and Eq. (27), we can obtain 
the following approximate solution 
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Its period can be written in the form 
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4
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5. Results and discussions 
 

The simply supported and clamped beams are 
used to demonstrate the accuracy and effectiveness of the 
Energy Balance Method, as the procedure explained in 
previous sections. Table shows the comparison of nonlin-
ear to linear frequency ratio ( NL L� � ) with those reported 
in the literature. It has illustrated that there is an excellent 
agreement between the results obtained from the energy 
balance method and those reported by Azrar et al.  [37] and 

 
Table 

The comparison of nonlinear to linear frequency ratio 
( NL L� � ) 

Simply supported Clamped  
Wmax Azrar 

 [36] 
Qaisi  
[30] 

Present  
study 

Azrar 
[36] 

Qaisi  
[30] 

Present  
study 

1 1.0891 1.0897 1.0897 1.0221 1.0628 1.0572 
2 1.3177 1.3229 1.3228 1.0856 1.2140 1.2125 
3 1.6256 1.6394 1.6393 1.1831 1.3904 1.4344 
4 - - 1.9999 1.3064 1.5635 1.6171 

 

 
a 

 
b 

Fig. 2 Variation of the nondimensional amplitude ratio 
versus 
  for 1maxW �  and  2maxW �
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Qaisi [30]. The difference between the nonlinear frequency 
and linear frequency increases when the amplitude of vi-
bration is increased. In general, large vibration amplitude 
will yield a higher frequency ratio. It can be easily seen 
that for high-amplitude ratios the present method overesti-
mates the frequencies of clamped beams but gives close 
agreement with published results for simply supported 
beams. The reason is because of using the trigonometric 
base functions in the application of energy balance method, 
which means that we assumed the general form of solution 
is a combination of trigonometric functions. Since the ei-
genmodes for simply supported beams involve only the 
sinusoidal component, the energy balance method gives 
more accurate results in comparison with clamped beams 
which have hyperbolic component in their eigenmodes. To 
demonstrate the accuracy of the obtained analytical results 
we also calculate the variation of nondimensional ampli-
tude ratio versus 
  for the beam center using fourth-order 
Runge-Kutta method. Fig. 2 illustrates the comparison be-
tween these results. As can be seen in the figure, the results 
obtained using the energy balance method have a good 
agreement with numerical results. 
 
6. Conclusions 
 

In this study, the energy balance method was em-
ployed to obtain analytical expressions for the nonlinear 
fundamental frequency and deflection of Euler-Bernoulli 
beams. These expressions are valid for a wide range of 
vibration amplitudes, unlike the solutions obtained by the 
other analytical techniques such as perturbation methods. 
The energy balance method solution converges quickly and 
its components can be simply calculated. Also, compared 
to other analytical methods, it can be observed that the 
results of energy balance method require smaller computa-
tional effort and only a first-order approximation leads to 
accurate solutions. Beside all the advantages of the energy 
balance method, there are no rigorous theories to direct us 
to choose the initial approximations, auxiliary linear opera-
tors, auxiliary functions, and auxiliary parameter. How-
ever, further research is needed to better understand the 
effect of these parameters on the solution quality. 
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AŠINE KRYPTIMI APKRAUT� EULERIO IR 

R e z i u m � 

Nagrin�jamas naujo analitinio metodo, vadinamo 
rgijo

. Bayat, A. Barari, M. Shahidi 

DYNAMIC RESPONSE OF AXIALLY LOADED 

S u m m a r y 

The current research deals with application of a 
new ana

BERNULIO SIJ� DINAMINIS ATSPARUMAS  

s balanso metodu (EBM), taikymas netiesiniams 
uždaviniams spr�sti. Energijos balanso metodas taikomas 
netiesini� svyravim� poveikio Eulerio ir Bernulio sijoms, 
apkrautoms ašiniais kr�viais, analitiniam sprendimui gauti. 
Pasi�lytos sij� geometriškai netiesini� virpesi� analitin�s 
išraiškos. Aptarta virpesi� amplitud�s �taka netiesiniam 
dažniui. Energijos balanso metodo rezultat� palyginimas 
su literat�ros rezultatais patvirtina šio metodo tikslum�. 
Šiuo metodu, priešingai nei �prastiniais metodais, tik vienu 
priart�jimu gaunamas labai tikslus sprendinys, galiojantis 
pla�iame svyravimo amplitudži� intervale. 
 
 
M

EULER-BERNOULLI BEAMS 

lytical technique called Energy Balance Method 
(EBM) for a nonlinear problem. Energy Balance Method is 
used to obtain the analytical solution for nonlinear vibra-
tion behavior of Euler-Bernoulli beams subjected to axial 
loads. Analytical expressions for geometrically nonlinear 
vibration of beams are provided. The effect of vibration 
amplitude on the nonlinear frequency is discussed. Com-
parison between Energy Balance Method results and those 
available in literature demonstrates the accuracy of this 
method. In Energy Balance Method contrary to the con-
ventional methods, only one iteration leads to high accu-
racy of the solutions which are valid for a wide range of 
vibration amplitudes.  
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