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1. Introduction 

Deployable structure is a new type of aerospace 

structure born in the late 1960s with the development of aer-

ospace science and technology, which is in a folded state 

during launch, and is fixed in the payload compartment of 

the vehicle with the smallest volume. After launching into 

orbit, the ground command center will control the deploya-

ble structure to expand gradually according to the design re-

quirements, becoming a large and complex aerospace struc-

ture, and then lock it and keep it in operation [1]. After more 

than 60 years of development, in order to meet the demand-

ing space environment conditions and special mission needs, 

a variety of colorful and novel deployable structures have 

been born, such as the unit frame deployable antenna, rib 

supported deployable antenna, and other deployable struc-

tural forms, such as inflatable antenna, ring column antenna, 

integral deployable antenna, etc. [2 – 4].There are many 

types of elements that constitute deployable mechanisms, 

including scissor element [5], parallelogram element [6], 

Brickard [7] and Bennet linkage [8]. According to the needs 

of the project, the unit mechanism can form deployable 

mechanisms with different configurations through a certain 

array combination, such as solar panels, radar antenna ar-

rays, etc. Among them, the scissor deployable structure as-

sembled by the scissor element is widely used in the plane 

extension arm [9], the quadrilateral section extension arm 

[10], the spherical grid system [11], and the flexible and 

semi-rigid complex deployable mechanism composed of 

these basic forms or other structural elements, because of its 

large shrinkage, reliable deployment, high precision and 

high stiffness. 

Due to the continuous development of space mech-

anisms towards light weight and high precision, some flex-

ible components with lightweight and large flexibility char-

acteristics are widely used in such mechanisms. The cou-

pling between elastic deformation and large range motion of 

flexible components will have a great impact on the dy-

namic characteristics of the mechanism. On the other hand, 

with the continuous exploration of space science, space 

technology and space applications by major aerospace coun-

tries, deployable structures with deployment/contraction 

characteristics have been widely used, especially large de-

ployable structures with a characteristic size of 10 m-100 m 

[12]. With the gradual implementation of major aerospace 

projects, this type of deployable structure presents some 

basic characteristics: 1. It shrinks in a small space before 

launch, and deploys actively after entering orbit. The cou-

pling of structure deployment and spacecraft body motion 

has an impact on spacecraft attitude; 2. The structure has 

light weight, large flexibility, small damping and much joint 

clearance, which easily leads to complex nonlinear dynamic 

characteristics; 3. The requirement of development preci-

sion is high, and the development environment is complex. 

In the technical development of deployable structures, it is 

not only necessary to study high-performance aerospace 

materials and reliable design, but also to pay more attention 

to the dynamic deployment process of such mechanisms, es-

pecially the high-dimensional nonlinear dynamics problems 

caused by structural deployment, structural flexibility, 

structural clearance, etc. Therefore, in order to ensure the 

precise deployment of deployable structure on orbit, it is 

particularly important to analyze the deployment dynamics 

of such space articulated mechanisms. 

At present, the research on the dynamic character-

istics of deployable structure is mainly carried out from the 

following aspects: 1. The nonlinearity of hinges. Hinge is an 

important component of aerospace hinge structure, and also 

an important source of its nonlinearity. Due to processing 

error, assembly, friction and wear, there is inevitably a 

clearance in the hinge, and the resulting joint collision, fric-

tion and wear lead to asynchronous deployment of the de-

ployable structure. Focusing on the contact impact inside the 

clearance hinge, Li et al [13] used Monte Carlo method to 

reveal the influence of random parameters on the motion ac-

curacy and dynamic performance of the spatial deployable 

structure based on the continuous contact force model. Bai 

et al [14] studied the dynamic modeling and analysis process 

of space satellite antenna system with clearance, and pointed 

out that the influence of axial clearance on satellite antenna 

system cannot be ignored. Li et al [15] studied the dynamic 

characteristics of the scissor deployable structure in the pro-

cess of deployment motion using the Lagrangian method. At 

the same time, the geometric constraint method was used to 

control the contact collision phenomenon within the joint to 

ensure the deployment accuracy and improve the deploy-

ment stability. Focusing on the friction and wear in the 

clearance hinge, Li et al [16] took the solar cell array system 

as an example to discuss the dynamic response and wear 

characteristics of the multi-body system with joint clearance 

and solid coating, and revealed the influence of coating, ma-

terial and recovery coefficient on the impact performance of 

rigid system and rigid flexible coupling system. Considering 

the change of contact surface, Li et al [17] used an improved 
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nonlinear contact force model suitable for complex contact 

conditions to evaluate the internal force of joints, and dis-

cussed the friction effect between interconnects using the 

LuGre model. Next, the developed contact force was inte-

grated into the Archard model, and the crank slider mecha-

nism with multiple clearances was numerically simulated to 

prove the efficiency of the dynamic program used in the 

whole work. Patil et al [18] proposed a four degree of free-

dom model and modeled the contact between rolling ele-

ments and raceways based on Hertz contact theory. The re-

sults show that the vibration level of the bearing increases 

with the increase of the bearing clearance. Considering the 

influence of contact stiffness, Zhu et al [19] calculated the 

contact pressure distribution and contact surface wear re-

spectively using the asymmetric Winkler surface model and 

Archard wear theory, and obtained the dynamic wear trend 

of the clearance joint. Focusing on the internal lubrication 

of the clearance hinge, Miao et al [20] established a mathe-

matical model of the deployment process of the space arm 

system with clearance, and studied the influence of clear-

ance size, clearance position, clearance quantity and lubri-

cation on the dynamics and motion stability of the space arm 

system. Chen et al [21, 22] established the oil film bearing 

capacity model of the lubricating oil clearance based on the 

modified Pinkus-Sternlicht model. At the same time, using 

the Lagrange multiplier method, they established the rigid 

flexible coupling dynamic model of the mechanism with lu-

bricating clearance, and analyzed the influence of clearance 

value, driving speed and dynamic viscosity on the dynamic 

response of the mechanism.Also, they established a test de-

vice with lubrication and clearance, studied the influence of 

clearance value and driving speed on the mechanism con-

sidering lubrication and clearance, and verified the correct-

ness of the theoretical model through experimental data [23, 

24]. 2. Bar flexibility. Due to the large size and light mate-

rials of deployable structure after deployment, small 

changes in solar radiation or environmental loads will lead 

to structural vibration, which may cause movement stagna-

tion of the deployable structure. Based on the floating coor-

dinate method, Neto et al [25] studied the deployment pro-

cess of the synthetic aperture radar (SAR) antenna. In order 

to improve the calculation efficiency, the flexible multi-

body equation introduced the modal component that reduces 

the number of balance equations. Based on the small defor-

mation assumption and ignoring the coupling between rigid 

body motion and elastic member deformation, Zhang et al 

[26] studied the deployment dynamics and flexibility 

change of the simplified star grid reflector ring truss.                

3. Multi scale coupling of joint and member flexibility. 

Large deployable structures have the characteristics of large 

deployment scale, many flexible components and complex 

configuration. The deployment process not only presents the 

nonlinear coupling characteristics between the large range 

motion of the system and the large deformation of the flex-

ible components, but also presents the multi space-time 

scale coupling characteristics of the long-time scale motion 

of the system and the collision between the motion pairs 

with clearance in a very short time. Therefore, the previ-

ously mature multi rigid body system dynamics and the 

multi flexible body dynamics based on the floating coordi-

nate method show some shortcomings in solving the dynam-

ics problems of such mechanisms. Considering that large 

deployable structures experience large overall motion and 

large deformation during deployment, some scholars use 

ANCF method [27] to describe the deployment process of 

deployable structures. Luo et al [28] used the ANCF method 

to describe the large displacement and large deformation of 

variable length lanyards under the framework of Lagran-

gian-Euler multibody system. Peng et al [29] proposed a 

thermal flexible coupling dynamic analysis method for de-

ployable structures considering the influence of temperature 

induced vibration caused by solar radiation flux on the de-

ployment synchronization. At the same time, in order to ob-

tain higher expansion accuracy, they proposed a novel cou-

pling model of mechanical field and temperature field, and 

considered the two-dimensional thermal stress caused by 

thermal expansion. Otsuka and Makihara simulated the de-

ployment process of space flexible aircraft wings based on 

the internal constraint equation of ANCF method [30]. 

However, the above research is mainly based on the abso-

lute node coordinate method to analyze the dynamics of 

some simple multi-body mechanisms, and exposed the 

problems of complex dynamic model, low numerical calcu-

lation efficiency and insufficient accuracy. Therefore, the 

goal of this paper is to propose a comprehensive dynamic 

modeling and analysis method based on the absolute node 

coordinate method to predict accurately and efficiently the 

impact of the member flexibility on the dynamic perfor-

mance of complex mechanism such as deployable structures. 

In addition, when describing large deployable 

mechanisms, the ANCF method has the advantages that the 

mass matrix is constant, the dynamic stiffness can be auto-

matically considered, the model accuracy is high, the rota-

tion angle freedom is not included, and the non-incremental 

iteration can be used to obtain accurate solutions [31]. How-

ever, the shear deformation element based on ANCF has 

three locking problems: Poisson lock, thickness lock and 

shear lock [32 – 35]. Moreover, it has higher nonlinear elas-

tic force and more degrees of freedom than the traditional 

finite element beam element [36], which leads to low calcu-

lation efficiency in the application process, limiting the ap-

plication of this method in large deployable mechanism. 

Therefore, in order to establish the flexible multi-body dy-

namic model of deployable structure, this paper introduces 

the absolute node coordinate theory, and proposes a new 

non-locking planar beam element to accurately describe the 

large range motion and elastic deformation motion of each 

member of deployable structure. 

This paper first introduces the classical plane shear 

beam element based on the absolute node coordinate 

method, and systematically analyzes the three locking prob-

lems and their causes. On this basis, a new non-locking 

plane beam element is proposed by improving the plane gra-

dient default beam element, which can effectively avoid the 

locking problem in the classical beam element. Then, the 

kinetic energy equation and potential energy equation of the 

beam element are derived by using theoretical mechanics 

and continuum mechanics respectively. The mass matrix 

and stiffness matrix of the beam element are extracted by 

using the Lagrange equation, and the dynamic model of the 

beam element is established by combining the generalized 

force derived from the virtual work principle. Based on the 

beam element dynamic model, the flexible body deploy-

ment dynamic model of the whole deployable structure is 

established by introducing four kinds of constraint equations 

of the scissor line array deployable structure. In order to 

simplify the model, the dimension of the dynamic equation 
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is reduced by introducing the master-slave degree of free-

dom method and the proposed standard matrix method, and 

it is transformed from a differential algebraic equation to an 

ordinary differential equation. In order to eliminate the false 

high frequency response caused by finite element discreti-

zation, the dynamic model of the deployable structure is 

solved by using generalized   algorithm. Finally, the cor-

rectness and effectiveness of the method proposed in this 

paper are verified through the experimental test of the three 

element scissor deployable deployable. 

2. Classical plane shear beam element 

Fig. 1 is the schematic diagram of the classical 

plane shear beam element proposed by Shanaba, in which 

  is the shear angle. It can be seen that the tangent line of 

the central axis of the beam is no longer coincident with the 

normal line of the beam section because the shear defor-

mation is considered in this element. 

According to the absolute node coordinate theory, 

the displacement field of the beam element under the global 

coordinate system is defined as [37]: 

 
2 3

1 0 1 2 3 4 5

2 3

2 0 1 2 3 4 5

c c

r a a x a y a xy a x a x
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r b b x b y b xy b x b x
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where: r is the position vector of any point P on the beam 

element under the global coordinate system; ai and bi are the 

coefficients of polynomials; x is the local coordinate of the 

element along the axial direction (0 ≤ x ≤ l), in which l is the 

length of the beam element without deformation; y is the lo-

cal coordinate of the element along the transverse direction 

(-h/2 ≤ y ≤ h/2, in which h is the section height of the beam 

element without deformation); Sc and ec are, respectively, 

the shape function and generalized node coordinates of the 

beam element, in which the shape function of the beam ele-

ment is [37]:
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Fig. 1 Classical plane shear beam element 

Although the beam element of the absolute node 

coordinate method can more accurately describe the large 

rotation and flexible body movement of the large defor-

mation beam, the classical shear beam element will have 

different types of locking phenomena, among which the 

most significant effects are Poisson locking, shear locking 

and thickness locking. The three locking problems not only 

reduce the calculation efficiency of the classical beam ele-

ment, but also have a great impact on the simulation accu-

racy.  

2.1. Poisson locking 

Fig. 2 shows a micro element on the beam element. 

x y z
, ,    are the axial normal stress due to bending mo-

ment and the transverse normal stress along the y and z di-

rections of the section, respectively. Therefore, the trans-

verse normal strain using continuum mechanics can be ex-

pressed as: 

 

( )

( )

1
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y y x z

z z x y

E

E
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, (3) 

 

where: E is the elastic modulus and   is the Poisson's ra-

tio. The axial normal strain can be written as: 
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Fig. 2 Microelement on beam element 

Regarding the absolute node coordinate beam ele-

ment whose section can deform freely under the action of 

bending moment, its section should change from the initial 

rectangular section to trapezoidal section (as shown in Fig. 

3). Then, the transverse normal stresses y z,   on the sec-

tion should be zero, that is: 

 

0
y z

. = =  (5) 

Substituting the above equation into Eq. (4), it can 

be obtained that the axial normal strain at this time is: 

 

1
x x

.
E

 =  (6) 
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After  deformation

Before deformation

 

Fig. 3 Cantilever beam bending deformation 

However, because the classical beam element lacks 

the deformation mode, it is not possible to realize the section 

deformation from the kinematics. Therefore, in order to en-

sure the balance of the finite element solution, the transverse 

normal strains 
y

 and 
z

 must be zero. 

0
y z

. = =  (7) 

 

This will lead to the development of residual trans-

verse stress, whose value can be obtained from Eq. (3). 
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z x y
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. (8) 

 

Because of the occurrence of the above residual 

transverse stress, the axial normal strain will be affected, 

which is no longer shown in Eq. (6). In order to obtain its 

specific expression, Eq. (8) is employed to get: 
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By substituting Eq. (9) into Eq. (4), it is obtained: 
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It can be seen that when ( )0 0 5, .  , Eq. (10) and 

Eq. (6) are no longer identical, and the axial positive strain 

obtained by the former is less than the latter, so the defor-

mation amount obtained based on the above equation will 

be less than the analytical solution. 

2.2. Shear locking 

In order to study the shear locking phenomenon of 

the classical plane shear beam element, the hypothesis of 

small deformation is first made. The axial strain 
x

  is line-

arly related to the curvature and the curvature can be ap-

proximated by the second derivative of the transverse de-

flection, that is: 

 

x x xx x xxyv u v . = − +  (11) 

 

where: vxx is the second derivative of the deflection with re-

spect to x, and ux is the axial deformation. Under the as-

sumption of small deformation, the second derivative of the 

formula on the classical plane shear beam element can be 

approximated as: 

 
2
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4 52
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r
v b b x.

x


= = +
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It can be seen that vxx is a linear function of the lo-

cal coordinate x of the axial element. By substituting the 

above equation into Eq. (11), it is obtained: 

 

( )4 52 6 ,b a

x x x xy b b x u  = − + + = +  (13) 

 

where: b

x  is the axial strain related to bending deformation 

and a

x  is the axial strain related to axial deformation. 

However, according to continuum mechanics, it 

can also be deduced that the axial strain of the classical 

plane beam element in the linear case is: 
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1 3 4 52 3x

r
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The above formula can be classified and sorted in 

the same way. 
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where: 

2
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x
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=
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It can be seen that the axial strain obtained by both 

methods is derived from two parts: one part is related to the 

axial deformation (
a

x ), and the other part is related to the 

bending deformation (
b

x ). It can be clearly seen from the 

comparison between Eq. (13) and Eq. (15) that when the 

continuum mechanics method is adopted, the strain 
b

x  in-

duced by bending, based on Eq. (1), no longer changes lin-

early with x, but becomes a constant value along the axis 

direction, that is, 
b

x  changes from a first order function of 

x to a zero order function. The reduction of the strain 
b

x  

order not only eliminates some potential deformation modes 

of the beam element, but also leads to false bending stiffness, 

which makes the classical plane shear variable beam ele-

ment produce shear locking phenomenon. 

2.3. Thickness locking 

Compared with the traditional finite element beam 

element, the section of the absolute node coordinate beam 

element can be deformed, which leads to thickness locking. 

In order to intuitively analyze the cause of the 

thickness locking phenomenon, the position vector of any 

point on the beam element is first divided into the sum of 

two parts, that is, the position vector of the point corre-

sponding to the midpoint of the section and the displacement 

vector from the midpoint of the section to the point, as 

shown in Fig. 4. 

The position vector can be re expressed as [32]: 

 

c s ,= +r r r  (16) 
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where: rc is the position vector of the point projected to the 

corresponding point on the centerline, and rs is the displace-

ment vector of the projection point to the point. Combined 

with Eq. (1), the specific expression of the above two vec-

tors is [32]: 
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Fig. 4 Schematic diagram of classical plane beam element 

before and after deformation 

 

It can be seen from Eqs. (17) and (18), since rc is 

only a function of the axial coordinate x, the point on the 

centerline can be represented by the local coordinate x; In 

contrast, rs is a linear function with respect to the axial co-

ordinate x and the transverse coordinate y respectively, 

which requires the local coordinates x and y to be expressed 

together. By substituting Eq. (2) into Eq. (18), it is obtained: 
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Given that the value range of transverse coordinate 

y is [-h/2, h/2], the displacement vector of upper end point 

and lower end point of any section of classical beam element 

can be obtained by substituting it into Eq. (19). 
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By subtracting the above two equations: 
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Obviously, the modulus of the above vector is the 

thickness of the section. To facilitate the analysis, the fol-

lowing assumptions are made: 
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As v

sr  is the linear interpolation of the slope coor-

dinate vectors i

yr  and j

yr , when the head and tail sections of 

the beam element are no longer parallel, as shown in Fig. 5, 

the modulus of v

sr  will be less than 1, and the modulus of 

the vector sr  will be less than the initial value h, that is, 

the thickness of any section will be less than h. Therefore, 

when the beam element is deformed, its theoretical defor-

mation configuration is shown in Fig. 6. 

It can be seen from the Fig. 6 that, as a result of 

linear interpolation of rotation vectors 
i

yr  and 
j

yr , the sec-

tion of the beam element shrinks gradually from both sides 

to the middle and shrinks more as it gets closer to the mid-

dle. It is worth noting that this phenomenon will become 

more and more significant as the angle between the two 

slope vectors 
i

yr  and 
j

yr  increases. Especially when the two 

vectors 
i

yr  and 
j

yr  are collinear and opposite, the linear in-

terpolation of the transverse slope coordinates will lead to a 

very serious false deformation mode. It can be seen from Eq. 

(21) that there must be a zero vector in the middle of the 

beam element, that is, the section thickness at this location 

is zero, which is completely inconsistent with the actual sit-

uation. 

From the above discussion, we can see that the 

only way to prevent the middle section of a classical beam 

element from shrinking during bending is to keep the sec-

tions at both ends of the beam element always parallel, as 

shown in Fig. 7. However, this will lead to excessive shear 

deformation. 
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Fig. 5 Linear interpolation of section slope vector 
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Fig. 6 Deformation configuration of classical plane beam 

element 
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Fig. 7 Deformation configuration when two end faces are 

parallel 

3. A novel non-locking plane beam element 

In order to eliminate the locking problem of the 

classical shear beam element, a new non-locking planar 

beam element is proposed in this paper. The beam element 

is characterized by the position coordinates of three nodes, 

the transverse slope vector y r  and the tangential slope 

vector x r  at the middle node, as shown in Fig. 8. 
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Fig. 8 Planar beam element without locking 

The absolute node coordinates of the non-locking 

plane beam element can be expressed as:
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Accordingly, the upper displacement field of non-

locking planar beam element can be defined as:
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Thus, the shape function of the plane beam element 

without locking can be obtained as: 

 

 1 2 3 4 5 6 7n s s s s s s s ,=S I I I I I I I  (24) 

 

where: I is the unit matrix, and the shape function items are 

as follows: 
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It can be seen from the above equation that com-

pared with the classical plane shear beam element, the shape 

function of the non-locking plane beam element has an ad-

ditional 
2  term, which will improve the performance of 

the beam element. It is worth noting that in order to avoid 

Poisson locking, this paper adopts the method of making 

Poisson's ratio 0. 

4. Beam element dynamic model 

According to theoretical mechanics, the kinetic en-

ergy of the beam element is: 
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2 2
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e eT dV ,= =e S Se e M e  (25) 

 

where: e  is the absolute node velocity; Me is the mass 

matrix of beam element; = T
V

e dVM S S . 

According to continuum mechanics, the Green La-

grangian strain tensor is: 
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in which: 
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where: Six and Siy are the partial derivatives of the shape 

function matrix S with respect to x and y in the ith row, 

i=1,2. Based on the generalized Hooke's law, the constitu-

tive equation is: 

 

,=σ Eε  (27) 

 

where: σ is the second Piola Kirchhoff stress vector. There-

fore, the elastic potential energy expression of the beam el-

ement can be written as: 

 

1

2

T
V

eU dV .= σ ε  (28) 

 

The elastic force equation of the beam element can 

be obtained by solving the partial derivative of the general-

ized coordinate e of the equation, which is: 
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where: Ke is the stiffness matrix of the beam element. 

 

( ) 1 2 32e ,   = + + +K K K K  (30) 

 

in which: 

( ) ( )

( ) ( )

( )

1

2

3

1
1 1

4

1
1 1

4

* T * T
V

a a b b

* T * T
V

b a a b

* T
V

c c

* T

a a a

* T

b b b

* T

c c c

dV

dV

dV







 = − + −
 

 = − + −
 

 =
 

= +

= +

= +

K S e S e S e S e

K S e S e S e S e

K S e S e

S S S

S S S

S S S

.

 

After obtaining the kinetic energy equation and 

elastic force, the dynamic equation of the beam element can 

be obtained using the second type of Lagrange equation, 

which can be defined as: 
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By substituting Eqs. (26) and (29) into the above 

equation: 

 

e e e .+ =M e K e Q  (32) 

 

The above equation is the dynamic equation of the 

beam element, where e  is the absolute node acceleration 

vector, and Qe is the generalized force. 

5. Dynamic model of linear array deployable structure 

based on scissor-like element 

The scissor deployable structure is composed of 

scissor-like elements, which is the smallest element of the 

deployable structure. As shown in Fig. 9, it is composed of 

bar ab, bar cd and hinges at points e and e′. At both ends of 

each bar, namely points a, b, c and d, there is a hinge hole 

for connecting with the support or other type deployable 

mechanisms. In this paper, the deployable structure of Fig. 

10 composed of scissor elements arrayed along a line will 

be studied.  

i

a d

c b

e e′ 

1 2

 

Fig. 9 Scissor-like element 
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Fig. 10 Scissor linear array deployable structure 

According to the configuration characteristics of 

scissor deployable structure, this paper proposes a standard 

matrix method to adjust the position coordinates within the 

element and between adjacent elements, as well as the ar-

rangement order of gradient vectors, in order to reassemble 

the stiffness matrix and mass matrix, eliminate the con-

straint equations between flexible bodies, and reduce the 

difficulty of solving the problem. 

The node coordinates of the scissor element can be 

expressed as: 

 s a a y e e x e y b b y c c y e e x e y d d y  
 =  , , , , , , , ,

q r r r r r r r r r r r r r r .  (33) 

Using the transformation matrix T1, the coordinate order of qs can be adjusted as follows:
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where: T1 is the transformation matrix, which can be ob-

tained by filtering. Supposing that it is a full n×n matrix, the 

elements in the matrix are determined by the following con-

straints. 
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where: 1 2i, j , n= . It is noted that i is in the external loop 

layer during programming calculation. 

In order to eliminate the hinge constraint inside the 

element and facilitate the array assembly, the node coordi-

nate qs1 of the scissor element can be further rewritten as:

 2 1s s a c a ,y c ,y e e,x e,y e ,x e ,y d ,y b,y d b ,  
 = =  q T q r r r r r r r r r r r r r  (36) 

where: T2 is the transformation matrix, which can be ob-

tained by the same method as in Formula (35). The modified 

node coordinates of the first scissor element can be obtained 

through calculation, and its matrix dimension is reduced 

from 28×28 to 26×26, which indicates that the computa-

tional complexity of the motion equation will be reduced. 

Similarly, the mass matrix and stiffness matrix of the first 

element can be obtained. The mass matrix is a constant ma-

trix, which can be obtained according to the same conver-

sion process as above. The stiffness matrix can be obtained 

by substituting the initial parameters into Formula (29) and 

converting the corresponding coordinate sequence based on 

the absolute node coordinate method. After obtaining the 

relevant information of the first element, the total stiffness 

matrix and mass matrix of the linear array deployable struc-

ture can be obtained by (n-1) addition of the corresponding 

matrix. 

Then, considering the boundary constraints, the 

dynamic equation of the scissor deployable structure can be 

established using the first kind of Lagrangian equation. 
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d d
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where: qd and ( )d d ,tΦ q  are, respectively, the node coordi-

nate vector and constraint equation of the scissor deployable 

structure after adjustment,; 
d

qΦ  is the derivative of the con-

straint equation to the node coordinate qd, and dλ is the La-

grangian factor of the scissor element deployable structure. 

In terms of solving dynamic equations, considering 

the configuration characteristics and assembly methods of 

the scissor deployable structure, in order to dissipate the 

high frequency response while maintaining the low fre-

quency response of the system, the simplified generalized 

 method is selected to solve the nonlinear dynamic prob-

lems of scissor deployable structures. Please refer to litera-

ture [29] for the specific solution process. 

6. Validation of the novel non-locking beam element 

6.1. Verification of shear locking and thickness locking 

from statics 

Taking a cantilever beam and a simply supported 

beam as examples, shown in Fig. 11, the effects of shear 

locking and thickness locking are analyzed respectively to 

verify the correctness of the beam element proposed in this 

paper. The cantilever beam shown in Fig. 13 is analyzed for 

stress and deformation. The left end of the cantilever beam 

is fixed, and bending deformation occurs only under the ex-

ternal force F at the right end.  

According to material mechanics, the deflection of 

the cantilever beam derived from Euler beam theory can be 

expressed as: 

3

3

analytical Fx
.

EI
 =  (38) 

F
M M  

Fig. 11 Loading of cantilever beam and simply supported 

beam 

 

The classical plane shear beam element and the 

beam element proposed in this paper are also used to derive 

the deflection of the cantilever beam, as follows: 

 

( )2 227 16

108

c

max

Fx x h
,

EI


+
=  (39) 

 

( )2 22 2

12

n

max

Fx x h
,

EI


+
=  (40) 

 

where the superscript analytical; c, and n respectively rep-

resent the material mechanics theory, classical beam ele-

ment, and the proposed beam element; I is the moment of 

inertia of the beam section. The geometric and material pa-

rameters of the cantilever beam are shown in Table 1. The 

maximum deflection results and beam deformation obtained 

from the three methods are shown in Table 2 and Fig. 12 

respectively. 

Table 1  

Dimensions and material parameters of cantilever beam 

Parameter Value 

Bar length L 1m 

Section height h 0.02 m 

Section width c 0.02 m 

Elastic modulus E 2×108 Pa 

Poisson's ratio ν  0 

Density ρ 7750 kg/m3 

Table 2 

Beam deformation 

Category Numerical Error 

Analytic solution 0.124999998 m - 

Classical plane shear beam element 0.093771050 m 25 % 

Beam element proposed in this paper 0.125023472 m 0.02 % 

 

It can be seen from Table 2 and Fig. 12 that there 

are obvious differences between the classical plane shear 

beam element and the analytical solution. Because Poisson's 

locking has been avoided by taking Poisson's ratio equal to 

0, and the thickness locking is only obvious in large bend-

ing, especially when the two ends are parallel and opposite, 

the difference is mainly caused by the shear locking. By 

comparison, we can find that the calculation results of the 

beam element proposed in this paper are basically consistent 

with the analytical solution, which shows that the proposed 

element effectively avoids the shear locking problem. 
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Fig. 12 Deformation of cantilever beam 

In order to verify the thickness locking, the classi-

cal beam element and the proposed beam element are used 

to analyze the stress and deformation of the simply sup-

ported beam shown in Fig. 11, where the beam is only af-

fected by the bending moment M, and the two bending mo-

ment directions are respectively clockwise and counter-

clockwise. 

According to the theory of material mechanics, the 

thickness of a simply supported beam can be regarded as 

constant during the deformation process, that is: 

 

.analytical h =r  (41) 

 

Using the classical beam element and the proposed 

beam element, the thickness of the middle section of the el-

ement can be expressed as: 
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.n h =r  (43) 

 

From the above formulas, it can be clearly ob-

served that the section thickness of the classical plane shear 

beam element is related to the magnitude of the bending mo-

ment it bears, and must be less than h. However, the section 

thickness of the proposed beam element is independent of 

the bending moment and is identical to h. The geometric and 

material parameters of the simply supported beam (as 

shown in Table 1) are substituted into the above formulas, 

and the calculation results are shown in Table 3. It can be 

seen from the table that the section thickness of the proposed 

beam element is consistent with the theoretical value, both 

of which have initial values of 0.02 m, while the section 

thickness of the classical plane shear beam element has 

shrunk to a certain extent, becoming 0.0185 m, indicating 

that the thickness locking phenomenon occurred in the clas-

sical beam element after the large bending deformation of 

the simply supported beam. Through the comparison be-

tween the three, it is fully verified that the proposed beam 

element effectively avoids the thickness locking problem. 

The above two examples prove that the calculation 

results of the proposed beam element are closer to the ana-

lytical solution than the classical plane shear beam element, 

which fully demonstrates the correctness of the method in 

avoiding shear lock and thickness lock. 

Table 3  

Thickness of beam middle section 

Category Numerical Error 

Analytic solution 0.02 m - 

Classical plane shear beam element 0.0185 m 7.5 % 

Beam element proposed in this paper 0.02 m 0 % 

6.2. Validation of shear locking and thickness locking from 

dynamics 

In the dynamics part, the correctness of the beam 

element proposed in this paper is verified by comparing with 

the results of ANSYS analysis. In order to reduce the 

amount of calculation, a flexible simple pendulum is used 

as a case, in which the flexible beam is connected with the 

support through hinge and suspended in the air, and can ro-

tate and deform freely under the gravity, as shown in 

Fig. 13. In addition, the gravity acceleration g is taken as 

9.81 m/s2. 

Y

X

A

g

O

 

Fig. 13 Flexible simple pendulum 

The dimension parameters and material parameters 

of the beam are shown in Table 1. ANSYS solid element 

(Transient Structural), classical beam element and the pro-

posed improved beam element are used to establish their 

motion models and conduct the dynamic analysis. The anal-

ysis and simulation results are shown in Figs. 14 and 15. 

Fig. 14 shows the displacement of point A along 

the X axis calculated by three beam elements, and Fig. 15 

shows the deformation of the simple pendulum at different 

time.  

 

Fig. 14 Displacement of point A along X-axis calculated by 

the three types of beam elements 

It can be seen from the figures that the beam ele-

ment proposed in this paper is in good agreement with the 

ANSYS results, which verifies that the proposed beam ele-

ment solves the three locking problems, and can explain the 

motion and deformation of the beam from the perspective of 

dynamics. In Fig. 14, by comparing with the analysis results 

of the classical plane shear beam element, it can be found 
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that the classical beam element has almost no elastic defor-

mation at the position with the maximum swing amplitude, 

which shows that the classical beam element has greater 

"stiffness" than the other two beam elements, and proves 

that the locking problem of the classical beam element will 

affect the accuracy of its simulation. At the same time, it is 

proved again that the beam element proposed in this paper 

avoids the locking problem of the classical beam element. 

 

Fig. 15 Deformation of simple pendulum at different time 

7. Simulation and experiment 

7.1. Classical example simulation 

The deployable structure composed of 3 scissor-

like elements (Fig. 16) is employed to analyze its dynamics, 

where   is the deployaing angle. The origin of the inertial 

coordinate system O is fixed at point b1. Constraints are ap-

plied at points a1 and b1, respectively, limiting the transla-

tion of point a1 along the X axis and point b1 along the X 

axis and Y axis. The driving force F along the negative Y 

axis is applied at point a1. The bars of the scissor deployable 

structure are hollow beams (thin-walled tubes). The bar 

length L is 1 m, the cross section is a square, 10 mm×10 mm, 

the wall thickness is 0.4 mm, and the driving force F is -

0.1 N. The initial deploying angle   is 80°. Specific mate-

rial parameters are listed in Table 4. 

F

XO

1 2

Y

3



a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3

 

Fig. 16 Scissor linear array deployable structure composed 

of 3 elements 

Table 4  

Material parameters of scissor linear array deployable 

structure 

Parameter Value 

Elastic modulus E 152 GPa 

Poisson's ratio ν 0.3 

Density ρ 8026 kg/m3 

 

The proposed modeling method and numerical so-

lution method are used to analyze the dynamics of the scis-

sor linear array deployable structure, and the results are 

compared with the multi rigid body dynamics, shown in 

Fig. 17. The two curves in the figure respectively represent 

the dynamic characteristic change process of point a4 on the 

deployable structure considering the flexibility and rigidity 

of the member. It can be found that the deployment process 

of deployable structure driven by constant force is a variable 

acceleration movement. In the first and second stages of the 

deployment process, the changes of displacement, velocity 

and acceleration are relatively gentle; At the later stage of 

deployment, especially after 10 seconds, the displacement, 

velocity and acceleration will change rapidly, and the abso-

lute value of the latter two will also increase rapidly. There-

fore, the sudden locking at the end of the constant force 

drive will have a great impact on the stability of the deploy-

able structure. It is necessary to systematically analyze the 

dynamic behavior under this drive. 

Observe Fig. 17 and find that the dynamic behavior 

of deployable structure is significantly different after con-

sidering the flexibility and rigidity of components. Dis-

placement, velocity and acceleration have experienced dif-

ferent degrees of vibration (the acceleration vibration is the 

most significant), which will lead to the instability of de-

ployable structure's deployment motion, and may also cause 

resonance and syntony of spacecraft. In addition, due to the 

elastic deformation with tensile, shear and bending compo-

nents, there are also some differences between the expan-

sion displacement of the flexible body and the rigid body of 

the deployable structure. The maximum displacement along 

the X axis and the Y axis are 0.0065 m and 0.0059 m re-

spectively. 

The numerical simulation results of the deploy-

ment motion of each point on the same horizontal line of the 

flexible deployable structure are shown in Fig. 18. From the 

displacement curves (a) and (b), the flexibility of the mem-

ber mainly affects the synchronization of the movement of 

the points on the same horizontal line of the deployable 

structure (the movement of the points on the same horizontal 

line is consistent or proportional), which is particularly evi-

dent in Fig. 18, b. The displacement curves of points a2, a3 

and a4 along the Y axis are no longer completely coincident, 

and the displacement of the three points along the Y axis 

gradually varies with the expansion movement. The dis-

placement difference between the three points reached the 

maximum at 11.39 s, and the maximum difference was 

(0.00274+0.00230) = 0.00504 m. 

From the velocity curves (c) and (d) and the accel-

eration curves (e) and (f) of points a2, a3 and a4 in Fig. 18, it 

can be clearly observed that the velocities and accelerations 

of the three points are not synchronized along the Y axis, 

but also have obvious vibration, and the corresponding vi-

bration of point a4 is always the largest and most obvious. 

On the other hand, it can be seen that the velocities of points 

a2, a3 and a4 along the X axis reach their peak values in 10.8 

s to 10.9 s, and then decrease rapidly. The reason for this 

phenomenon is that the direction of the corresponding ac-

celeration turns from positive to negative and the absolute 

value increases rapidly. 

 

7.2. Experimental verification 

 

The flexible body dynamics experiment platform 

of three scissor element line array deployable structure was 

built to verify the numerical finding of this paper. The ex-

perimental setup is shown in Fig. 19, which mainly consists 
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of drive module, control module and measurement module 

according to their functions. 1. Drive module. The drive 

module is composed of a motor, a ball screw module and a 

sliding block. The motor is connected with the screw 

through a coupling to make the screw rotate so as to transmit 

power to the sliding block; 2. Control module. The control 

module is composed of a computer, a controller, a driver and 

a DC power supply, and the latter three are integrated in the 

drive control box; 3. Measuring module. including pull wire 

displacement sensor and RS485 signal converter. The pull 

head of the displacement sensor is fixed at the end point of 

the scissor deployable structure. The RS485 signal con-

verter converts the displacement signal collected by the dis-

placement sensor into a USB signal that can be recognized 

by the computer, and then uses the serial port debugging 

software to receive and record the data. 

  

           a) Displacement along X axis                   b) Displacement along Y axis                     c) Velocity along X axis 

 

             d) Velocity along Y axis                       e) Acceleration along X axis                   f) Acceleration along Y axis 

Fig. 17 Comparison between flexible body dynamics and rigid body dynamics of scissor deployable structure 

   

           a) Displacement along X axis                  b) Displacement along Y axis                      c) Velocity along X axis 

   

              d) Velocity along Y axis                           e) Acceleration along X axis                f) Acceleration along Y axis 

Fig. 18 Deployment motion of points a2, a3 and a4 on the deployable structure 
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In order to verify the correctness of the flexible 

body dynamics model of the scissor deployable structure es-

tablished in this paper, the theoretical and experimental re-

sults of the deployable structure composed of three scissor 

elements (bar length 0.5 m) are compared and analyzed. It 

should be noted that the scissor deployable structure is a pla-

nar mechanism, so the planar element is used for analysis. 

 

Fig. 19 Scissor linear array deployable structure experi-

mental platform 

When the deployment time is 50 s and the bar 

length is 0.5 m, the displacement simulation results and ex-

perimental results of the measured point P along the X-axis 

are shown in Fig. 20. 

It can be seen from Fig. 20 that the simulated dis-

placement curve of the deployable structure’s deployment 

motion is basically consistent with the experimental dis-

placement curve, and both experence rapid increase first, 

then gradual increase. In addition, the difference between 

the two displacement curves mainly occurs at the beginning 

and end of the deployment, and the maximum error occurs 

at the end of the deployment, which is 0.0502 m. Corre-

spondingly, the maximum error rate is 3.6%, which is within 

the engineering error range. It is speculated that the reason 

for the difference in the initial stage of deployment may be 

that the structure will undergo slight elastic deformation in 

order to balance the friction force at the hinge, which will 

cause the experimental measured displacement to lag behind 

the theoretical simulated displacement. On the other hand, 

there are two main reasons for the obvious differences at the 

end of deployment. One is the hinge of deployable structure, 

which is composed of steel solid bolts and nuts and bears 

large gravity. Therefore, the deployable structure will be 

subjected to a large vertical downward force, resulting in its 

bending deformation. With the gradual deployment of the 

deployable structure, the bending deformation caused by the 

gravity of the hinge will become larger and larger. There-

fore, the measured displacement in the X direction in the 

experiment is not only less than the theoretical value, but 

also has a larger gap; Secondly, due to the existence of ma-

chining error, the actual position, hole and rod size of the 

hinge on the deployable structure will not be completely 

consistent with the theoretical position and size, so the ex-

perimental motion trajectory of the measuring point P will 

be different from the theoretical motion trajectory, which 

may also lead to this phenomenon. In conclusion, the com-

parison between the experimental results and the simulation 

results proves that the simulation results are acceptable, 

which can verify the effectiveness of the novel non-locking 

beam element and multi-flexible body dynamic modeling 

method proposed in this paper. 

 

a) Displacement curve of deployable structure (overall) 

 

b) Displacement curve of deployable structure (local) 

Fig. 20 Comparison of simulation and experimental results 

8. Conclusions 

Based on the absolute node coordinate method, a 

novel non-locking plane beam element is proposed to solve 

the element locking problem in the classical shear plane 

beam element. Through the theoretical verification of statics 

and dynamics, the new element can effectively avoid the 

three locking problems and accurately simulate the dynamic 

deformation of flexible components. Also, a scissor deploy-

able structure test platform was built, and the effectiveness 

of the proposed new beam element and dynamic modeling 

method for complex mechanisms was verified by experi-

ments. In addition, the standard matrix method is used to 

separate the internal node coordinates and the external con-

straint node coordinates of the scissor element to complete 

the assembly of the dynamic equations of the deployable 

structure, eliminate the constraint equations that need to be 

introduced into the dynamic equations, and convert them 

from differential algebraic equations to pure differential 

equations for easy solution.  

The experimental and simulation results show that 

the motion of deployable structure is the coupling of large 

rigid body motion, small amplitude vibration and defor-

mation during the deployment. The closer to the end, the 

more obvious the vibration and deformation. Therefore, the 
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influence of flexibility must be considered when predicting 

the motion law of deployable structures. This study provides 

a theoretical basis for the design and precise control of large 

deployable structures, and also provides a solution for the 

smooth deployment and configuration maintenance of such 

structures. In the follow-up study, the influence of non-

smooth factors such as clearance, friction and wear on the 

dynamic characteristics of deployable structures will be 

considered, and a theoretical model containing more nonlin-

ear factors will be established to more comprehensively and 

accurately simulate the motion process of the mechanism. 
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MODELING AND ANALYSIS OF FLEXIBLE 

DEPLOYABLE STRUCTURE WITH SCISSOR-LIKE 

ELEMENTS USING A NOVEL NON-LOCKING BEAM 

ELEMENT 
 

S u m m a r y 

 

The main goal of this paper is to develop a com-

prehensive dynamic modeling and analysis method based on 

the absolute node coordinate method to predict the impact 

of the member flexibility on the dynamic performance of 

scissor deployable structure under the framework of flexible 

multi-body dynamics. In the process, three locking prob-

lems in the classical plane shear beam element are reviewed 

and discussed. Then a novel non-locking planar beam ele-

ment is proposed to solve the element locking problem, and 

the dynamic model of the scissor deployable structure is es-

tablished. Next, the cantilever beam, simply supported beam 

and flexible simple pendulum are respectively used to verify 

the correctness of the proposed non-locking beam element 

from the static and dynamic perspectives. Finally, the simu-

lation and experiment results show that the proposed new 

non-locking element and normal matrix modeling method 

can effectively evaluate the dynamic performance of de-

ployable structure and improve the computational efficiency. 

This study not only provides theoretical guidance for the dy-

namic behavior analysis and prediction of scissor deploya-

ble structure, but also offers reference for the layout and de-

sign of same type mechanisms. 

Keywords: deployable structure, non-locking element, dy-

namic analysis, modeling, simulation. 
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