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1. Introduction 

Periodic composite structures have been extensive 

studied [1-5] and used in energy harvesters, elastic wave fil-

ters and vibration isolators [6-8] due to the particular prop-

erties of band gap, which can prevent elastic waves from 

propagating in a specific frequency range. There are two 

kinds of formation mechanism of band gap [9]: local reso-

nance and Bragg scattering. The vibration attenuation 

caused by the local vibration of the resonator can absorb the 

elastic wave energy [10]. The second case is elastic wave 

scattering that occurs at the interface of a material or struc-

ture [11]. However, in both cases the band gap characters 

are inherently microstructure-dependent [12], which is hard 

be accurately captured by the classical elasto-dynamic the-

ory. Therefore, it is necessary to use the higher-order elastic 

theory which includes microstructure-dependent material 

parameters to study the band gaps. 

Recently, several size-dependent microbeam [13, 

14] and microplate [15-18] elastic wave models have been 

developed based on higher-order continuum theory to inves-

tigate the band gaps. Liu et al. [19] studied the interface/sur-

face stress effect on vibration band gap structure by surface 

elasticity theory. Li et al. [20] investigated the Bloch waves 

in the periodic laminated structure by using dipole gradient 

elasticity theory to describe microstructure effect. Zhang et 

al. [21, 22] developed a 2- and 3-dimensional periodic com-

posites structure models for calculating band gaps of wave 

propagation using the modified coupled stress theory. After 

then, Zhang et al. [23] investigated the band gaps properties 

of periodic composite microplates by developing an Mindlin 

microplate contains both microstructure and surface energy 

effects. Zhang et al. [24-25] studied the wave propagation 

and tunable bandgaps of microbeam considered microstruc-

ture and magneto electro elastic effects. 

All the above works are focus on solving the band 

gap of elastic wave problems by analytical solution. Xia et 

al. [26] and Lai et al. [27] established a 3-node triangular 

(T3) finite element method based on the modified couple 

stress theory (MCST) to investigate the microstructure ef-

fects on vibration band gap of periodic composite micro-

plates. The higher order continuity is constructed by 9 nodal 

degrees of freedom [26, 27]. As the higher order continuity 

requirement in higher order elastic theory, more degrees of 

freedom [28, 29] or special technology [30, 31] are needed 

in traditional finite element method to establish the higher 

order gradient. To deal with the higher order gradient prob-

lem, a higher-order numerical approach based on the MCST 

is necessary to be develop for the vibration band gaps of pe-

riodic composite microplates. Isogeometric analysis (IGA) 

developed by Hughes et al. [32, 33] is a higher order com-

putational approach, which use high-order spline basis func-

tion for both geometric modeling and structure analysis. 

Therefore, the isogeometric analysis inherent satisfies the 

higher order continuity requirement of higher order elastic 

theory. In this paper, an isogeometric analysis method based 

on Mindlin and MCST is proposed for vibration band gaps 

in periodic composite microplates. 

This paper will be divided into the following parts: 

The second part introduces the theoretical formula of band 

gap analysis based on MCST and Mindlin theory. The third 

part introduces the realization of isogeometric numerical 

method for periodic composite microplates. In the fourth 

part, numerical examples are given to investigate the vibra-

tion band gaps problems. At the end of this paper, the main 

points are summarized. 

2. Basic formulation 

2.1. Periodic composite plate 

Fig. 1 shows a periodic composite plate (domain) 

consisting of Phase I periodically embedded in Phase. For 

the determination of the band gap in periodic composite 

plate, the plate structure is significantly larger than its unit 

cell, therefore a unit cell is considered and the periodic 

boundary condition is imposed on the cell. As shows in 

Fig. 1, the unit cell is a square with a square inclusion in the 

center. The geometry of the unit cell and inclusion are given 

in Fig. 1 with a and d. 

Based on the Bloch theory for periodic media, the 

displacement field of the elastic wave problem can be de-

scribed by harmonic function as: 

 ( ) ( ), ,i tt e =u r u r  (1) 

where: u(r) is the spatial function;   is the angular fre-

quency. The position vector r  is used to represent the posi-

tion of arbitrary point in the unit cell. 

Based on the Bloch-Floquet theorem [34], the dis-

placement field in Eq. (1) can be transformed as: 

 ( ) ( ) ( )
,

i
t e

•
=

k r

ku r u r , (2) 
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in which uk(r) denotes a periodic function with the same 

material periodicity as region   (namely ai, i = 1, 2); k = 

=(kx, ky) represent the Bloch wave vector. Considered the 

material periodicity, the displacement field should satisfy 

the following periodic boundary conditions: 

 

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

,

,

i i

i

e e

e

• •

•

+ =

+ = +

+ =

k k

k r k a

k

k a

k

u r a u

u r a k u r a

u r a k u r

. (3) 

 

Fig. 1 Schematic of periodic bi-phase composite micro-

plate and its unit cell 

The relationships in Eq. (3) are the Bloch periodic 

boundary conditions which need imposed on the boundary 

of its unit cell. 

2.2. Modified couple stress theory 

For micro/nano periodic composite plate, the mi-

crostructure has great effect on the band gap character, 

therefore the MCST [35, 36] is employed to capture the mi-

crostructure effect of the unit cell in this work. Applying the 

MCST, the total strain energy of the unit cell can be ex-

pressed as: 

 
1

( : : )d
2

U V


= + σ ε m χ , (4) 

in which dV  is a volume element; σ and m are Cauchy 

stress tensor and couple stress tensor, respectively; ε is the 

infinitesimal strain tensor and χ is the curvature tensor, pro-

vided as follows: 

 
1

( ( ) )
2

T=  + ε u u , (5) 

1
( ( ) )

2

T=  + χ θ θ , (6) 

1

2
= θ u , (7) 

where: θ  is the rotation vector. 

According to the MCST, the constitutive relations 

can be written as: 

2

( ) 2

2

tr

l

 



= +

=

σ ε I ε

m χ
, (8a-b) 

in which, λ and μ are lamé constants; I is unit tensor, and l

is the material length parameter, which can be determined 

by experiment and used to represent the couple stress effect 

[36, 37]. 

The elastic wave propagation in solids is described 

by the elastic dynamic equations. Considered the micro-

structure effect, the unit cell governing equation based on 

the MCST and the Bloch boundary conditions are given as 

[23, 26]: 

( )

1 1
( )

2 2

( , ) ( ) i

ku e





 −    −  + =

+ = k a

σ m c f u

r a k u r

, (9a-b) 

where: c is the body couple moment and f are the body force; 

ρ is the material density. 

In order to facilitate the use of IGA to solve Bloch 

boundary value problem of unit cell, the weak form of 

Eqs. (9) without the external load can be transformed into 

its weak form as: 

( )

d d ( : : )d d 0

( , ) ( )

T T

i

k

V t V t

e

   
 



 + + =

+ =

   
k a

u u σ ε m χ

u r a k u r
. (10a-b) 

Eqs. (10a) represents the virtual work equation in 

the absence of any physical force and external load. 

2.3. Mindlin plate theory 

Based on the Mindlin plate theory [38], the dis-

placement fields of the plate are defined as: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0

0

0

, , , ,

, , , ,

, , ,

x

y

u x y z u x y z x y

x y z x y z x y

w x y z w x y


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= −

= −

=

, (11) 

in which u0, υ0, w0 are the displacement of mid-plane in x, y 

and z directions, and φx, φy are the rotations. 

Substituting the displacement field formula (11) 

into Eq. (5), the strain can be obtained as following:
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where: 
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ε ε ε  (13) 

Substituting Eqs. (12) and (13) into Eq. (8a) gives 

the stress tensor as: 

( ) , ,

x

xz

y m m b s s

yz

xy









 
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 

σ D ε ε τ D ε  (14) 

where: 

( ) ( )2

1 0
1 0

1 0 , ,
0 12 11

0 0 1 / 2
m s

v
E kE

v
vv

v

 
  = =    +−  −  

D D  (15) 

in which E  represent Young’s modulus and ν is the Pois-

son’s ratio; k is the shear coefficient which is set as 

5 / 6.k =  

Substituting the displacement field Eq. (11) into 

Eq. (7), the rotation vector is obtained as: 
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θ  (16) 

According to Eqs. (6) and (16), the symmetric cur-

vature tensor is:
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where: 
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From Eqs. (17), (18) and (8b), the expression of 

couple stress can be obtained as: 
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where: 
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2, ( )c p z  = = −
1

m D χ m D χ χ , (20a) 

with 

( ) ( )

2 2

1 0 0 0

0 1 0 0 1 0
,

0 0 1 0 0 11 1
0 0 0 1

c p

El El

v v

 
   

= =   + +   
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D D , (20b-c) 

3. Isogeometric analysis approach 

3.1. Introduction to NURBS basis functions 

The Non-Uniform Rational B-Splines (NURBS) 

basis functions can be established from B-splines basis 

functions. The one-dimensional NURBS basis function is 

provided as follows [33]: 

( )
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,1

i p i

i p n
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N w
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
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
=

=


, (21) 

where: Ni, p(ξ) is the B-spline basis function; wi represents 

the thi  weight; ξ denotes the parametric coordinate; p is the 

degree of the basis function; n  represents the number of 

control points and corresponding basic functions. 

The one-dimensional B-spline basis function for a 

given knot vector  1 2 1 1, , , ( )n p i i     + + +=   is de-

fined as [33]: 
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(22b) 

Two directions B-spline basis functions can con-

struct the two-dimensional NURBS basis functions as: 

, , ,,
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, , ,1 1
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where: Ni, p(ξ) and Nj, q(η) are the B-spline basic functions 

with degree of p, and q in the ξ and η directions, respec-

tively; wi, j is the 2D weight. 

3.2. Isogeometric analysis discretization equations 

Based on the Mindlin plate theory and isogeomet-

ric analysis, the displacement can be approximated by the 

NURBS basis function as: 

1

,
NP

h

I I
I

R
=

=u u  (24) 

in which NP=(p+1)(q+1) represents the number of control 

points in the element; uI and RI represent the displacement 

of control point I and shape function, respectively. 

Based on the Mindlin plate theory and isogeomet-

ric analysis, the displacement can be approximated by the 

NURBS basis function as: 

.
T

I I I I xI yIu w   =  u  (25) 

It can be seen from Fig. 1 that the unit cell contains 

square inclusion. In order to describe the material interface, 

the level set method (LSM) [39] is employed to capture the 

interface curve and then a triangular sub-domain technique 

[40] is used to improve the accuracy of elements cut by in-

terface curve. 

Substituting Eq. (24) into Eq. (13) gives the fol-

lowing: 
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Substituting Eq. (24) into Eq. (18a-c) gives the 

following: 
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The vibration band gap of unit cell is calculated by 
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modal analysis. The matrix form of the unit cell virtual work Eq. (10a) can be written as: 

 + d d d d .

TT

Tcm b m m b

T T
ps s s
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z z
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0 Dχ χ χ χε 0 D ε
 (30) 

The harmonic equation of displacement field u in-

troduced into Eq. (30) to obtain the governing equation as 

follows: 

2

0[ ] 0− =K M u , (31) 

where: u0 is the displacement of the unit cell; K is the total 

stiffness matrix, expressed as: 
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M is the mass matrix which can be written as: 
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3.3. Implementation of Bloch periodic boundary conditions 

Now, the Bloch periodic boundary conditions are 

considered and implemented on the unit cell. Fig. 2 shows 

the periodic bi-phase composite microplate unit cell and the 

classification of nodes. a1 and a2 are the lengths of the unit 

cell. The boundary node displacement on the cell are classi-

fied by 4 edge nodes and 4 corner nodes. The positions of 4 

corner nodes, uTL, uTR, uBL, and uBR, are shown in Fig. 2. 

And, uL, uR, uT and uB denote the left, right, top and bottom 

edge displacements of the unit cell, respectively. Node dis-

placements located inside of the unit cell are represented by 

uIN. 

 

Fig. 2 Schematic of bi-phase unit cell microstructure and 

the classification of nodes 

Therefore, by considering the Bloch periodic 

boundary condition Eq. (3), the relationship between the in-

dependent node displacement vector and the entire node dis-

placement vector can be written as [23]: 
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 (35) 

where: 1

1

i
e 

=
k a

, 2

2

i
e 

=
k a

, u  represent the independent  

node displacements of uIN, uL, uB, and uBL. I is the identity 

matrix; P denotes the transformation matrix which represent 

the periodic relationship and reduce the degrees of freedom 

effectively. 

Substitute Eq. (35) into Eq. (31) to obtain as: 

2 0. − = K M Pu  (36) 

Given the conjugate transpose P* of P, Eq. (36) can 

be written as: 

* 2 0. − = P K M Pu  (37) 

Therefore, we have the final form of the governing 

equation by considering the Bloch boundary conditions as 

follows: 

2 0r r − = K M u , (38) 

where: 

* *,  .r r= =K P KP M P MP  (39) 

4. Numerical examples 

At this work, the band gap analysis of periodic 

composite microplate considering microstructure effect will 

be investigated by the isogeometric analysis based on 

MCST. Firstly, the accuracy and effective of the present 

method is validated in the first example by comparison with 

analytical results [23]. Then, the influence of microstructure 

effect, volume fraction and the length of unit cell on the 

band gap in microplate are studied in details. 
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4.1. Comparison and validation 

To validate the present approach, a bi-phase unit 

cell problem is considered here. The geometry of the unit 

cell with a square inclusion are a = 1 mm, d = 0.4 mm, and 

thickness h = 120 um. The unit cell is discretized by NURBS 

isogeometric analysis with cubic degree NURBS basis func-

tion. As described in Fig. 1, the inclusion material I and the 

matrix material II is assume to be iron and epoxy, respec-

tively. Both material properties are provided in Table 1 and 

used in the rest of this work. Besides, the material length 

parameter l is obtained by 
( )3 1

hb
l

v
=

−
  [41, 42] with 

higher-order bending parameter bh and Poisson’s ratio v. 

The band diagram results obtained by IGA and exact solu-

tion are given in Fig. 3. The band diagrams Figs. 3, a, b are 

obtained by IGA with 19×19 and 29×29 control points 

mesh, respectively, given in Fig. 4. Fig. 3 shows that the 

IGA results are match with exact solution results, especially 

in the lower frequency. In higher frequencies, the IGA re-

sults are slightly above the exact results, but with tolerable 

differences. Compared Fig. 3, a and b, the IGA results ob-

tained by 29×29 mesh is closed to exact results than the re-

sults obtained by 19×19 mesh. As the difference between 

the results of the IGA with refined mesh and the exact solu-

tion is very small, in the rest of the paper, the 29×29 mesh 

is employed. 

Table 1 

The material properties of the unit cell 

Material E, GPa v l, μm ρ, g/cm3 

Iron 177.33 0.27 6.76 7 

Epoxy 3.3 0.33 16.93 1.18 

 

      

a) Band gap by IGA with 19×19 mesh                            b) Band gap by IGA with 29×29 mesh 

Fig. 3 A comparison of band gap between exact solution and IGA 

             

                                               a) 19×19 mesh                                                    b) 29×29 mesh 

Fig. 4 A comparison of band gap between exact solution and IGA

4.2. Effect of the microstructure 

This example is aimed to investigate the influence 

of the microstructure on the vibration band gap of unit cell. 

The same geometry and material properties as above are 

used here with square unit cell a = 1 mm and square inclu-

sion of d = 0.4 mm. Fig. 5 shows the first vibration band 

gaps obtained by the IGA based on classical plate theory 

(classical) and non-classical plate theory (that is MCST) for 

different unit cell thickness h = 20 um, h = 60 um and              

h = 120 um. The first band gaps obtained by IGA based on 

classical plate theory are: 95.658-111.880 kHz for h = 

=20 um, 270.497-313.089 kHz for h = 60 um, 475.892-

535.945 kHz for h = 120 um. However, the band gaps ob-

tained by IGA based on non-classical plate theory are: 

177.846-197.817 kHz for h = 20 um, 307.694-351.652 kHz 

for h = 60 um, 495.099-555.732 kHz for h = 120 um. 

It can be seen from Fig. 5 that the obtained band 

gap values increased as the thickness h increasing for both 

the classical theory and MCST. On the other hand, the dif-

ference between the IGA based on classical theory and 

MCST theory is decreased as the thickness increasing. This 

observation prove that the microstructure effect has signifi-

cant influence on the vibration band gaps for very thin plates 

only. 



 482 

4.3. Effect of the unit cell length 

This example investigated the effect of the square unit 

cell length a. The thickness h = 20 um and d = 0.4a are used 

in the present example. The first band gaps calculated by 

IGA based on MCST for the periodic composite microplate 

of different length a =20h, 40h, 100h and 200h are given in 

Fig. 6. The first band gaps value for a =20h, 40h, 100h and 

200h are 1041.389-1139.204 kHz (band gap 97.815 kHz), 

275.084-305.930 kHz (band gap 30.845 kHz), 45.277-

50.393 kHz (band gap 5.116 kHz) and 11.412-12.734 kHz 

(band gap 1.322 kHz) , respectively. It can be observed that 

the frequencies and band gap width decreased as the square 

unit cell length a increasing.

     

          a) IGA of MCST for h = 20 um                                  b) IGA of classical theory for h = 20 um  

      

           c) IGA of MCST for h = 60 um                                 d) IGA of classical theory for h = 60 um 

         

            e) IGA of MCST for h = 120 um                                f) IGA of classical theory for h = 120 um 

Fig. 5 The influence of microstructure on the vibration band gaps 

4.4. Effect of volume fraction of the inclusion 

To investigated the influence of volume fraction of 

the inclusion on the band gaps, a new example is presented. 

A vibration band gap analysis for unit cell with the length of 

inclusion d = 0.4a, 0.5a and 0.6a are considered here. The 

unit cell square matrix with length a = 1 mm and thickness 

h = 20 um are used. Fig. 7 display the first band gaps for 

different length of d obtained by IGA based on MCST. The 

first band gap is 177.846-197.817 kHz (band gap 

19.971 kHz), 207.779-229.487 kHz (band gap 23.158 kHz) 

and 238.399-240.615 kHz (band gap 2.216 kHz) for d = 

=0.4a, 0.5a and 0.6a respectively. The results indicated that 

the width of band gap increases firstly and then decreases as 

the size of inclusion increasing.
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a) a = 20h                                                                           b) a = 40h 

       

c) a = 100h                                                                           d) a = 200h 

Fig. 6 The vibration band gaps for different unit cell length a 

       

a) d = 0.4a 

  

b) d = 0.5a

 

c) d = 0.6a 

Fig. 7 The first band gaps for different d 

5. Conclusions 

In this work, an isogeometric analysis approach 

combined with Mindlin theory and MCST is proposed for 

the vibration band gap analysis of periodic composite mi-

croplates. The microstructure effect is considered by MCST, 

and the higher order continuity is easily satisfied in the 

framework of NURBS based isogeometric analysis. The 

elasto-dynamics and discrete equations of isogeometric 

analysis are obtained under the Mindlin kinematics assump-

tions. The present approach is validated by comparison with 

analytical solution, and the influence of microstructure ef-

fect, volume fraction and unit cell length on the first band 

gap is investigated in details. Some conclusions are as fol-

lows: 
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1. An isogeometric analysis approach based on 

Mindlin theory and MCST is developed for band gap anal-

ysis of periodic composite structures. 

2. The microstructure effect has significant influ-

ence on the vibration band gap for very thin plates only. 

3. The band gap frequencies and width decrease as 

the unit cell length a increasing. 

4. The width of band gap first increases and then 

decreases as the size of inclusion increasing. 
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VIBRATION BANDGAP ANALYSIS OF PERIODIC 

COMPOSITE MICROPLATES USING 

ISOGEOMETRIC APPROACH 

S u m m a r y 

For periodic composite microplates, the micro-

structure dependent effect has great influence on the elastic 

wave vibration band gaps. In this paper, an effective isoge-

ometric analysis method based on the modified couple stress 

theory (MCST) is proposed to calculate the vibration band 

gaps in periodic composite microplates. The MCST is em-

ployed to capture the microstructure effect of vibration band 

gaps in periodic composite microplates. The high order con-

tinuity requirement of MCST can be easily satisfied by ap-

plying the NURBS based isogeometric analysis approach. 

The elasto-dynamics and discrete equations of isogeometric 

analysis are obtained under the Mindlin kinematics assump-

tions. The present approach is validated by comparison with 

the analytical solution. And the influence of microstructure 

effect, volume fraction and unit cell length on the band gaps 

are investigated in details. 
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