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1. Introduction 

The demand for joining thick aluminum alloys has 

significantly increased in industries such as aerospace, de-

fense, transportation, and shipbuilding, due to the need for 

strong, durable joints [1]. Achieving high surface quality 

and mechanical strength in thick aluminum alloys poses a 

challenge for traditional fusion welding methods [2]. Fric-

tion stir welding (FSW) has emerged as an ideal alternative, 

offering a green, efficient welding process [3, 4]. In FSW, a 

rotating tool moves along the metal plate, generating fric-

tional heat that softens the material, allowing the two plates 

to plastically deform and join together [5]. The softer mate-

rial moves toward the advancing side due to higher friction, 

while the lower temperature on the trailing side results in 

less movement, leading to solid-state bonding of the plates 

[6]. 

However, thick materials behave differently com-

pared to thin ones in FSW, often causing the plates to swell 

significantly, necessitating a redesign of the process. The 

tool pin shoulder rise (TPSR) has proven to be a critical pro-

cess parameter for joining thick aluminum plates effectively 

[7, 8]. Optimizing this parameter, along with spindle speed 

and tool pin length, is essential for ensuring high-quality 

joints [9]. Process optimization techniques such as regres-

sion analysis, response surface methods, and Analysis of 

Variance (ANOVA) have been employed to improve joint 

strength while reducing errors and resource usage [10]. 

Among these, the Taguchi design of experiment (DoE) 

method, based on orthogonal arrays, has gained prominence 

for its ability to streamline the optimization process. By 

combining Taguchi with ANOVA, researchers can estimate 

the influence of input parameters on output variables, im-

proving the overall process [11, 12, 13]. 

Studies have shown that spindle speed is the most 

influential factor in determining tensile strength, accounting 

for 23% of the effect, while welding speed has a lesser im-

pact at 16% [14, 15]. Through DoE methods like the L9 or-

thogonal array, the number of experiments required for op-

timization can be minimized without compromising accu-

racy [16]. In parallel, mathematical models such as ANFIS 

(Artificial Neuro-Fuzzy Inference System) and regression 

equations have been developed to predict and optimize pro-

cess parameters. ANFIS, in particular, has proven effective 

when paired with advanced optimization techniques like the 

Harris Hawks algorithm [17]. Experimental and computa-

tional models confirm that rotational speed plays a pivotal 

role in joint strength, and ANFIS models have consistently 

demonstrated superior accuracy compared to other model-

ing techniques like Artificial Neural Networks (ANN) [18]. 

FSW process modeling and optimization for alu-

minum alloys, especially dissimilar materials, continue to 

evolve. By adjusting rotational speed, translational speed, 

and external forces, researchers have developed accurate 

predictions for tensile strength and ductility [19]. ANFIS-

based models, validated through experimental data, provide 

a reliable approach for optimizing FSW processes, ensuring 

high-quality welds in thick aluminum alloys [20]. 

1.1. Innovations in present work 

In this study, a novel approach was developed to 

establish a solid-state joining process for 12 mm thick 

AA6063 aluminum plates. The welding of such thick plates 

posed challenges due to significant thermal expansion 

caused by rising temperatures. A key innovation was the in-

troduction of a new input parameter, tool pin shoulder rise 

(TPSR), which was identified as a critical factor influencing 

welding quality. Unlike conventional methods for thin 

plates, the process for thick plates requires a different ap-

proach, with TPSR playing a pivotal role. Optimization and 

ANOVA results confirmed that TPSR is essential and 

should be considered a significant parameter for enhancing 

tensile strength in thick-plate welding processes. 

2. Work Methodology 

The material for this study, an aluminum alloy 

plate measuring 102 mm in width and 12 mm in thickness, 

was sourced from a metal supplier and confirmed as 

AA6063 through spectro analysis. The quantity of raw ma-

terial required was carefully calculated, and the experi-

mental process was designed to minimize the number of 

tests by using the L9 orthogonal array. The results from this 

method were further compared with data from a full facto-

rial experiment. Plate samples were prepared using an abra-

sive cutter and angle grinder, while key process parame-

ters—spindle speed (SS), tool pin length (TPL), and tool pin 

shoulder rise (TPSR)—were selected for analysis. These pa-

rameter levels were finalized after multiple trial experi-

ments. 

The tool material, also tested via spectro analysis, 

was identified as SS304. The tool profile was then designed 

and manufactured using a CNC machine. A custom fixture 

was fabricated to securely mount the samples for welding, 

allowing for precise measurement of plunging force. A ver-

tical milling center (VMC) was used to conduct the welding 
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experiments, producing solid-state joints. Tensile test sam-

ples were cut using a hand hacksaw and milling machine, 

then tested using a computerized universal testing machine 

according to ASTM E8 standards. 

Taguchi analysis was employed to identify the op-

timal input parameters, with Minitab software used to deter-

mine the tensile strength for these optimized parameters. A 

multiple variable regression analysis was performed to de-

velop a mathematical model for predicting tensile strength. 

Additionally, the process was modeled using ANFIS (Arti-

ficial Neuro-Fuzzy Inference System), and the outputs for 

optimized parameters were compared with both the experi-

mentally obtained data and the regression model predic-

tions. This comprehensive approach enabled a thorough un-

derstanding of the FSW process and its key influencing fac-

tors. 

2.1. Materials and machine tools 

The friction stir welding experiments in this study 

utilized AA6063, an aluminum-based alloy known for its 

versatility in architectural applications. AA6063 is valued 

for its ability to be extruded into complex shapes, its excel-

lent surface finish, high corrosion resistance, good welda-

bility, ease of anodization, and good formability [21]. A 

chemical analysis confirmed the alloy composition as [Si-

0.522, Fe-0.981, Cu-0.585, Mn-0.098, Mg-0.481, Zn-0.266, 

Ti-0.017, Cr-0.052, Ni-0.032, with the balance being alumi-

num], verifying it as AA6063. The alloy’s tensile strength 

was measured at 179 MPa, with a hardness of 75 HB. The 

workpiece selected for the welding trials had dimensions of 

12 mm thickness, 102 mm width, and 203 mm length. 

SS304, austenitic stainless steel, was used as the 

tool material for welding. This alloy, composed of 18% 

chromium and 8% nickel, is known for its excellent forming 

and welding properties, and does not require heat treatment 

as it does not harden through thermal processes [22]. Chem-

ical analysis confirmed the tool material composition as [C-

0.759, Si-0.464, Mn-1.36, P-0.0279, S-0.111, Cr-18.47, 

Mo-0.266, Ni-8.01, Co-0.218, Cu-0.355, with the balance 

being iron]. The tensile strength of SS304 was found to be 

410 MPa, with a hardness of 200 HB. The welding tools 

were custom-designed with dimensions of 20 mm tool 

holder length, 40 mm tool shank length, 20 mm tool holder 

diameter, 40 mm tool shank diameter, and 12 mm tool pin 

diameter. Three tools were produced with varying pin 

lengths: tool 1 at 11 mm, tool 2 at 10 mm, and tool 3 at 11.5 

mm. 

The tools were manufactured using an EMCO 

Concept Turn 250 automatic turning machine, capable of a 

maximum speed of 6300 rpm, with a maximum diameter of 

85 mm, a 250 mm swing, and 5.5 kW power. A carbide tool 

(VCGT 110302M SM-F) and a SVJCR/L-SH tool holder 

were used for machining. The welding process was con-

ducted on a VMC 400 vertical milling center (manufactured 

by Parishudh Machine Ltd) with 11.5 kW spindle power, a 

spindle speed of 6000 rpm, and a table size of 900 mm x 450 

mm, as shown in Fig. 1. 

2.2. Experimentation plan 

In this study, the welding settings spindle speed 

(SS), tool pin length (TPL), and tool pin shoulder rise 

(TPSR) were selected based on prior research [8]. Extensive 

trials, over 40 in total, were conducted to determine the ap-

propriate parameter ranges by keeping traversing speed con-

stant at 17 mm/min. The finalized levels for SS, TPL, and 

TPSR were 900, 1000, and 1100 rpm; 10, 11, and 11.5 mm; 

and 0.08, 0.18, and 0.28 mm, respectively. Using the full 

factorial method, 27 samples were required, but by applying 

the L9 orthogonal array, only 9 samples were necessary. 

Experiments were performed, and the data gener-

ated were used to develop mathematical models through an 

artificial neuro-fuzzy inference system (ANFIS) and a mul-

tiple variable regression model (MVRM). In addition to the 

original 27 samples, 9 additional samples were prepared 

with a TPSR of 0.05 mm, leading to a total of 36 friction stir 

welding (FSW) joints. From each joint, 5 tensile test sam-

ples were prepared, resulting in 180 samples overall. Tensile 

tests were conducted on all samples, and the results from 

each of the 36 FSW joints were tabulated in Table 1. The 

experiments were repeated as per the L9 array to optimize 

the process using Taguchi analysis [23]. 

 

Fig. 1 Vertical milling center (VMC) setup 

2.3. Tensile test 

The tensile test specimens were prepared from the 

welded joints following ASTM-E8 specifications. The se-

lected dimensions of the specimen are shown in Fig. 2. From 

each welded joint, five high-quality tensile test specimens 

were obtained. To prepare these specimens, the welded sam-

ple was cut into five sections, which were then processed 

into tensile test specimens. The cross-section of the cut weld 

sample is illustrated in Fig. 5. The tensile tests were con-

ducted using a computerized universal testing machine 

(UTM) with a capacity of 100 tons, and the results are pre-

sented in Table 1. 

In addition to testing the material’s performance, 

such as environmental degradation and welding qualifica-

tion, microstructural analysis was employed, which is a 

common approach in failure investigations [24]. This in-

volves dividing the samples into smaller pieces and analyz-

ing their basic components, from simple grain sizes to com-

plex structures. This analysis provides critical insights into 

potential issues and reveals how processes like welding and 

machining affect the material’s microstructure [25]. In this 

study, a metallurgical microscope with an image analyzer 

was used to obtain micrographs. 
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Table 1  

Experimental data 

S. No. 

Spindle 

speed 

SS, rpm 

Tool pin 

length 

TPL, mm 

Tool pin 

shoulder 

rise 

TPSR, mm 

Tensile 

strength 

TS, MPa 

1 900 10 0.05 9.2 

2 900 10 0.08 13.8 

3 900 10 0.18 44.2 

4 900 10 0.28 8.2 

5 900 11 0.05 82.1 

6 900 11 0.08 97.6 

7 900 11 0.18 104.4 

8 900 11 0.28 92.4 

9 900 11.5 0.05 59.3 

10 900 11.5 0.08 14.7 

11 900 11.5 0.18 16.7 

12 900 11.5 0.28 10.5 

13 1000 10 0.05 15.5 

14 1000 10 0.08 19.6 

15 1000 10 0.18 59.3 

16 1000 10 0.28 11.1 

17 1000 11 0.05 124.4 

18 1000 11 0.08 145.7 

19 1000 11 0.18 149.6 

20 1000 11 0.28 104.6 

21 1000 11.5 0.05 77.7 

22 1000 11.5 0.08 17.9 

23 1000 11.5 0.18 25.1 

24 1000 11.5 0.28 21.4 

25 1100 10 0.05 19.2 

26 1100 10 0.08 14.9 

27 1100 10 0.18 49.7 

28 1100 10 0.28 10.6 

29 1100 11 0.05 91.4 

30 1100 11 0.08 121.8 

31 1100 11 0.18 120.3 

32 1100 11 0.28 104.6 

33 1100 11.5 0.05 65.4 

34 1100 11.5 0.08 16.3 

35 1100 11.5 0.18 18.2 

36 1100 11.5 0.28 13.6 

 

The tool dimensions used in the welding process 

were also crucial. The tool holder length (A) was 20 mm, the 

tool shank length (B) was 40 mm, and the tool pin lengths 

(C) for the three tools were 10 mm, 11 mm, and 11.5 mm, 

respectively. The tool shank diameter (D) was 40 mm, the 

tool holder diameter (E) was 20 mm, and the tool pin diam-

eter (F) was 12 mm. 

2.4. Taguchi method 

In general, experiments are resource-intensive, re-

quiring significant time, infrastructure, diagnostic instru-

ments, personnel, and materials. Increased experimentation 

often leads to more waste production, resulting in greater 

resource consumption. These inefficiencies are known as 

"loss functions," as described by the renowned academician 

Taguchi, who linked such losses to deviations from the ideal 

mean. 

The Taguchi method is widely used to minimize 

these inefficiencies. It begins by identifying the critical 

function or response variables and then selecting the objec-

tive function, commonly referred to as the signal-to-noise 

(S/N) ratios. The Taguchi method employs three types of  

 

a 

 

b 

 

c 

 

d 

Fig. 2 Tool drawing (a), weld specimen drawing (b), weld 

sample cut into 5 pieces (c) and tensile test specimen 

(d) 

S/N ratios to optimize performance: "smaller-the-better", 

"larger-the-better", and "nominal-the-best", each applied 

based on the nature of the desired outcome: 

S/N ratio, smaller the better, 2

10
1

1
10

n

s i
i

log y
n


=

= −  , 
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S/N ratio, larger the better, 10 2
1

1 1
10

n

s
i i

log
n y


=

= −  , 

S/N ratio, nominal the best, 2

1010s log = − . 

Here, n is the number of experiments conducted, y 

is the mean value of outputs, yi is the ith observed value of 

the output and σ is the standard deviations [26]. 

The parameters for the welding process were opti-

mized using the Taguchi technique to achieve high product 

quality at an optimal cost [27]. Key factors influencing the 

tensile strength, including the tool's rotational speed, pin 

length, and tool pin shoulder rise, were identified as critical 

process parameters. The welding experiments were carried 

out using a vertical milling center (VMC) in line with the 

experimental design, and tensile tests were performed on the 

resulting joints. 

To refine the process and determine the optimal 

tensile strength [8] achievable with the selected parameters, 

the Taguchi analysis was applied using the "larger-the-bet-

ter" criterion. The resulting optimization curve is shown in 

Fig. 3. This approach ensured that the process was fine-

tuned to yield the best tensile strength based on the chosen 

parameter values. 

 

Fig. 3 S/N ratios plot 

2.5. ANOVA results 

The impact of input parameters on the output (ten-

sile strength) was analyzed using ANOVA. Table 2 presents 

the results with a 95% confidence level and a 5% signifi-

cance level. The F-values and percentage contribution ratio 

(PCR) in the table highlight the significance of each varia-

ble. Higher F-values indicate a stronger influence of the 

controlling factors on the outcome [28]. 

Table 2 

ANOVA results 

Source DF 
Seq 

SS 

Adj 

SS 
Adj MS F P 

PCR, 

% 

SS 2 88.15 88.15 44.08 2.42 0.292 11.36 

TPL 2 617.89 617.89 308.95 16.98 0.056 79.65 

TPSR 2 33.34 33.34 16.67 0.92 0.522 4.30 

Residual  

Error 
2 36.38 36.38 18.19 - - - 

Total 8 775.77 - - - - - 

 

The ANOVA results revealed that the tool pin 

length, spindle speed, and tool pin shoulder rise had the 

most significant impact on tensile strength, with contribu-

tion ratios of 79.65%, 11.36%, and 4.30%, respectively. 

These findings demonstrate the dominant role of tool pin 

length in determining weld quality, followed by spindle 

speed and tool pin shoulder rise. 

2.6. Multiple variable regression model  

To ascertain the relationship between the process 

variables, the multiple reversions approach is used. Eqs. 1-

4 show multiple models for regression equations with three 

input parameters, including linear, quadratic, interaction, 

and complete models. The linear equation is given by  

0 1 1 2 2 3 3y p p x p x p x= + + +
, (1) 

quadratic equation is given by 

2

0 1 1 2 2 3 3 4 1

2 2

5 2 6 3

y p p x p x p x p x

p x p x

= + + + + +

+ + , (2) 

interaction equation is given by,  

0 1 1 2 2 3 3 4 1 2

5 1 3 6 2 3

y p p x p x p x p x x

p x x p x x

= + + + + +

+ + , (3) 

second order equation (full model) is given by  

2 2

0 1 1 2 2 3 3 4 1 5 2

2

6 3 7 1 2 8 1 3 9 2 3

y p p x p x p x p x p x

p x p x x p x x p x x

= + + + + + +

+ + + + . (4) 

Here, y is criterion variable, x1, x2 and x3 are pre-

dictor variable, p0, p1, p2, p3, p4, p5, p6, p7, p8 and p9 are co-

efficients [11]. The coefficients are obtained through the re-

gression analysis of the experimentally obtained data. The 

regression coefficients obtained are: p0 = −18392.58, 

p1 = 2.63, p2 = 3177.11, p3 = 1132.12, p4 = 0.00, 

p5 = −147.83, p6 = −1272.96, p7 = 0.01, p8 = 0.01, 

p9 = −65.85. The strength of material under tensile load was 

calculated using second order equation (full model) was 

114.33 MPa. 

2.7. ANFIS modelling 

The process was modeled using a mathematical 

tool, ANFIS (Artificial Neuro-Fuzzy Inference System), to 

predict tensile strength based on experimental data. The full 

factorial experimental results were used to create the Fuzzy 

Inference System (FIS) for the model [28]. A hybrid optimi-

zation technique, utilizing 100 epochs and a tolerance of 

0.001, was applied to develop the FIS. Gaussian member-

ship functions were selected for the inputs, while a linear 

function was chosen for the output. 

After generating the FIS, the model was tested us-

ing approximately 33% of the experimental data. A graph 

was plotted to compare the predicted tensile strength values 

with the experimental input. The training process, using 27 

fuzzy rules, was completed at the second epoch, with train-

ing and testing errors calculated as 11.6049 and 9.7186, re-

spectively. The figures (Fig. 4, a-c) illustrate the tensile 

strength variations with changes in spindle speed (SS), tool  
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a 

 

b 

 

c 

Fig. 4 Plot of TS with change in: a – TPL vs SS, b – TPSR 

vs SS and c – TPSR and TPL 

pin length (TPL), and tool pin shoulder rise (TPSR), show-

ing how different parameter combinations influence the out-

put. 

3. Results and Discussions 

Trials were conducted to evaluate the strength of 

the welded joints under tensile load. Samples were prepared 

using both full factorial and DoE methods, with the cross-

section of the weld shown in Fig. 5. Taguchi analysis was 

performed to determine the optimal tensile strength, and 

ANOVA results revealed that tool pin length (TPL) with a 

percentage contribution ratio (PCR) of 79.65%, spindle 

speed (SS) with a PCR of 11.36%, and tool pin shoulder rise 

(TPSR) with a PCR of 4.3% significantly impacted the 

joint’s tensile strength. The optimal tensile strength was  

 

Fig. 5 Sectioned specimen with tunnel defect 

 

a 

 

b 

Fig. 6 Micrograph of: a – base material, b – HAZ at 400x 

found at SS-1000 rpm, TPL-11 mm, and TPSR-0.18 mm. 

The experimentally obtained value was 149 MPa, while pre-

dictions from Minitab software and multiple variable regres-

sion produced values of 141.6 MPa and 114.33 MPa, re-

spectively. 

The ANFIS model was developed using experi-

mental data, and the predicted tensile strength was 141 MPa. 

The graphs (Fig. 4) show the tensile strength variations with 

changes in SS, TPL, and TPSR. For example, (Fig. 4, a) il-

lustrates that at 900 rpm, tensile strength increases with TPL 

up to 11 mm, after which it decreases. The strength peaks 

near SS-1000 rpm and TPL-11 mm. Similarly, (Fig. 4, b) 

shows that tensile strength increases with TPSR up to 0.18 

mm and then declines, while (Fig. 4, c) highlights the inter-

action between TPL and TPSR, with maximum strength near 

TPL-11 mm and TPSR-0.18 mm. 

In developing a method for welding 12 mm thick 

AA6063 aluminum plates, tool pin shoulder rise emerged as 

a critical parameter for achieving sound welds. Microstruc-

tural analysis using an image analyzer at 400x magnification 

(Fig. 6, a-b) showed a dendritic structure with no signs of 

slag inclusion or porosity, confirming complete fusion and 

a crack-free weld bead zone. Hardness values of 51 HV and 

49 HV were recorded for the base material and heat-affected 

zone, respectively. 

The tensile strength trends based on input parame-

ters are illustrated in Figs. 7-9. These plots reveal that tensile 

strength peaks at SS-1000 rpm (Fig. 7), TPL-11 mm (Fig. 8). 

At TPSR-0.18 mm (Fig. 9) the variation in tensile strength 

observed is minimal. 
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Fig. 7 Plot of tensile strength with variation in the spindle 

speed 

 

Fig. 8 Plot of tensile strength with variation in the tool pin 

length 

 

Fig. 9 Plot of tensile strength with variation in the tool pin 

shoulder rise 

4. Conclusions 

The experimental data were used to optimize the 

process via Minitab software, and a mathematical model 

was developed using ANFIS. According to ANOVA results, 

tool pin length (TPL) had the highest impact on tensile 

strength at 79.65%, followed by spindle speed (SS) at 

11.36%, and tool pin shoulder rise (TPSR) at 4.3%. Taguchi 

analysis, supported by experimental data and figures (Fig. 

6-8), identified the optimal values for SS, TPL, and TPSR as 

1000 rpm, 11 mm, and 0.18 mm, respectively. The Taguchi 

method predicted an optimized tensile strength of 149 MPa, 

while Minitab software estimated 141.6 MPa. The multiple 

variable regression equation yielded 114.33 MPa, and the 

ANFIS model predicted 141 MPa. Deviations from the ex-

perimental tensile strength were 4.97%, 23.27%, and 5.37% 

for Minitab, regression, and ANFIS models, respectively. 

Micrograph analysis confirmed sound welding in 

all 36 specimens, with proper fusion and no visible defects 

near the weld bead. The lower tensile strength observed in 

some specimens was likely due to tunnel defects, as shown 

in Fig. 5. Despite Taguchi analysis indicating that TPL was 

the most significant factor influencing welded joint strength, 

the TPSR, though least significant, proved essential during 

experimental work for successful FSW joining of the 12 mm 

thick AA6063. Hardness values of the base material and 

heat-affected zone were consistent across all FSW speci-

mens, at 51 HV and 49 HV, respectively. 
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OPTIMIZATION OF TENSILE STRENGTH IN AA6063 

FRICTION STIR WELDS USING ANOVA AND ANFIS: 

A STATISTICAL ANALYSIS OF PROCESS 

PARAMETERS 

S u m m a r y 

Friction stir welding (FSW) is an effective tech-

nique for joining aluminum alloys like AA6063, known for 

their strength and durability. This research focuses on opti-

mizing FSW process parameters to enhance the tensile 

strength of 12 mm thick AA6063 joints, combining experi-

mental research with statistical analysis and predictive mod-

eling. Key process variables spindle speed, tool pin length, 

and tool pin shoulder rise were evaluated through experi-

ments designed using a full factorial approach and L9 or-

thogonal array. ANOVA (Analysis of Variance) was em-

ployed to assess the significance and impact of these param-

eters on tensile strength. Results revealed that tool pin 

length had the greatest influence, with a percentage contri-

bution ratio (PCR) of 79.65%. Predictive models were de-

veloped using multiple variable regression and ANFIS (Ar-

tificial Neuro-Fuzzy Inference System), yielding tensile 

strength predictions with percent errors of 23.27% and 

6.04%, respectively. This study highlights the importance of 

optimizing process parameters, particularly tool pin length, 

to achieve higher tensile strength in FSW joints, providing 

valuable insights for the welding of aluminum alloys. 

Keywords: tool pin length, tool pin shoulder rise, friction 

stir welding, Taguchi, ANOVA, ANFIS. 
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