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1. Introduction 

 
The performance of thermal systems is subjected 

to a primary limitation due to the low thermal conductivity 
of conventional heat transfer fluids. In order to improve the 
thermal conductivity, nanoscale particles being dispersed 
in a base fluid, known as nanofluid, are used. Thus nan-
ofluids are suspensions of nanoparticles in fluids. Nanoflu-
ids offer considerable advantages over conventional heat 
transfer fluids. Compared to pure fluids, they enhance 
thermal and transport properties considerably. Wherever 
heat transfer enhancement is crucial such as in nuclear re-
actors, transportation and electronics, nanofluids are us-
able. They can enhance thermal conductivity of the base 
fluid enormously. Nanofluids are also very stable and have 
no additional problems such as non-Newtonian behavior, 
the reason being the tiny size of nanoparticles. 

The research on nanofluids began over a decade 
ago, by focusing on measuring and modeling their effec-
tive thermal conductivity and viscosity. Choi et al. [1] 
added a small amount of nanoparticles to conventional heat 
transfer fluids and observed the increase of thermal con-
ductivity. Das [2] presented a numerical investigation on 
the convective heat transfer performance of nanofluids 
over a permeable stretching surface in the presence of par-
tial slip, thermal buoyancy and temperature dependent in-
ternal heat generation or absorption. Makinde and Aziz [3] 
studied numerically the boundary layer flow induced in a 
nanofluid due to a linearly stretching sheet with a convec-
tive boundary condition at the sheet surface. Kandasamy et 
al. [4] solved numerically the problem of laminar fluid 
flow which results from the stretching of a vertical surface 
with variable stream conditions in a nanofluid. They used a 
model for the nanofluid which incorporates the effects of 
Brownian motion and thermo-phoresis in the presence of 
magnetic field. Anwar et al. [5] investigated theoretically 
the problem of free convection boundary layer flow of 
nanofluids over a non-linear stretching sheet, incorporating 
the effects of buoyancy parameter, the solutal buoyancy 
parameter and the power law velocity parameter. Bound-
ary-layer flow problem over a moving or fixed flat plate is 
a classical problem, which has been investigated by many 
researchers, for example Bachok et al. [6] studied the 
steady-state boundary-layer flow of a nanofluid over a 
moving semi-infinite flat plate in a uniform free stream, 
and found that dual solutions exist when the plate and the 
free stream move in the opposite directions. Bachok et al. 
[7] investigated the problem of a uniform free stream of 
nanofluid parallel to a fixed or moving flat plate. They 
solved the problem using the shooting method. Ahmad et 
al. [8] solved the Blasius and Sakiadis problems in nan-

ofluids and concluded that the inclusion of nanoparticles 
into the base fluid had resulted in an increase of the skin 
friction and heat transfer coefficients. 

In the present paper, the two-dimensional steady-
state boundary layer flow of nanofluids over an imperme-
able semi-infinite moving flat horizontal plate embedded in 
the water-based nanofluid is studied. It is assumed that the 
flat plate moves with a constant velocity. The governing 
equations, i.e. mass and momentum conservation equa-
tions, are transformed using the similarity transformations 
to a nonlinear ordinary differential equation (ODE), and 
then the resulting ODE is solved using the homotopy per-
turbation method (HPM). Six types of nanoparticles, i.e., 
copper (Cu), alumina (Al2O3), titania (TiO2), copper oxide 
(CuO), silver (Ag), and silicon (SiO2) in the water based 
fluid with Pr = 6.2 are considered. The velocity and stream 
function profiles are plotted for various nanoparticles and 
for various values of the nanoparticle volume fraction. The 
effect of the nanoparticle volume fraction on the flow 
characteristics, and mainly on the local skin friction coeffi-
cient, is investigated.  
 
2. Mathematical formulation 

 
The steady-state two-dimensional laminar bound-

ary layer flow over a continuously moving flat horizontal 
plate embedded in a water-based nanofluid is considered. 
The nanofluid can contain each of six types of nanoparti-
cles including Cu, Al2O3, TiO2, CuO, Ag, and SiO2. It is 
assumed that the plate has a constant velocity. A uniform 
spherical size and shape is assumed for the nanoparticles. 
It is also assumed that the base fluid and the nanoparticles 
are in the thermal equilibrium, and no velocity slip occurs 
between the base fluid and the nanoparticles [9]. Consider-
ing these assumptions, the laminar boundary layer equa-
tions of mass and momentum conservation are as follows: 
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in which Uw is the plate velocity which is constant, and u 
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and v are the velocity components in x- and y-directions, 
respectively. ρnf is the density of the nanofluid, and μnf is 
the viscosity of the nanofluid, which are given by the fol-
lowing relations [10]: 
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where φ is the nanoparticle volume fraction, and ρf and ρs 
are the densities of fluid and solid fractions, respectively.  

The dimensionless similarity variable and the di-
mensionless stream-function used to transform the govern-
ing equations to an ordinary differential equation are de-
fined as: 
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where Rex = Uwx / υf  is the local Reynolds number, in 
which υf is the kinematic viscosity of the base fluid (wa-
ter). ψ (x,y) is the stream function which identically satis-
fies Eq. (1) and is defined as u = dψ / dy, v = - dψ / dx. By 
the use of the similarity parameters (5), the boundary layer 
momentum Eq. (2) and the boundary conditions (3) trans-
form to the following forms: 
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In Eqs. (6) and (7), prime denotes differentiation 
with respect to η. The significant quantity is the local skin 
friction coefficient Cf,x defined as Cf ,x = τw / ρf Uw

2, in which 
the plate surface shear stress is given as τw = μnf (du/dy)y=0. 
Use of the similarity parameters (5) gives [11]: 
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3. Solution by homotopy perturbation method (HPM) 

 
Using HPM [12], the original nonlinear ODE 

(which cannot be solved easily) is divided into some linear 
ODEs (which are solved easily in a recursive manner by 
mathematical symbolic software such as Mathematica or 
Maple). 

At first, the governing ODE (6) and the boundary 
conditions (7) are written as: 
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Then, a homotopy is constructed in the following 
form: 
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According to HPM, the following serious in terms 
of powers of p is substituted in Eq. (11): 
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After some algebraic manipulation, equating the 
identical powers of p to zero gives: 
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Eq. (13) for p0 has the following solution: 
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Here α is a constant which is further to be deter-
mined. If solution (16) for u0 is substituted in the equation 
for p1, Eq. (14), it will become as: 
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Eq. (17) for u1 can be solved in an unbounded 
domain under the boundary conditions u1(0) = 0, 
u’1(0) = 0, u’1(∞) = 0 (as it is shown in the Appendix) [13], 
which gives u1 as: 
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in which α = (Ω / 2)0.5 and Ω = (1 – φ)2.5 [1 – φ + φ (ρs / ρf)]. 
It should be noted that α can be α = ± (Ω / 2)0.5, but here as 
α is demanded to be positive (α > 0), therefore  
α = (Ω/2)0.5. Thus the first-order approximate semi-
analytical solution f(η) = u(η) = u0(η)+u1(η) becomes as:  
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According to Eq. (19), the dimensionless plate 
surface shear stress is as: 
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4. Results and discussion 

 

A small computer code in the symbolic software 
Mathematica is written and HPM solutions to the govern-
ing ordinary differential Eq. (6) with the boundary condi-
tions (7) are obtained. The solutions are shown in tables 
and diagrams. In Table 1 the density of water and nanopar-
ticles used in the present study are given.  

Table 2 gives the HPM solution values of the di-
mensionless fluid velocity gradient at the plate surface 
α = f”(0) for Cu-water, Al2O3-water, TiO2-water, CuO-
water, Ag-water and SiO2-water working fluids for various 
values of the nanoparticle volume fraction φ. It can be seen 
that the values of f”(0) are equal for Cu-water, Al2O3-
water, TiO2-water, CuO-water, Ag-water and SiO2-water 
working fluids in zero nanoparticle volume fraction (i.e., 
φ = 0). This is logical because the governing Eq. (6) re-
duces to f’” + 0.5ff” = 0 in φ = 0, which is the governing 
equation of boundary layer flow of a pure fluid. Therefore 
the semi-analytical results for f”(0) in φ = 0 are not 
changed by the type of nanoparticle used. It can also be 
seen that when the solid nanoparticle volume fraction φ 
increases, the magnitude of f”(0) increases slightly in Cu-
water, CuO-water and Ag-water working fluids, but it de-
creases slightly in Al2O3-water, TiO2-water and SiO2-water 
working fluids.  

Table 3 compares HPM solution and numerical 
solution [7] values of the local skin friction coefficient (Cf,x 

Rex
0.5 = f”(0) / (1 – φ)2.5) for Cu-water, Al2O3-water, TiO2-

water, CuO-water, Ag-water and SiO2-water working flu-
ids for various values of the nanoparticle volume fraction φ 
(0 ≤ φ ≤ 0.2). It can be seen that the HPM solutions agree 
within 2% error with the numerical solutions obtained us-
ing a shooting method. HPM results for Cu-water working 
fluid are also compared with the experimental data [8] of 
the local skin friction coefficient in table 3, where a good 
agreement within 1% error is observed. It is also seen that 
when φ increases, the local skin friction coefficient magni-
tude increases. It is also observed that when φ = 0 the local 
skin friction coefficient (Cf,x Rex

0.5) values are equal for all 
the working fluids. The reason is that when φ = 0 the nan-
ofluid boundary layer flow problem reduces to the regular 
fluid boundary layer problem, and thus the nanoparticle 
type does not alter the values of skin friction coefficient.  

Fig. 1 presents the variations of f”(0) with φ for 
various nanoparticles (i.e., Cu, Al2O3, TiO2, CuO, Ag and 
SiO2) using HPM solution from Table 2. It is seen that 
with the increase of φ the magnitude of f”(0) increases for 
Ag-water, Cu-water and CuO-water working fluids, but the 
magnitude of f”(0) decreases for TiO2-water, Al2O3-water 
and SiO2-water working fluids with the increase of φ. 

Comparison of Fig. 1 with the nanoparticles densities in 
table 1 makes it clear that the nanoparticles with higher 
density result in higher magnitudes of f”(0) and the 
nanoparticles with lower density result in lower f”(0) mag-
nitudes. 
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Fig. 1 Variation of the dimensionless fluid velocity 

gradient at the plate surface f”(0) with φ for 

various nanoparticles using HPM 
 
Fig. 2 demonstrates the variations of dimen-

sionless skin friction group (Cf,xRex
0.5) with the nanoparti-

cle volume fraction φ for various nanoparticles using HPM 
solution from table 3. It can be seen that for all types of 
nanoparticles (Ag, Cu, CuO, TiO2, Al2O3 and SiO2) the 
dimensionless skin friction group magnitude at the plate 
surface Cf,x Rex

0.5 increases when φ increases. Thus it can 
be said that the addition of any type of nanoparticle to a 
regular fluid enhances the skin friction. It can also be ob-
served that a higher nanoparticle volume fraction results in 
a higher dimensionless skin friction group. Thus the addi-
tion of more and more amounts of nanoparticles of any 
type to a fluid (up to φ ≤ 0.2) causes the skin friction boost. 
Nevertheless, as it is clear from Fig. 2, the amount of in-
crease in Cf,x Rex

0.5 by the addition of nanoparticles to the 
regular fluid is not the same for all types of nanoparticles. 
For instance, for Ag nanoparticles the increase of Cf,x Rex

0.5 
is higher compared to all the other nanoparticle types, and 
for the SiO2 nanoparticles it is lower compared to the other 
nanoparticle types. Here, similar to Fig. 2, the trend of Cf,x 

Rex
0.5 increase is proportional to the density of nanoparti-

cles.  
The variations of local skin friction coefficient 

(Cf,x) with the local Reynolds number (Rex) for various 
values of φ for Cu-water working fluid is plotted in Fig. 3 
using HPM solution from Table 3. The horizontal axis 
gives the Re number values in the laminar boundary layer 
flow range (Rex ≤ 105). It is seen that the Cf,x magnitude 
decreases with the increase of the Re number, and lower φ 
values result in lower Cf,x’s. Thus when the situation favors 
the use of nanofluid along with lower skin friction coeffi-
cient, lower nanoparticle volume fractions with higher 
Reynolds numbers are ideal.  

Fig. 4 is the curve for the local skin friction coef-
ficient (Cf,x) as a function of the Reynolds number for vari-
ous nanoparticles.   As  it can be seen, the higher the Reyn- 
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Table 1 
Density of water and nanoparticles [10] 

 

Density Fluid Phase (water) Cu Al2O3 TiO2 CuO Ag SiO2 

ρ, kg/m3 997.1 8933 3970 4250 6500 10500 2670 
 

Table 2 
Values of α = f”(0) for various working fluids using HPM 

 

φ Cu-water working fluid Al2O3-water working fluid TiO2-water working fluid 

0.0 -0.461410 -0.461410 -0.461410 
0.1 -0.538417 -0.455451 -0.460196 
0.2 -0.557023 -0.444905 -0.447039 

 
φ CuO-water working fluid Ag-water working fluid SiO2-water working fluid 

0.0 -0.461410 -0.461410 -0.461410 
0.1 -0.514793 -0.577509 -0.446562 
0.2 -0.517323 -0.608019 -0.412185 

 

Table 3 
Values of the local skin friction coefficient (Cf,x Rex

0.5) for various working fluids using HPM,  

numerical solution and experimental data 
 

 Cu-water working fluid Al2O3-water working fluid TiO2-water working fluid 

φ 
Present 
results  

Numerical 
solution [7]  

Experimen-
tal data [8] 

Present re-
sults  

Numerical 
solution [7]  

Present 
results  

Numerical 
solution [7]  

0.0 -0.461410 -0.4438 -0.455 -0.461410 -0.4438 -0.461410 -0.4438 
0.1 -0.700670 -0.6784 -0.691 -0.592702 -0.5767 -0.598875 -0.5830 
0.2 -0.973080 -0.9442 -0.961 -0.777218 -0.7410 -0.780946 -0.7540 

 
 CuO-water working fluid Ag-water working fluid SiO2-water working fluid 

φ 
Present 
results  

Numerical 
solution [7]  

Experimen-
tal data [8] 

Present re-
sults  

Numerical 
solution [7]  

Present 
results  

Numerical 
solution [7]  

0.0 -0.461410 -0.4438 -0.455 -0.461410 -0.4438 -0.461410 -0.4438 
0.1 -0.669925   -0.751541  -0.581133  
0.2 -0.903726   -1.062170  -0.720057  

 

olds number, the lower the skin friction coefficient values. 
It can also be seen that the Ag nanoparticles give the hig-
hest Cf,x’s and the SiO2 nanoparticles give the lowest valu-
es of the Cf,x.   
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Fig. 2 Variation of the dimensionless skin friction group 

(Cf,x Rex
0.5) with φ for various nanoparticles using 

HPM 
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Fig. 3 Variation of the local skin friction coefficient (|Cf,x|) 
with Reynolds number (Rex) for various values of φ 

for Cu-water working fluid using HPM 

Fig. 5 depicts the velocity profiles f’(η) for some 
values of φ (φ = 0, 0.1, 0.2) for Cu-water working fluid 
using HPM solution. It can be observed that the velocity 
profiles are steeper for the nanofluid cases (i.e., φ = 0.1 and 
0.2). Thus the velocity boundary layer is considerably 
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thinner for the nanofluid cases (i.e., φ = 0.1 and 0.2) com-
pared to regular fluid case (φ = 0).  
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Fig. 4 Variation of the local skin friction coefficient (|Cf,x|) 
with Reynolds number (Rex) for various nanoparti-
cles when φ = 0.1 
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Fig. 5 Velocity profiles f’(η) for some values of φ for Cu-
water working fluid using HPM 

In Fig. 6 the velocity profiles f’(η) for various 
nanoparticles (Cu, Al2O3, TiO2, CuO, Ag and SiO2) in 
φ = 0.1 are demonstrated using HPM solution of the pre-
sent paper. It can be seen that the boundary layer velocity 
profiles are affected by the types of nanoparticles used in 
nanofluids. It is also observable that the steepest velocity 
profile is for Ag nanoparticles, and therefore the velocity 
boundary layer has the lowest thickness for Ag nanoparti-
cles. With regard to the steepness of the velocity profile, 
the nanoparticle types Cu, CuO, TiO2, Al2O3 and SiO2 
stand on the next steps. Thus SiO2 nanoparticles generate 
the thickest velocity boundary layer. It is worth mentioning 
that the nanofluid boundary layer thickness is inversely 
proportional to the density of nanoparticles used in the 
working fluid.  

Fig. 7 shows the stream-function profiles f (η) for 
some values of the nanoparticle volume fraction φ for Cu-
water working fluid using HPM. Here again, thicker 
boundary layer can be observed for the regular fluid 
(φ = 0) compared to the nanofluid cases (φ = 0.1 and 0.2). 
It can also be seen from the HPM results that the stream-

function values decrease when the nanoparticle volume 
fraction φ increases.  
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Fig. 6 Velocity profiles f’(η) for various nanoparticles 
when φ =0.1 using HPM 
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Fig. 7 Stream-function profiles f (η) for some values of φ 
for Cu-water working fluid using HPM 
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Fig. 8 Stream-function profiles f (η) for various nanoparti-
cles when φ = 0.1 using HPM 

Finally, the stream-function profiles f (η) for vari-
ous nanoparticles in φ = 0.1 using the HPM solution are 
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shown in Fig. 8. It is seen that the highest stream-function 
values are for the Ag nanoparticles and the lowest stream-
function values are for the SiO2 nanoparticles. With regard 
to the stream-function values, the other types of nanoparti-
cles fall with the order of Cu, CuO, TiO2 and Al2O3 be-
tween Ag and SiO2 nanoparticles. It should be said that this 
order of variation for values of the stream-function is seen 
to be inversely proportional to the densities of relevant 
nanoparticles. 

 
5. Conclusions  

 
The two-dimensional boundary layer flow of nan-

ofluids over an impermeable consciously moving horizon-
tal plate is studied. The continuity and momentum conser-
vation equations are transformed by the similarity method 
to a nonlinear ordinary differential equation which is 
solved using the homotopy perturbation method (HPM) for 
various types of nanoparticles including copper (Cu), alu-
mina (Al2O3), titania (TiO2), copper oxide (CuO), silver 
(Ag) and silicon (SiO2) in the water based fluid. The re-
sults show that the present HPM solution with only two 
terms agrees within 2% error with the previous numerical 
solutions and within 1% error with the experimental data 
for the local skin friction coefficient. The investigation 
shows that the inclusion of nanoparticles in the base fluid 
causes an increase in the local skin friction coefficient, 
which also increases with the boost in the nanoparticle 
volume fraction. The results also show that the increase of 
the local skin friction coefficient depends highly on the 
type of nanoparticles, such that Ag nanoparticles result in 
the highest values of the local skin friction coefficient. 
 
Appendix 

 
The equation for u1 (Eq. (17)) is solved using the 

symbolic software Mathematica under the boundary condi-
tions u1(0) = 0, u’1(0) = 0, i.e.: 
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which gives the following solution: 
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Here C (1) is integration constant and  
Ω = (1 – φ)2.5 × [1 – φ + φ(ρs / ρf)]. Applying the boundary 
condition u’1(∞) = 0 gives: 
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If C(1) = 0 is substituted in u1(t) of (A.2), it gives: 
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By checking, it is seen that for Eq. (A.4), 
u1(0) = 0, u’1(0) = 0. If the third boundary condition 
u’1(∞) = 0 is applied to Eq. (A.4), it gives the value of 
α = ± (Ω / 2)0.5. The obtained value of α removes the secu-
lar term from the ordinary differential equation (ODE) for 
u1. If α is substituted in the last term of Eq. (A.4), it gives: 
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N. Dalir, S. S. Nourazar 

ĮVAIRIŲ NANOSKYSČIŲ RIBINIO TEKĖJIMO VIRŠ 
JUDANČIOS PUSIAU BEGALINĖS PLOKŠTELĖS 
TYRIMAS HOMOTOPINIU PERTURBACIJŲ 
METODU 
 
R e z i u m ė 
 

Tiriamas dvidimensis nusistovėjęs nanoskysčio 
kraštinio sluoksnio srautas virš judančios neperšlampan-
čios pusiau begalinės horizontalios plokštelės. Plokštelė 
juda pastoviu greičiu. Panašumo transformacija naudojama 
pagrindinėms lygtims paversti į paprastas netiesines dife-
rencialines lygtis, kurios sprendžiamos taikant pusiau ana-
litinį homotopinį perturbacijų metodą įvairių rūšių nanoda-
lelėms: Cu, Al2O3, TiO2, CuO, Ag ir SiO2. vandeniniame 
tirpale. Ištirtas nanodalelių tūrio frakcijos ir nanodalelės 
tipo poveikis srauto charakteristikoms. Gautas rezultatas 
palygintas su skaitmeniniu sprendiniu. Homotopiniu per-
turbacijų metodu gauti rezultatai su 2 % paklaida sutampa 
su skaitmeniniu sprendiniu. Šių rezultatų analizė rodo, kad 
paviršiaus trinties koeficientas didėja didėjant nanodalelių 
tūrio frakcijai. 
 
 
N. Dalir, S.S. Nourazar 

SOLUTION OF THE BOUNDARY FLOW OF 
VARIOUS NANOFLUIDS OVER A MOVING  
SEMI-INFINITE PLATE USING HPM 

S u m m a r y 

Two-dimensional steady boundary layer flow of 
nanofluids over a moving impermeable semi-infinite hori-
zontal plate is studied. The plate moves with constant ve-
locity. Similarity transformation is used to transform gov-
erning equations to a nonlinear ODE, which is then solved 
using the semi-analytical homotopy perturbation method 
(HPM) for various types of nanoparticles: Cu, Al2O3, TiO2, 
CuO, Ag and SiO2 in water based fluid. The effect of 
nanoparticle volume fraction and nanoparticle type on flow 
characteristics is studied and compared with numerical 
solution. HPM results agree within 2% error with numeri-
cal solution. Analyses show that skin friction coefficient 
increases with nanoparticle volume fraction increase. 
 
Keywords: HPM, boundary layer, nanofluids, moving 
plate. 
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