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1. Introduction 

Structural lightweight design is a significant and 

effective way to achieve energy conservation and environ-

mental protection [1]. There are a wide variety of ap-

proaches to achieve the lightweight design of structures, and 

the mainstream approaches widely studied by scholars 

mainly include the following three types: shape, sizing and 

topology optimization [2, 3]. Topology optimization is the 

optimal way to make full use of materials among the three 

methods. Generally, topology optimization is considered as 

an excellent approach to find the main load transfer path via 

scientific calculation within a prescribed design space and 

under specified constraints [4]. 

It is well known that the material interpolation 

scheme plays a key during the process of topology optimi-

zation. the scheme is to penalize the intermediate densities 

in the design variables, so that the densities of more design 

variables tend to approach 0 or 1. Nevertheless, whatever 

SIMP (solid isotropic material penalty) or RAMP (rational 

approximation of material properties) is used, topology op-

timization is often accompanied by some numerical insta-

bility phenomena, mainly including mesh dependence, 

checkerboard pattern, and too many gray-scale elements [5]. 

In order to solve these problems, Araujo et al. [6] used a 

topology optimization algorithm derived from generalized 

finite-volume theory, which is implemented via applying 

mesh independent filter, to avoid mesh dependency. Cui et 

al. [7] presented the modified optimality criterion (OC) 

method related to the density filtering based on tanh-func-

tion to solve the SIMP model, so as to suppress the genera-

tion of intermediate density elements as well as improve the 

computational efficiency. 

To get an ideal topology optimization result, 

choosing an appropriate numerical optimization algorithm 

is also an essential part of the optimization process. After 

decades of development in topology optimization, various 

numerical optimization algorithms have been proposed. 

Peng et al. [8] proposed the OC method for multi-constraint 

topology optimization. Gonçalves et al. [9] used a succes-

sive linear programming (SLP) approach to optimize the 

placement and shape of traditionally embedded piezoelec-

tric actuators. The control variables about the iron density 

distribution on the cross section of the magnetic channel are 

optimized by using Method of Moving Asymptotes (MMA) 

[10]. All of the above algorithms belong to gradient-based 

optimization methods, which are essential for calculating 

the sensitivities of objective function and constraint function 

during the process of solving corresponding optimal prob-

lems. In this way, the computation about sensitivity will pro-

duce computational inconvenience and complexity during 

the iterative process of topology optimization to a certain 

extent, especially when dealing with some complicated op-

timization problems with more rigorous and complex sensi-

tivity calculations [11]. For example, in the exterior acoustic 

problem, the sensitivity analysis becomes complicated as a 

result of the variation of the interface between acoustic me-

dium and structure [12]. The implementation of the sensi-

tivity analysis may become infeasible owing to a great many 

stress constraints applied [13]. Besides, the researchers can 

read the paper opened by Sigmund [14], in which the gradi-

ent versus non-gradient approaches are discussed in detail. 

In the light of the drawbacks of the gradient-based 

optimization method, nowadays a growing number of schol-

ars have gradually focused on non-gradient-based optimiza-

tion method. Dinh et al. [15] employed a multi-phases opti-

mization design approach applied to compliant mecha-

nisms. In this approach, the topology optimization is com-

bined with neural network algorithm, intelligent modelling 

as well as finite element method. Millán Páramo and Be-

gambre Carrillo [16] used an improved simulated annealing 

algorithm to deal with structural optimization problems. 

Biyikli and To [11] suggested a new non-sensitivity optimi-

zation approach named proportional topology optimization 

(PTO) algorithm. And this algorithm is classified as a heu-

ristic approach that distributes density variables proportion-

ally to elements by prescribed rules. 

For topology optimization problems, most of the 

topology optimization research work aims at solving the 

minimum compliance optimization problems under material 

volume constraint and the stress-constraints optimization 

problems [17]. For instance, an effective algorithm combin-

ing density filter and SIMP method for addressing the stress-

constrained topology optimization problem was presented 

by Le et al. [18]. Mela and Koski [19] developed topology 

optimization for trusses with multi-load conditions, consid-

ering and tackling the optimization problems of minimizing 

compliance under material volume constraint and the mini-

mum weight problem under stress constraints, respectively. 

Tovar and Khandelwal [20] introduced a control-based op-

timization algorithm utilized to resolve the minimum com-

pliance problem. In addition, some scholars use the dis-

placement, the frequency and temperature as constraints in 

topology optimization algorithms [21, 22]. According to the 

published literature, there are few reports on solving topol-
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ogy optimization problems under both stress and compli-

ance constraints. 

In this work, we propose modified proportional to-

pology optimization (MPTO) algorithms by modifying the 

material interpolation scheme in the original PTO algorithm 

and adding the Heaviside threshold function. MPTOc and 

MPTOs in the offered algorithms are designed to tackle the 

minimum compliance problem and the stress-constraint 

problem, respectively, while MPTOm is employed to deal 

with the minimum volume fraction problem where compli-

ance and stress are simultaneously constrained. Further-

more, the effectiveness of each new algorithm is validated. 

Compared with the original PTO algorithm, the new algo-

rithms enjoy the great advantage in convergence efficiency 

and distinct topology structures without redundancy. 

2. Mathematical model of topology optimization  

problems 

Mathematical models of three kinds of optimiza-

tion problems, i.e., the minimum compliance problem under 

volume constraint, the minimum volume fraction problem 

under stress constraint, and minimum volume fraction prob-

lem under compliance and stress constraints, are defined in 

the following sections. 

2.1. Minimum compliance problem under volume constraint 

In the light of the published literature [11, 23], the 

optimization model of minimum compliance under volume 

constraint can be described: 
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where C denotes the compliance (and also the objective 

function), U and F indicate the global displacement vector 

and external force vectors of the structure respectively, K 

represents the global stiffness matrix, N indicates the num-

ber of all elements, E(xi) is the Young’s modulus whose 

value can be obtained from the Eq. (10) in this paper, ui is 

the elemental displacement vector, k0 denotes the elemental 

stiffness matrix, vi is elemental volume, V represents the to-

tal material volume in the design domain, xi is the elemental 

density (and also the design variable), and xmax and xmin are 

its upper and lower boundaries respectively. Typically, 

xmax =1 while xmin needs to be given a proper value to prevent 

the occurrence of stiffness singularities. 

2.2. Minimum volume fraction problem under stress  

constraint 

The stress problem is to minimize the material vol-

ume under stress constraint, the optimization problem can 

be mathematically expressed as: 

1

min 

.  ,  if 0

0 1

N

i i
i

i lim

min i max

x v

s t x

x x x

 

=






= 
  


      



KU F , (2) 

where, besides the nomenclature provided for the minimum 

compliance problem, σi indicates the elemental stress meas-

ure, considered here to be the von Mises of the elements, 

and σlim is regarded as the upper limit of stress herein. Just 

to make it clear, the elemental von Mises in two dimensional 

examples can be formulated: 

2 2 23     = − + +vm x x y y xy , (3) 

where, σx and σy are the components of the stress tensor σ in 

the x and y directions, respectively, and τxy denotes the shear 

stress.  

The stress tensor can be described: 

   =  x y xy . (4) 

And attained by 

= DBu , (5) 

where D denotes the constitutive matrix shown in Eq. (6), B 

indicates the derivative matrix for shape function shown in 

Eq. (7), and u represents the element displacement vector 

shown in Eq. (8). 
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where v is the Poisson’s ratio, and L is the length of the side 

of the discrete element (square element). More information 

on the theoretical derivation of the stress tensor and the fi-

nite element (FE) analysis can be found in the article opened 

by Biyikli and To [11]. 

2.3. Minimum volume fraction problem under compliance 

and stress constraints 

As with the optimization model described above, 

single-constraint problems in topology optimization have 

been studied by many scholars, and few literatures have re-

ported on multi-constraint problems (both stress and com-

pliance are used as constraints in this paper). Consequently, 

a mathematical model for proportional topology optimiza-

tion that minimizes volume fraction while satisfying com-

pliance and stress constraints is proposed in this paper. And 

it can be constructed as follows: 
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where, besides the nomenclature given for Eqs. (1) and (2), 

Clim denotes the compliance limit, which can usually be set 

for different engineering problems. 

3. The modified proportional topology optimization  

algorithm 

The essential content and implementing process of 

the modified proportional topology optimization algorithm 

are briefly introduced from the following aspects. 

3.1. Material interpolation scheme 

In terms of topology optimization, choosing an ap-

propriate material interpolation model is the necessary guar-

antee for the precise solution of the optimization model. To 

tackle the topology optimization problem for continuum 

structure with respect to 0-1 discrete variable, the SIMP 

method have been extensively applied [24,25]. As a separate 

note, the modified SIMP approach is applied in PTO method 

[11]. We use a new material interpolation scheme derived 

from the improved SIMP approach, offered by Nie [26] for 

the gradient algorithm of topology optimization, which is 

written as: 
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where Emin indicates the Young’s modulus, which is set an 

appropriate value to void elements for the sake of warding 

off the singular stiffness matrix, E0 represents the initial 

Young’s modulus, and p (p≥1) is called penalty factor. In 

some literature [27, 28], p = 3, but the value of p is not in-

variable, which depends on the specific physical problems. 

To be clear, although the presented algorithm in 

this paper belongs to the non-gradient algorithm, that is, it 

does not need to calculate the derivative of the design vari-

able. The material interpolation model can also be applied 

to the gradient algorithm. The first partial derivative of E 

concerning xi reads: 
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where there is a constant 1/e p in Eq. (11). The existence of 

1/e p can significantly decrease the number of elements with 

derivative value of zero, which correspondingly decreases 

the number of elements with elastic modulus equal to zero, 

that is, compared with the traditional SIMP model, the pos-

sibility of optimization is increased, and the optimization re-

sult may be better [26]. 

 

 

3.2. Density filter 

On account of the characteristic of non-sensitivity 

in MPTO algorithms, it is very important to take some 

measures in the process of optimization to preclude the nu-

merical instability phenomena (i.e., mesh dependence and 

checkboard). Referring to the literatures [11,29], the density 

filtering technique is applied to MPTO algorithms, the core 

of which is to replace the initial central elemental density 

with the weighted average of all elemental densities in the 

filtering radius. It is given: 
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where x1i indicates the density of element i after filtering 

calculation, Ni denotes the neighbourhood assembly of ele-

ments made up of the elements j within the radius rmin of 

element i, measured from their respective geometry center 

[18]. ωi,j represents the weight coefficient, which can be ac-

quired by: 

, max(0, ( , ))i j minr i j = − , (13) 

where Δ(i, j) is the distance between elements i and j, which 

is measured from center to center of the elements. 

3.3. Heaviside threshold function 

In order to obtain the 0/1 solution more easily and 

efficiently, the Heaviside threshold function is fully utilized 

to improve the optimization results in topology optimiza-

tion. For example, Xu et al. [30] proposed a volume-pre-

serving density filter in the light of the Heaviside threshold 

function, which makes the value of more elemental densities 

tend to 0 or 1. Li and Khandelwal [31] obtained binary dis-

crete topologies by using the continuation scheme of mate-

rial penalty coefficient and filter parameters based on the 

scheme of volume preserving Heaviside filter. Fu et al. [32] 

discussed in detail the advantages of applying the Heaviside 

smoothing function over the Heaviside step function in the 

topology optimization algorithm. To improve the optimiza-

tion results for the concerning three problems in this paper, 

the Heaviside threshold function is used, which is written 

as: 
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where x2i indicates the physical density calculated by the 

Heaviside filter, β represents a scaling parameter that con-

trols the rate of approximation, η is a threshold value (typi-

cally 0.5). In the optimization process, this scheme plays a 

significant role in decreasing the intermediate densities: 
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For the Heaviside filter, β increases gradually dur-

ing the iterations. It can be seen from Eq. (15) that the den-

sity variable can be completely equal to 0 or 1 when β in-

creases to infinity. 
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3.4. Procedure for modified proportional topology  

optimization algorithm 

The execution procedure for MPTOc is presented 

below: 

Step 1. Define the corresponding parameters of the 

algorithm, such as the upper bound xmax and lower bound 

xmin for the density variable, proportion exponent (q), history 

coefficient (α), filter radius rmin, penalty coefficient p, and 

Young’s modulus E0 and Emin. 

Step 2. Set up vectors and matrices prepared for FE 

analysis and density filtering, and calculate the elemental 

weight factor based on Eq. (12). 

Step 3. Perform the FE analysis, compliance and 

stress calculation with Eqs. (1), (3) and (10). Judge whether 

the main loop is terminated according to the termination 

condition; if it is satisfied, jump out of the loop and output 

the optimization results, or else execute step 4. 

Step 4. Initialize the remaining material amounts 

(VRM) based on the target material amounts (VTM) by the vol-

ume constraint. Calculate the proportion of structural com-

pliance Cpro by: 
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where vj is elemental volume and Ci indicates the elemental 

compliance. 

Step 5. Enter the internal loop. The VRM is assigned 

to elements proportionally according to their objective func-

tion values, which can be expressed: 

=  o

pro

i RM prV Cx , (17) 

where x
pro 

i  denotes the elemental density after performing the 

proportion calculation. 

After that, filter the elements based on density filter 

with Eqs. (12) and (13), and the value of density variable is 

limited to an interval between the upper and lower bounda-

ries. Then, calculate the filtered actual material amounts 

(VAM), and update the VRM obtained by subtracting the actual 

material amounts from the target material amounts. When 

the termination condition (the value of VRM is less than a 

prescribed tolerance) of the internal loop is met, that is to 

say, the VRM is almost allocated, output the density variable 

x
pro 

i  and carry out step 6. If no, execute step 5 again. 

Step 6. Exit the internal loop and update the density 

variable, which can be obtained by: 

(1 ) += −new pre pro

i i ix x x , (18) 

where, x
new 

i  denotes the new density of element i after exe-

cuting the internal loop in the algorithm, x
pre 

i  indicates the 

density of element i from the previous iteration, and  x
pro 

i  in-

dicates the optimized elemental density in the current itera-

tion, α represents the history coefficient. 

Step 7. Implement the Heaviside projection 

scheme with Eq. (14), and then perform step 3. 

For a more comprehensive implementation of the 

MPTOc algorithm, readers can refer to the original PTO al-

gorithm in the literature [11]. As a note, the main difference 

between NPTO and PTO is that NPTO adopts an interpola-

tion scheme different from PTO, and the Heaviside thresh-

old function is added on this basis. 

The general procedure for MPTOs follows the 

MPTOc. The main differences between MPTOs and 

MPTOc algorithms are as follows: MPTOs adds a parameter 

(i.e., the stress limit σlim) in the step 1; in the step 3, replace 

Eq. (1) with Eq. (2); in the step 4 and 5, the value of TM is 

calculated by: 
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where 𝜎𝑖,𝑣𝑚 denotes the von Mises of element i and N indi-

cates the total number of elements. And MPTOs algorithm 

distributes the RM proportionally based on the proportion 

of structural stress σpro instead of the proportion of structural 

compliance Cpro. The distribution equation read: 
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RM =  pro
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ix , (21) 

The implementation process of the MPTOm algo-

rithm mainly follows the MPTOs algorithm, except for the 

following points: add the compliance limit Clim as an input 

parameter in the step 1; in the step 3, replace Eq. (2) with 

Eq. (9). 

4. Numerical examples 

In this part, the algorithms for MPTOc, MPTOs 

and MPTOm concerning the MBB beam are validated by 

numerical examples. Fig. 1 shows the dimensions, boundary 

conditions and external load of full design domain (Fig. 1, 

a) and half design domain (Fig. 1, b) for MBB beam. In view 

of the symmetry of MBB beam structure in this optimization 

problem, we adopt the MBB beam model with half design 

domain in the numerical example. The aspect ratio in the 

design domain is set to 120:40, that is to say, the design do-

main is divided into 120×40 meshes, and the thickness of 

the domain is given 1. The main parameters used in this pa-

per are the same as the literature published by Biyikli and 

To [11], for the convenience of calculation and comparison, 

which are provided as follows: the external load F = 1, Pois-

son’s ratio v = 0.3, the Young’s modulus Emin = 1.0×10-9,  

E0  = 1, and the number of loaded elements Ne = 3. The other 

parameters, the filter radius rmin, penalty factor p, control pa-

rameters (α and q), will be discussed in detail in section 4.1 

and 4.2. The corresponding parameter units are as follows: 

the units are Newton for load, mm for length, MPa for stress, 

and Nmm for compliance. As a note, nelx, nely, and rmin are 

in units of element (e.g., nelx indicates the number of ele-

ments in the x direction), and the thickness of elements and 

element edge length are considered to be unity. The material 

volume fraction (V) represents the proportion of the final 

optimized solid material volume to the full solid material 

volume. 
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a b 

Fig. 1 Dimensions, boundary conditions and external load 

for the MBB beam: a - full design domain, b - half 

design domain 

4.1. Validation of the MPTO algorithms considering differ-

ent values of filtering radius and penalty factor 

In the topology optimization algorithm, the param-

eters of penalty factor p and filter radius rmin with different 

values will have a strong effect on the optimization results. 

Because the material interpolation scheme in MPTO algo-

rithms is different from that in PTO algorithm, and the 

Heaviside threshold function is introduced in this algorithm, 

it is necessary to discuss the parameters p and rmin with dif-

ferent value so as to attain the optimal topology optimization 

results, that is, a clear topology, smaller compliance values 

and material volume fractions and excellent convergence 

performance can be obtained. It should be noted that the al-

gorithm in this paper is an improvement and extension based 

on the PTO algorithm, and the computer programs partially 

inherits from the MATLAB code by Biyikli and To [11]. 

Therefore, when discussing the parameters p and rmin, the 

values of q and α are assigned the values with the optimal 

performance in the PTOc and PTOs algorithms respectively, 

that is, in the MPTOc algorithm, α = 0.5, q = 1; In the 

MPTOs and MPTOm algorithms, α =0, q = 2. 

After numerical examples verification, taking into 

account the objective function value and topological config-

uration, we can conclude that when p = 3, rmin = 3, the opti-

mization result of MPTOc algorithm performs the best, 

when p = 5, rmin = 2.5, the MPTOm algorithm can obtain the 

optimal optimization results, and when p = 5, rmin = 2.5, the 

MPTOm algorithm can attain the optimal optimization re-

sults. 

4.2. Effectiveness of the MPTO algorithms based on control 

parameters (q and α) 

In this section, the effectiveness of the MPTO al-

gorithms considering the control parameters (proportion ex-

ponent q and history coefficient α) is validated. Based on the 

values of rmin and p obtained in Section 4.1 (i.e., rmin = 3,  

p = 3 in MPTOc algorithm; rmin = 3, p = 5 in MPTOs algo-

rithm and rmin = 2.5, p = 5 in MPTOm algorithm), α values 

from 0 to 0.9 at 0.1 intervals and q values from 0.5 to 2.0 at 

0.25 intervals. 

Tables 1, 3, and 5 show the topology structures for 

the MBB beam gained by each algorithm with above param-

eters. Table 2 lists the compliances (C) and iteration num-

bers (Iter) of MPTOc algorithm, Table 4 represents the iter-

ation numbers and material volume fraction (V) for MPTOs 

algorithm, and Table 6 displays the iteration numbers and 

material volume fraction for MPTOm algorithm. It is worth 

noting that the results marked with the symbol “/” are con-

sidered as invalid topology structures for non-convergent 

simulations, which run over 1000 iterations. Taking the to-

pology structures and optimized data into account in Tables 

1-6, the optimal topology optimization results are obtained 

when q = 1, α =0.5 in MPTOc algorithm and q = 2, α = 0 in 

MPTOs algorithm and MPTOm algorithm. To some extent, 

the optimization results fully verify the values of q and α in 

Section 4.1. 

4.3. Comparison of MPTO to PTO 

In this section, we compare the MPTO to PTO con-

cerning the MBB beam exhibited in Fig. 1, b. The topology 

optimization problem is solved based on setting the follow-

ing control parameters: α from 0 to 0.9 in increments 0.1, q 

from 0.5 to 2 in increments 0.25. 

Table 7 demonstrates the final optimal results (con-

tain iteration numbers, material volume fraction, compli-

ance, max stress and topology structure) gained by each al-

gorithm in accordance with their respective optimal param-

eter settings. Additionally, the stress distributions for PTOs, 

MTPOs and MPTOm are also presented in Table 7. It should 

be pointed out that the results of algorithms PTOc and PTOs 

are from the paper opened by Biyikli and To [11] while the 

data of algorithms MPTOc, MPTOs and MPTOm are de-

rived from the new algorithms suggested in this article. And 

the values of the constraints are parenthesized. 

As can be seen from Table 7, comparing MPTOc 

with PTOc, under the constraint of material volume fraction, 

the compliance of MPTOc (C = 261.27) is smaller (better) 

than that of PTOc (C = 266.61), and the iteration numbers 

of MPTOc (Iter = 36) is much less than that of PTOc (Iter = 

= 170), and the topology structure of MPTOc performs bet-

ter than that of PTOc (there exists obvious gray-scale ele-

ments and redundancy in the topology structure of PTOc). 

Besides, the maximum stress value (1.08) of the structure 

obtained by the two algorithms is the same. 

It should be clarified that MPTOm is obtained by 

adding compliance constraint and extending on the basis of 

MPTOs. Therefore, MPTOm and MPTOs are compared 

with PTOs in Table 7. It is observed that the three algorithms 

attain the same material volume fraction (0.31), and it is un-

deniable that the compliance of PTOs (C = 294.92) is 

slightly smaller (better) than that of MPTOs (C = 299.42). 

However, MPTOm can obtain the smallest (best) compli-

ance (291.96) and the maximum stress (1.0), it should be 

noted here that although the compliance and stress values 

(Clim = 294.92, σlim =1.08) are taken as the constraints of 

MPTOm, the algorithm converges when the algorithm is not 

completely equal to the constraints value during the execu-

tion process. In addition, MPTOs and MPTOm have the 

same iteration numbers (Iter = 63), which are far smaller 

than that of PTOs (Iter = 206). Observing the stress nepho-

grams of PTOs, MPTOs and MPTOm, the stress distribu-

tions in most areas of them are similar, and they are all 

within the allowable stress. Whereas there is no redundancy 

and gray-scale elements in the optimized structure for 

MPTOs and MPTOm, which is greatly superior to the opti-

mized structure for PTOs. 

In summary, based on the PTO algorithm, because 

the interpolation function is modified and the Heaviside 

threshold function is added in the MPTO algorithms, the 

convergence speed of MPTO is much faster than PTO, and 

the topology structure of MPTO also has prominent ad-

vantages over that of PTO with redundancy and gray-scale 

elements. Thus, the MPTO algorithms can obtain better op-

timization results than PTO. 
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In order to better check the convergence perfor-

mance of MPTO algorithms, their performance is discussed 

in detail as the control parameters (proportion exponent q 

and history coefficient α) take different values. 

Table 1 

Topology structures for the MBB beam gained by MPTOc considering the parameters:  

rmin = 3, p = 3, q = 0.5−2, α = 0−0.9 

q \ Algorithm 

\ α 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.5 / /      / / / 

0.75 / / /      / / 

1 / / / /      / 

1.25 / / / /      / 

1.5 / / / / /     / 

1.75 / / / / /     / 

2 / / / / / /    / 

Table 2 

Compliances and iteration numbers for the MBB beam gained by MPTOc considering the parameters:  

rmin = 3, p = 3, q = 0.5−2, α = 0−0.9 

q \ Algorithm \ α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.5 
C / / 257.19 251.63 257.38 285.41 306.82 / / / 

Iter / / 44 52 63 75 63 / / / 

0.75 
C / / / 267.38 255.79 257.29 276.64 325.10 / / 

Iter / / / 37 38 63 55 63 / / 

1 
C / / / / 263.30 261.27 257.53 267.78 376.45 / 

Iter / / / / 35 36 52 51 51 / 

1.25 
C / / / / 258.35 261.03 258.72 257.86 292.37 / 

Iter / / / / 45 30 35 51 51 / 

1.5 
C / / / / / 268.94 258.84 256.58 270.96 / 

Iter / / / / / 29 29 51 51 / 

1.75 
C / / / / / 176.58 258.47 257.58 264.70 / 

Iter / / / / / 40 28 32 51 / 

2 
C / / / / / / 257.39 258.81 263.18 / 

Iter / / / / / / 30 28 51 / 

Table 3 

Topology structures for the MBB beam gained by MPTOs considering the parameters:  

rmin = 3, p = 5, q = 0.5−2, α = 0−0.9 

q \ Algorithm \ α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.5      / / / / / 

0.75         / / 

1         / / 

1.25         / / 

1.5         / / 

1.75         / / 

2         / / 

Table 4 

Material volume fraction and iteration numbers for the MBB beam gained by MPTOs considering the parameters: 

 rmin = 3, p = 5, q = 0.5−2, α = 0−0.9 

q \ Algorithm \ α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.5 
V 0.43 0.45 0.44 0.44 0.43 / / / / / 

Iter 22 19 21 21 22 / / / / / 

0.75 
V 0.38 0.46 0.45 0.43 0.44 0.45 0.42 0.42 / / 

Iter 47 25 27 41 30 21 35 29 / / 

1 
V 0.37 0.31 0.48 0.48 0.47 0.46 0.45 0.45 / / 

Iter 53 75 21 25 30 27 33 28 / / 

1.25 
V 0.36 0.30 0.35 0.49 0.49 0.48 0.48 0.47 / / 

Iter 58 78 77 25 25 25 31 26 / / 
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Table 4 

Continued 

q \ Algorithm \ α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1.5 
V 0.29 0.32 0.35 0.41 0.49 0.49 0.49 0.49 / / 

Iter 68 72 102 85 24 33 28 35 / / 

1.75 
V 0.30 0.28 0.34 0.40 0.45 0.49 0.49 0.52 / / 

Iter 68 81 83 84 80 29 26 64 / / 

2 
V 0.31 0.28 0.36 0.41 0.43 0.48 0.48 0.49 / / 

Iter 63 81 82 84 63 64 73 63 / / 

Table 5 

Topology structures for the MBB beam gained by MPTOm considering the parameters:  

rmin = 2.5, p = 5, q = 0.5−2, α = 0−0.9 

q \ Algorithm \ α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.5 /      / / / / 

0.75         / / 

1         / / 

1.25          / 

1.5          / 

1.75         / / 

2         / / 

Table 6 

Material volume fraction and iteration numbers for the MBB beam gained by MPTOm considering the parame-

ters: rmin = 2.5, p = 5, q = 0.5−2, α = 0−0.9 

q \ Algorithm \ α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.5 
V / 0.39 0.40 0.40 0.41 0.40 / / / / 

Iter / 29 64 67 43 46 / / / / 

0.75 
V 0.37 0.39 0.41 0.42 0.42 0.42 0.41 0.42 / / 

Iter 88 65 70 73 51 48 82 47 / / 

1 
V 0.37 0.37 0.38 0.42 0.44 0.43 0.43 0.43 / / 

Iter 50 51 54 83 49 72 54 62 / / 

1.25 
V 0.34 0.33 0.36 0.37 0.44 0.48 0.47 0.47 0.48 / 

Iter 58 65 60 120 84 68 83 49 78 / 

1.5 
V 0.32 0.32 0.32 0.40 0.48 0.52 0.52 0.49 0.49 / 

Iter 55 67 122 106 69 126 90 67 58 / 

1.75 
V 0.32 0.32 0.33 0.40 0.45 0.46 0.53 0.54 / / 

Iter 54 62 115 98 88 90 89 96 / / 

2 
V 0.31 0.31 0.32 0.38 0.42 0.46 0.48 0.51 / / 

Iter 63 69 145 122 99 102 88 54 / / 

Table 7 

The final optimal results gained from each algorithm according to their respective optimal parameters 

Algorithm q α Iter V C Max stress Topology structure Stress distribution 

PTOc 1 0.5 170 (0.35) 266.61 1.08 

 

 

MPTOc 1 0.5 36 (0.35) 261.27 1.08 

 

 

PTOs 2 0 206 0.31 294.92 (1.08) 

  

MPTOs 2 0 63 0.31 299.42 (1.08) 

  

MPTOm 2 0 63 0.31 (291.96) (1.0) 

  

 

PTOs

1.08
0.81

0.54
0.27
0.00

MPTOs

1.08
0.81

0.54
0.27
0.00

MPTOm

1.00
0.75

0.50
0.25
0.00
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Figs. 2 and 3 show the topology optimization re-

sults (contain iteration numbers and topology structures 

with the best performance of each algorithm in terms of 

comprehensive indicators) attained by PTO (including 

PTOc and PTOs) and MPTO (including MPTOc, MPTOs 

and MPTOm). Examining Fig. 2, a-g, it is observed that the 

iteration numbers of algorithms PTOc and MPTOc will 

change with different values of the parameter α when pa-

rameter q takes a fixed value. Obviously, when both the al-

gorithms MPTOc and PTOc converge, the iteration numbers 

of MPTOc are much lower than that of PTOc. In other 

words, the convergence speed of MPTOc is faster than that 

of PTOc. Furthermore, the topology structures of PTOc are 

inferior to that of MTPOc due to the redundancy attached to 

PTOc. 

Fig. 3, a-g displayed that the iteration numbers of 

algorithms PTOs, MPTOs and MPTOm are also subjected 

to α for a fixed value of q. On the whole, the average number 

of iterations of the MPTOs is the least among the three al-

gorithms, that is to say, the MPTOs has the fastest conver-

gence speed, followed by MPTOm, and PTOs is the slowest. 

 

   
     a            b 

   
     c            d 

   
     e            f 

 
g 

Fig. 2 Optimized results for the MBB beam acquired by 

PTOc and MPTOc: a - q = 0.5, b - q = 0.75, c - q = 1, 

d - q = 1.25, e - q = 1.5, f - q = 1.75, g - q = 2 

   
     a            b 

   
     c            d 

   
     e            f 

 
g 

Fig. 3 Optimized results for the MBB beam gained by 

PTOs, MPTOs and MPTOm: a - q = 0.5, b - q = 0.75, 

c - q = 1, d - q = 1.25, e - q = 1.5, f - q = 1.75,  

g - q = 2 

In addition, it can be seen from the change curve that except 

when q = 0.5, the iteration numbers for PTOc increase as the 

increase of α while MPTOs and MPTOm change relatively 

gently. In terms of topology structures of these algorithms, 

when q = 0.5−1, there are more or less redundancy in the 

topology structures of the three algorithms; when q = 

= 1.25−2, the topology structures of MPTOs and MPTOm 

have notable advantages over those of PTOs which have 

some redundancy in most cases. 

5. Conclusions 

By modifying the interpolation function in the 

original PTO algorithm and adding the Heaviside threshold 

function, three algorithms are proposed in this paper, which 

are named MPTOc, MPTOs and MPTOm respectively. And 

the new algorithms are displayed by solving the topology 

optimization problems concerning MBB beam (minimum 

compliance problem under volume constraint, minimum 

volume fraction problem under stress constraint, and mini-

mum volume fraction problem under compliance and stress 
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constraints) and compared with PTO algorithm. Analysing 

and discussing the effectiveness and superiority of each al-

gorithm based on control parameters (q and α), we can draw 

some conclusions as follows: 

These new algorithms (MPTOc, MPTOs and 

MPTOm) are able to solve their respective topology optimi-

zation problems and obtain effective topology structures for 

MBB beam. 

MPTOc, MPTOs and MPTOm have obvious ad-

vantages over algorithms (PTOc and PTOs) concerning con-

vergence efficiency (the convergence speed of MPTOc is 

almost 5 times that of PTOc, and the convergence speed of 

MTPOs and MPTOm is about 3 times that of PTOs) and 

acquiring clear topology structure without redundancy. In 

particular, MPTOc converges the fastest among these algo-

rithms. On the other hand, MPTOs and MPTOm have simi-

lar performance in many aspects, such as iteration numbers, 

material volume fraction and topology structure. 

The combined action of the Heaviside threshold 

function and the modified interpolation function in the new 

algorithms can effectively enhance the ability of the algo-

rithms to attain better objective function values (e.g., the 

compliance value of MPTOc has been improved by approx-

imately 2% compared to the compliance value of PTOc), 

better topology structure (more clear topology structure 

without redundancy) and noticeably improve the conver-

gence efficiency of the algorithms. 

The topology optimization results obtained by 

MPTOc, MPTOs and MPTOm have certain dependence on 

control parameters (q and α). To obtain better convergence 

performance and better topology structure, the parameter 

settings are recommended as following: q = 1, α = 0.5 in 

MPTOc and q = 2, α = 0 in MPTOs and MPTOm. 
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X. Rao, R. Du, W. Cheng, Y. Yang 

MODIFIED PROPORTIONAL TOPOLOGY 

OPTIMIZATION ALGORITHM FOR MULTIPLE 

OPTIMIZATION PROBLEMS 

S u m m a r y 

Three modified proportional topology optimiza-

tion (MPTO) algorithms are presented in this paper, which 

are named MPTOc, MPTOs and MPTOm, respectively. 

MPTOc aims to address the minimum compliance problem 

with volume constraint, MPTOs aims to solve the minimum 

volume fraction problem under stress constraint, and 

MPTOm aims to tackle the minimum volume fraction prob-

lem under compliance and stress constraints. In order to get 

rid of the shortcomings of the original proportional topology 

optimization (PTO) algorithm and improve the comprehen-

sive performance of the PTO algorithm, the proposed algo-

rithms modify the material interpolation scheme and intro-

duce the Heaviside threshold function based on the PTO al-

gorithm. To confirm the effectiveness and superiority of the 

presented algorithms, multiple optimization problems for 

the classical MBB beam are solved, and the original PTO 

algorithm is compared with the new algorithms. Numerical 

examples show that MPTOc, MPTOs and MPTOm enjoy 

distinct advantages over the PTO algorithm in the matter of 

convergence efficiency and the ability to obtain distinct to-

pology structure without redundancy. Moreover, MPTOc 

has the fastest convergence speed among these algorithms 

and can acquire the smallest (best) compliance value. In ad-

dition, the new algorithms are also superior to PTO concern-

ing suppressing gray-scale elements. 

Keywords: topology optimization, material interpolation 

scheme, non-gradient, Heaviside threshold function, modi-

fied proportional topology optimization algorithm. 
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