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1. Introduction 

Bearing is the important component of mechani-

cal equipment, and the reliable fault diagnosis of bearing is 

very important for the safe operation of mechanical 

equipment [1, 2]. Normal data of bearing is easy to collect, 

but its fault data is difficult to collect, which leads to the 

unbalance of datasets. The unbalanced classification of 

data widely exists in many fields such as industrial produc-

tion, finance, information security and so on, which is one 

of the continuous research hotspots in recent years [3]. For 

unbalanced datasets, if the classification method of tradi-

tional machine learning is still used without dealing with 

the imbalance situation, it is difficult to achieve good clas-

sification effects. Therefore, it is of great practical signifi-

cance to study and process the unbalanced datasets [4]. In 

recent years, many researchers have studied the fault di-

agnosis of unbalanced data sets. He [5] et al. proposed 

DC-LSTM model and DC-NSTM model for the fault clas-

sification of rotating machinery with unbalanced datasets; 

Zhao[6] et al. proposed a normalized convolutional neural 

network for unbalanced datasets under variable conditions; 

Hang [7] et al. proposed a two-step (TS) clustering algo-

rithm to improve the initial synthetic few oversampling 

technology (smote) algorithm; Tan [8] et al. proposed a 

deep mixed domain adaptive network (MiDAN) frame-

work to learn representative features and solve the problem 

of data imbalance; Peng [9] et al. proposed Wasserstein 

conditional generation adversarial network (WC-GAN), 

which guides the model to generate correct features ac-

cording to feature matching loss and Wasserstein loss; 

Zhou[10] et al. proposed a GAN method about overall op-

timization to extract fault features from a small number of 

fault samples; Zhang [11] et al. proposed a method based 

on bidirectional gating and recurrence unit (DCA-BigRU) 

and the attention mechanism dual-path convolution (DCA) 

to solve the fault diagnosis problem for small sample. 

Zhang [12] et al. presented a novel imbalanced fault diag-

nosis method based on the enhanced generative adversarial 

networks (GAN). 

The above methods are mostly based on the study 

of the vibration signal, which are based on the time domain 

information to extract and expand the fault features, but do 

not make full use of the frequency domain information. 

For unbalanced data sets, on the one hand, efforts should 

be made to improve the unbalance of datasets, and on the 

other hand, fault features with differentiation should be 

extracted. In this paper, the vibration signal is converted 

into a time-frequency image through the short-time Fourier 

transform [13], deep convolutional generative adversarial 

network (DCGAN) is used to expand fault samples, the 

image quality is evaluated [14], and the Canny [15] algo-

rithm is used to process the time-frequency image to ex-

tract features. The experimental results show that the 

method has good fault diagnosis ability under the situation 

of unbalanced data of bearing. 

2. Unbalanced data-based fault diagnosis method of 

bearing utilizing time-frequency DCGAN processing 

First, short-time Fourier transform (STFT) is used 

to convert the one-dimensional vibration signal into a 

time-frequency image containing time-domain and fre-

quency-domain information. Then, the size of the 

time-frequency image is reduced to decrease the amount of 

calculation, and a deep convolutional adversarial network 

is used to expand the time-frequency image of the fault 

samples. The image quality is evaluated, and the images 

that meet the quality requirements are added to the unbal-

anced datasets to improve its unbalanced condition. Fig. 1 

shows the procedure of time-frequency image processing. 
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Fig. 1 The procedure of time-frequency image processing 
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2.1. Generation of time-frequency image 

As the vibration signal can only show the 

time-domain information, STFT, a time-frequency analysis 

method of non-stationary signals, is used to convert the 

vibration signal into a time-frequency image. Compared 

with analyzing only time domain signals, the signal pro-

cessed by STFT shows richer and more comprehensive 

information. The mathematical formula of STFT is: 

( ) ( ) ( ) 2j fSTFT t, f x h t e d   
 −

−
= − , (1) 

where h(–t) is the analysis window function. 

The relevant parameters of the STFT in the ex-

periment are: the window adopts Hamming window [16], 

the window length is set to 500, and the translation step is 

1. 

2.2. Expansion of time-frequency image based on DCGAN 

A deep convolutional generative adversarial net-

work is used for time-frequency image augmentation. 

Generative adversarial network (GAN) can learn the rep-

resentative features of images and generate images with 

the same features. GAN consists of two different models, 

the generator and the discriminator. The function of the 

generator is to receive random noise from the input and 

learn the feature distribution of the real time-frequency 

image, thus, generate the images that make it difficult for 

the discriminator to distinguish accurately. After many 

confrontational learning, the generator improves the ability 

to generate the time-frequency images, and the discrimi-

nator improves the ability to distinguish false 

time-frequency images, and finally achieves Nash equilib-

rium. The mathematical expression of GAN is: 

 ( ) ( ) ( ) ( ) ( )( )( )1
x~ Pdata x z~ P z

G D
min maxU D,G E log D x E log D G z = + −    

, (2) 

where x ~ Pdata(x) represent the distribution of real 

time-frequency images, z ~ P(z) represent the random 

noise that conforms to the Gaussian distribution, D(G(z)) 

represent the generated time-frequency images after the 

noise passes through the generator, which is the probability 

that the classifier considers the generated time-frequency 

images to be real images. 

However, GAN has some shortcomings, such as 

mode collapse, gradient disappearance. Therefore, some 

improved GAN models are produced. For example, 

WGAN uses Wasserstein distance, but it is prone to gra-

dient dispersion; LSGAN changes the loss function to the 

least square loss, but it is easy to appear the phenomenon 

of gradient disappearance or gradient explosion; BEGAN 

estimates and optimizes the error between generation and 

training data distribution, but it requires high training ex-

perience and requires to adjust parameters many times. 

DCGAN is a clever combination of CNN and GAN. It 

introduces the convolutional networks into the generative 

model. The generation network improves its learning abil-

ity with the help of the feature extraction ability of convo-

lution network. DCGAN has made the following im-

provements on the basis of GAN: firstly, the stride convo-

lution is added to the discriminant network instead of the 

pooling layer, and the upsampling operation is performed 

in the generation network. This architecture does not re-

quire each neuron to be connected to the subsequent layers 

or the output of other neurons, and its generalization effect 

is better; secondly, normalization in generator and dis-

criminator is used to stabilize training; finally, the ReLU 

and tanh are used as the activation function in the genera-

tor network, and the LeakyReLU is used as the activation 

function in the discriminator. 

The input of the generator is a 100-dimensional 

random noise z. After two upsampling operations and three 

convolution layers, an image of 128×128×3 is output. 

The specific process is that the input noise signal passes 

through the fully connected layer, is mapped to a length of 

65536 (256×256), and then normalized; the convolution 

kernel size of each layer is 5, the stride is 1, the number of 

padding is 2, and the number of convolution kernels of the 

three convolution layers is 32, 64, 128 respectively. The 

activation function of the first two layers is LeakyReLU, 

and the activation function of the last layer is tanh. In addi-

tion, each layer is normalized. The input of the discrimi-

nator is a real time-frequency image or generated 

time-frequency image, which includes 3 convolutional 

layers. The convolution kernel size is 5, the stride size is 2, 

the number of padding is 2, and the number of convolution 

kernels is 32, 64, 128, respectively. The activation function 

of the 3 convolutional layers is LeakyReLU. In addition, in 

order to prevent over-fitting, a dropout layer is added after 

each convolutional layer.  

In actual work, the normal samples are easy to 

collect but the fault samples are difficult to collect, thus, 

only the time-frequency images of the fault samples are 

expanded. Fig. 2 shows the fault samples generated by 

DCGAN after STFT processing. The horizontal and verti-

cal axes represent time and frequency, respectively. 

It can be seen that the fault features of the gener-

ated samples are mainly concentrated in the bright part 

below the images, and their approximate shape and region 

are almost exactly the same as the fault features of the real 

samples, and they are only slightly different in the local 

areas, which indicates that the generated time-frequency 

images have a certain diversity while learning the distribu-

tion of the real time-frequency images. According to this 

characteristic, the generated samples can be added to the 

unbalanced data set under other working conditions, so as 

to improve the unbalanced condition and improve the ac-

curacy of fault diagnosis. 

2.3. Quality evaluation of time-frequency image 

In order to select images with better effect, an 

image quality evaluation method is introduced. From the 

perspective of image pixel statistics and structural infor-

mation, two methods of peak signal-to-noise ratio [17] and 

structural similarity [18] are used for evaluation, so that 

images satisfying both methods can be used for subsequent 

processing. These two indicators are from the perspective 

of image quality, using quantitative methods to evaluate 

the expanded fault samples, and the results are more objec-

tive. 
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Fig. 2 Time-frequency images of the generated fault sam-

ples: a – one of generated inner ring fault (IRF) 

samples, b – one of generated outer ring fault (ORF) 

samples, c – one of generated ball fault (BF) sam-

ples 

2.3.1. Peak signal-to-noise ratio 

Peak signal-to-noise ratio (PSNR) is used to count 

the gray value of image pixels and calculate the average 

value without considering the visual characteristics of hu-

man eyes. Therefore, sometimes the evaluation results are 

inconsistent with human subjective feelings, but this 

method is still effective for the quality evaluation of most 

images. The mathematical expression of PSNR is: 

2

10 nMAX
PSNR lg

MSE

 
=   

 
, (3) 

where MAXn is the maximum value representing the color 

of image points, MSE is the mean square error, and its 

formula is: 

( )
1 1

2

0 0

1
   

p q

i j

MSE I i, j K( i, j ) i, j, p,q N ,
pq

− −

= =

= −     (4) 

where I(i, j) and K(i, j) are the pixel values corresponding 

to the original image and the generated image, respective-

ly.  

2.3.2. Structural similarity 

Structural similarity (SSIM) is based on the as-

sumption that the human eyes will extract the structural 

information when viewing the image. The similarity of two 

images is measured by detecting whether the structure in-

formation changes and sensing the approximate infor-

mation of image distortion. Here, brightness and contrast 

are defined as the structural information in the 

time-frequency image. The mean, standard deviation and 

covariance are used to measure brightness, contrast and 

structural contrast, respectively. 

The brightness function is:

  

( ) 1

2 2
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The contrast function is: 
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The structure contrast function is: 
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+
=

+ +
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Then, structural similarity is expressed as fol-

lows: 

( ) ( ) ( ) ( )SSIM m,n l m,n c m,n s m,n
  

=   , (8) 

here C1, C2 and C3 are constant values; m and n represent 

the mean value of image M and N, respectively; m and n 

represent the standard deviation of image M and N, respec-

tively; 2
m  and 2

n  represent the variance of image M 

and N, respectively; mn represents the covariance of image 

M and N; the values of , , and  are all greater than 0. 

The value of the PSNR method is generally 

20dB~40dB. When it is higher than 40dB, the image qual-

ity is close to the original image, and when it is lower than 

20dB, the image quality is extremely poor. The value 

range of the SSIM method is from 0 to 1. The structural 

similarity of the time-frequency image is positively related 

to this value. In the experiment, first of all, 150 generated 

samples are preliminarily selected from each type of fault 

sample set. The principle followed in the selection process 

is: the generated samples are clear and similar to the real 

samples. Then, as the empirical judgment is subjective, it 

is necessary to calculate the PSNR value p and SSIM value 

s between the 150 samples and the real samples. By calcu-

lating and sorting in descending order, the critical values 

of p and s of the time-frequency images of the three fault 

states that meet the requirements are obtained. For each 

fault type, 130 time-frequency images in the front position 

are selected from 150 samples and added to the real data 

set to improve the unbalance of fault data. 

2.4. Feature extraction of time-frequency image  

In order to improve the recognition degree of the 

extracted features, the time-frequency image needs to be 
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cropped to remove the common features, and reduce the 

amount of calculation at the same time. In the experiment, 

the size of the time-frequency image is reduced from 

128×128 to 120×60, and then median filtering and Canny 

edge detection are performed. 

2.4.1. Image median filtering 

In order to extract the effective features of the 

image, median filtering is performed on the image, and the 

image is smoothed while removing the noise that may be 

generated in the generated image samples on the basis of 

retaining the edge information of the image. The basic idea 

is to replace all the values in a neighborhood with the me-

dian value, thus eliminating the noise that may appear in 

the generated time-frequency image. In the experiment, a 

3×3 window is used for filtering. 

2.4.2. Canny edge detection 

The edge of an image refers to the set of pixels 

around which the grayscale of the surrounding pixels 

changes sharply. Due to the sudden change of the fre-

quency at the fault in the time-frequency image, it is man-

ifested as a sudden change of the pixel value. This phe-

nomenon can be used for Canny edge detection. The steps 

of Canny algorithm are as follows: 1. Gaussian smoothing 

of the input image; 2. calculating the image gradient;  

3. non-maximum suppression; 4. threshold filtering. 

The images of one of normal samples, one of IRF 

samples, one of ORF samples and one of BF samples pro-

cessed by the Canny algorithm are shown in Fig. 3. It can 

be seen that the characteristics of the images of the four 

samples have obvious discrimination.  The entire binary 

 

a b 
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Fig. 3 Binary image processed by Canny algorithm:      

a – one of normal samples, b – one of IRF samples, 

c – one of ORF samples, d – one of BF samples 

image is taken as the final feature, that is, each sample has 

a 7200-dimensional feature vector. 

3. Experimental testing and analysis 

The experimental data are obtained from "bear-

ings vibration datasets" of Case Western Reserve Univer-

sity, and the fault types of bearings includes inner ring 

fault (IRF), outer ring fault (ORF) and ball fault (BF) in 

the experimental data. In the experiment, three kinds of 

fault data with the damage size of 0.007 inches and the 

data of normal state under a load of 2HP are used. As 

shown in Table 1, the number of normal samples is 150, 

however, the number of fault samples of each fault type is 

20, respectively, in the unbalanced dataset; thus,130 sam-

ples of each fault type are respectively generated by 

DCGAN. 200 samples is used as the testing samples, and 

the testing samples of each state are 50. The K-nearest 

neighbor method is used for classification, K is set to 1-15, 

respectively, and the classification accuracy is tested re-

spectively. As shown in Table 1, KNN is trained by the 

unbalanced dataset composed of real samples in TF-KNN, 

and KNN is trained by the dataset added fault samples 

generated by DCGAN in TF-DCGAN-KNN. The experi-

mental results are shown in Table 2, and the corresponding 

graph is shown in Fig. 4. 

As shown in Table 2, the average diagnosis accu-

racy of TF-KNN is 91.47%; when the samples generated 

by DCGAN are added, the average diagnosis accuracy of 

TF-DCGAN-KNN is 98.13%. It can be seen that the added 

generated samples can effectively improve the unbalance 

of the samples and improve the accuracy of fault diagnosis 

of rolling bearing. 

 

Fig. 4 The diagnosis accuracies of bearing between 

TF-KNN and TF-DCGAN-KNN when the load is 

2HP 

Table 1 

The design of the training data 

Methods 

The number 

of normal 

samples 

The number 

of IRF sam-

ples  

The number 

 of ORF 

samples 

The number 

of BF sam-

ples 

The number 

of generated 

IRF samples 

The number of 

generated ORF 

samples 

The number of 

generated BF 

samples 

TF-KNN 150 20 20 20 / / / 

TF-DCGAN-KNN 150 20 20 20 130 130 130 

        
 



 375 

Table 2 

The comparison of the diagnosis accuracies of bearing  

between TF-KNN and TF-DCGAN-KNN when the load is 

2HP 

K 
Diagnosis accuracies of 

TF-KNN 

Diagnosis accuracies 

of TF-DCGAN-KNN 

1 0.9900 1.0000 

2 0.9900 0.9950 

3 0.9850 0.9900 

4 0.9850 0.9900 

5 0.9650 0.9850 

6 0.9650 0.9900 

7 0.9200 0.9800 

8 0.9250 0.9850 

9 0.8900 0.9750 

10 0.8850 0.9850 

11 0.8650 0.9800 

12 0.8600 0.9700 

13 0.8450 0.9650 

14 0.8300 0.9650 

15 0.8200 0.9650 

Mean 0.9147 0.9813 

4. Conclusions 

Aiming at the unbalanced datasets of fault sam-

ples of bearing, a fault diagnosis method of bearing based 

on time-frequency DCGAN processing is proposed in this 

paper. Time-frequency images generated by DCGAN can 

be added to improve the richness of data and improve the 

unbalance of bearing data. The Canny edge detection 

method is proposed to extract time-frequency features, 

which has high fault diagnosis accuracy and can accurately 

classify the state types of bearing. The experimental results 

show that the expanded samples can effectively improve 

the unbalance of the samples and improve the accuracy of 

fault diagnosis of bearing. 

Acknowledgement 

This study was supported by “the Fundamental 

Research Funds for the Central Universities (No. 

2232017D-14)”. 

References 

1. Jiang, W.; Xu, Y.; Chen, Z.; Zhang, N.; Zhou, J. 

2022. Fault diagnosis for rolling bearing using a hybrid 

hierarchical method based on scale-variable dispersion 

entropy and parametric t-SNE algorithm, Measurement 

191: 110843. 

https://doi.org/10.1016/j.measurement.2022.110843. 

2. Xu, Q.; Zhu, B.; Huo, H.; Meng, Z.; Li, J.; Fan, F.; 

Cao, L. 2022. Fault diagnosis of rolling bearing based 

on online transfer convolutional neural network, Ap-

plied Acoustics 192: 108703. 

https://doi.org/10.1016/j.apacoust.2022.108703. 

3. Li, X.; Zhang, L. 2021. Unbalanced data processing 

using deep sparse learning technique, Future Genera-

tion Computer Systems 125: 480-484. 

https://doi.org/10.1016/j.future.2021.05.034. 

4. Zheng, H.; Zhang, Y.; Liu, J.; Wei, H.; Zhao, J.; 

Liao, R. 2018. A novel model based on wavelet 

LS-SVM integrated improved PSO algorithm for fore-

casting of dissolved gas contents in power transformers, 

Electric Power Systems Research 155: 196-205. 

https://doi.org/10.1016/j.epsr.2017.10.010. 

5. He, Z.; Shao, H.; Cheng, J.; Zhao, X.; Yang, Y. 2020. 

Support tensor machine with dynamic penalty factors 

and its application to the fault diagnosis of rotating 

machinery with unbalanced data, Mechanical Systems 

and Signal Processing 141: 106441. 

https://doi.org/10.1016/j.ymssp.2019.106441. 

6. Zhao, B.; Zhang, X.; Li, H.; Yang, Z. 2020. Intelli-

gent fault diagnosis of rolling bearings based on nor-

malized CNN considering data imbalance and variable 

working conditions, Knowledge-Based Systems 199: 

105971. 

https://doi.org/10.1016/j.knosys.2020.105971. 

7. Hang, Q.; Yang, J.; Xing, L. 2019. Diagnosis of 

Rolling Bearing Based on Classification for High Di-

mensional Unbalanced Data, IEEE Access 7: 

79159-79172. 

https://doi.org/10.1109/ACCESS.2019.2919406. 

8. Tan, Y.; Guo, L.; Gao, H.; Lin, Z.; Liu, Y. 2021. 

MiDAN: A framework for cross-domain intelligent 

fault diagnosis with imbalanced datasets, Measurement 

183: 109834. 

https://doi.org/10.1016/j.measurement.2021.109834. 

9. Peng, Y.; Wang, Y.; Shao, Y. 2022. A novel bearing 

imbalance Fault-diagnosis method based on a Wasser-

stein conditional generative adversarial network, 

Measurement 192: 110924. 

https://doi.org/10.1016/j.measurement.2022.110924. 

10. Zhou, F.; Yang, S.; Fujita, H.; Chen, D.; Wen, C. 

2020. Deep learning fault diagnosis method based on 

global optimization GAN for unbalanced data, 

Knowledge-Based Systems 187: 104837. 

https://doi.org/10.1016/j.knosys.2019.07.008. 

11. Zhang, X.; He, C.; Lu, Y.; Chen, B.; Zhu, L.; Zhang, 

L. 2022. Fault diagnosis for small samples based on 

attention mechanism, Measurement 187: 110242. 

https://doi.org/10.1016/j.measurement.2021.110242. 

12. Zhang, H.; Wang, R.; Pan, R.; Pan, H. 2020. Imbal-

anced Fault Diagnosis of Rolling Bearing Using En-

hanced Generative Adversarial Networks, IEEE Access 

8: 185950-185963. 

https://doi.org/10.1109/ACCESS.2020.3030058. 

13. Manhertz, G.; Bereczky, A. 2021. STFT spectrogram 

based hybrid evaluation method for rotating machine 

transient vibration analysis, Mechanical Systems and 

Signal Processing 154: 107583. 

https://doi.org/10.1016/j.ymssp.2020.107583. 

14. Athar, S.; Wang, Z. 2019. A Comprehensive Perfor-

mance Evaluation of Image Quality Assessment Algo-

rithms, IEEE Access 7:140030-140070. 

https://doi.org/10.1109/ACCESS.2019.2943319. 

15. Hu, X.; Wang, Y. 2022. Monitoring coastline varia-

tions in the Pearl River Estuary from 1978 to 2018 by 

integrating Canny edge detection and Otsu methods 

using long time series Landsat dataset, CATENA 209: 

105840. 

https://doi.org/10.1016/j.catena.2021.105840. 

16. Kumar, S.; Singh, K.; Saxena, R. 2011. Analysis of 



 376 

Dirichlet and Generalized “Hamming” window func-

tions in the fractional Fourier transform domains, Sig-

nal Processing 91(3): 600-606. 

https://doi.org/10.1016/j.sigpro.2010.04.011. 

17. Tanchenko, A. 2014. Visual-PSNR measure of image 

quality, Journal of Visual Communication and Image 

Representation 25(5): 874-878. 

https://doi.org/10.1016/j.jvcir.2014.01.008. 

18. Wang, J.; Chen, P.; Zheng, N.; Chen, B.; Principe, 

J.C.; Wang, F-Y. 2021. Associations between MSE 

and SSIM as cost functions in linear decomposition 

with application to bit allocation for sparse coding, 

Neurocomputing 422: 139-149. 

https://doi.org/10.1016/j.neucom.2020.10.018. 

S.W. Fei, Y.Z. Liu 

UNBALANCED DATA-BASED FAULT DIAGNOSIS 

METHOD OF BEARING UTILIZING  

TIME- FREGUENCY DCGAN PROCESSING 

S u m m a r y 

Aiming at the unbalanced datasets of fault sam-

ples of bearing, a fault diagnosis method of bearing based 

on time-frequency DCGAN processing is proposed in this 

paper. Firstly, through STFT, the vibration signals are 

converted into the time-frequency images, and then the 

time-frequency images are input into DCGAN to expand 

the fault samples. Secondly, the expanded fault samples are 

evaluated for image quality through the comprehensive 

method of PSNR and SSIM. Thirdly, the Canny edge de-

tection algorithm is used to extract features from the 

time-frequency image, and the obtained binary image is 

used as the feature. Finally, k-nearest neighbor algorithm is 

used for classification to testify the superiority of 

time-frequency DCGAN processing. The experimental 

results show that the expanded samples can effectively 

improve the unbalance of the samples and improve the 

accuracy of fault diagnosis of bearing. 

Keywords: DCGAN, unbalanced data, fault diagnosis, 

bearing. 
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