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1. Introduction 

The rotation coupling in space lead to many diffi-

culties to dynamics modeling for multi-body system. 

Firstly, the rotation coupling in space make kinematics rela-

tion with strong nonlinear character. Secondly, the triangle 

expression of rotation makes the kinematics and dynamic 

equation with long and complex expression, which is not 

suit to the programming realization and difficulty to be 

solved. The classical multi-body dynamics modeling meth-

ods base on topology relation and Newton mechanics, which 

are convenient for the multibody system in planar, but for a 

multibody system in space, the attitude transformation and 

vector relation become abstract. So, the method which don’t 

need space analysis seems more suit to complex system dy-

namics modeling, like the Lagrange or Hamilton methods.  

The computational geometry mechanics method 

which is represented by Lie group variational integrator of-

fers a new way to the multi-body dynamics modeling. With 

the Lie group and Lie algebra theory, the relationship be-

tween rotation angle and attitude is established by the expo-

nential mapping. The dynamic equation is obtained by the 

variation to attitude matrix, which avoid the complex trian-

gle transformation. With Legendre transformation, the 

Hamilton equation use momentum as parameter, so the dif-

ferential calculation to it is also avoided. The dynamics 

equation is simplified further.  

In recent years, the main results of geometry me-

chanics exploration are as follows. Ding [1] explored the 

implicit solution method for the multibody dynamics system 

with Lie group theory, and the constraint violating problem 

is avoided. Chen [2] explored the multi-symplectic Lie 

group variational integrator of flexible multibody system, 

the dynamics model of flexible body is built on SE(3). 

Celledoni [3] explored the Lie group variational integrator 

of multi-stage spherical pendulum in space, and the geome-

try dynamics modeling and motion planning method for 

UAV is also researched. Muller [4] explored the Lie group 

structure of time derivatives of equations of motion and the 

compact equation which is easily to be parameterized is ob-

tained. Li [5] explored the friction contact problem, which 

is expressed as a horizontal linearity problem and implant 

into the Lie group variational integrator structure. Paz [6] 

used the Lie algebra and multi linear operators to recursively 

explore the sparsity characters in linearization problem. 

Muller [7] obtained the kinematics and dynamics model of 

parallel mechanism with Lie group method, and the invari-

ant frame of Lie group is used for modular modeling. Hong 

[8] built the geometry dynamic model of multirotor aerial 

vehicle with Lie group method, which include all masses, 

inertias, rotor thrust forces and moments and external aero-

dynamic of the MAV body and rotors. Muller [9] proofed 

the right-trivialized differential of the exponential and Cay-

ley map and their directional derivatives, and a generalized-

alpha scheme for rigid/ flexible multibody systems in terms 

of the Cayley map with improved computational efficiency 

is also derived out. Bai [10] built four types of Lagrange 

equations and four types Hamilton equations of double pen-

dulum in space, and the computation characters in long time 

simulation is compared. Tang [11] proposed a modified ex-

tended Lie-group differential algebraic equation method for 

solving index-3 Hessenberg-DAEs which exhibits a com-

petitive performance in terms of high accuracy and the 

preservation of algebraic constraints. Fang [12] verified the 

half-implicit Lie integrator allows a more straightforward 

formulation of DAEs and the Jacobians and leads to faster 

convergence in friction and contact problem. Rousso [13] 

built the kinematics and dynamics equation of space manip-

ulator on the Special Euclidean group SE(3), and the input-

output linearization of the system is performed on 

the Lie algebra se(3). Holzinger [14] used Lie group time 

integration methods to compute consistent updates for the 

rotation vector or the Euler angles in each time step, the ac-

curacy is higher as compared to the direct time integration 

of rotation parameters. You [15] explored the corotational 

frame method on SE(2) and verified that the frame invari-

ance brought by SE(2) is valuable for improving computing 

efficiency. Rong [16] built a Lie group SE(3) extension of 

the generalized-alpha time integration method to solve the 

equations of motion for thin-walled beams in space. Rousso 

[17] developed a novel feedback linearization technique 

with Lie group SE(3), and a PID controller involving a co-

ordinate-free pose error function on SE(3) and velocity error 

on Lie algebra is also built. Flatlandsmo [18] deploys the 

moving frame method for crane motion with Lie group the-

ory and the work of Elie Cartan.  

For the multibody system in space, the system 

which include three rotations along three axes is most rep-

resentative. This exploration begins with the Candan rota-

tion, and the mechanism which include three rotation cou-

pling is designed. The kinematics and dynamics model are 

built by Lie group variational integrator, and the dynamics 

model is simulated at last. This exploration offers a effective 

exploration for the geometry method using in the multibody 

dynamics modeling which include different structures rota-

tion matrix coupling.  

2. Cardan rotation and mechanism realization 

The Cardan rotation is expressed as in Fig. 1, the 

inertial frame is 0 0 0 0O x y z , 0 1 1 1O x y z is obtained by rotate

0 0 0 0O x y z  along the axis 0 0O z  with 1 on anticlockwise di-

rection, so 0 1O z  0 0O z are coincide together during rotation. 
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The second step is rotating 0 1 1 1O x y z  along 0 1O y  on the anti-

clockwise direction with 2  to obtain 0 2 2 2O x y z , 0 1O y and 

0 2O y are coincide. The third step is rotating 0 2 2 2O x y z   along

0 2O x  on the anticlockwise direction with the angle 3 , 0 3O x

and 0 2O x  are coincide. From the above rotation relation 

process, the Cardon angle has the following characters when 

it is used to describe the rotation in space. Firstly, the latter 

rotation base on the new coordinate which is obtained by the 

former rotation. Secondly, the rotations must obey the se-

quence as z, y, x, the orthogonality relation is guaranteed 

during the rotation. Thirdly, the centers of the rotations are 

coinciding together. The schematic diagram of mechanism 

of three axis rotation platform which obey the upper three 

characters is as Fig. 2. The mechanism has four parts, part 0 

is the base frame, part 1 can rotate long the vertical axis of 

part 0, part 2 can realize pitching rotation relative part 1, and 

part 3 can realize yawn rotation relative to part 2. The cen-

ters of three rotations are coinciding at point B. So, the rota-

tion of part 3 can have three degrees of freedom rotation 

along B in space. 

 

Fig. 1 The rotation relation of Cardon angle 

 

Fig. 2 The mechanism of Cardon rotation realization  

The attitude expressions of each parts are as fol-

lows. Supposing that the rotation angles of yaw, pitch, roll 

are 1 2 3, ,   , rotation matrix are ( ) ( ) ( )1 2 3, ,z y x  R R R

respectively. The corner marks of R  represent the rotation 

axis in its own body coordinate. The rotation of each body 

is analyzed as follows. The horizontal rotating table have 

one degree of freedom which means 1 zR = R . The pitching 

table is rotate along the y axis of the horizontal rotating ta-

ble, so the attitude matrix of pitching table is the combina-

tion of two rotating matrix, which means 2 z yR = R R . Simi-

larly, the attitude of rolling table is the combination of the 

former two rotation and its own rolling rotation, which 

means 3 z y xR = R R R . From the above analysis, under the 

driven by three motors, the platform connects with the roll-

ing table realize the 3D rotation in space which can be ex-

pressed by the Cardan angles. The concrete expressions of 

attitude matrixes z y xR R R  are as in Eq. (1). In the above 

derivations, 1 2 3, ,R R R  are the absolute rotation of rigid 

bodies, and , ,z y xR R R represent the relative rotations. 
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3. Kinematics analysis 

In actual engineering design, the structure of each 

body in multibody system always asymmetry, because the 

design idea and environment condition. So, the mass center 

position vector doesn’t coincide with the rotation axis. Ac-

cording to Fig. 2, a structure design of 3D platform is as in 

Fig. 3. The pitching driving motor is connecting with the 

pitching axis by gear, which makes the structure more com-

pact. The inertia parameters of each part of the system can 

be obtained directly from the model of the platform. The 

main parts and their parameters of the system are as in 

Fig. 4. Supposing that the distance between point A and 

point B is 1l ,as in Fig. 3, so the position vector of point B 

relative to A is  1 1 3 3, 0;0;1l= =l e e ,which means the posi-

tion is along the z axis. The pose vector of the mass center  

 

Fig. 3 The 3D rotate platform 
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Fig. 4 The main parts of the platform 

 

Fig. 5 The topology relation of the system  

of table 1 (Horizontal rotating table) in its own body coor-

dinate is 1, the distance from B to C is 2l , so the position 

vector of C relative to B is 2 2 1l=l e  in its own coordinate, 

the position vector of table 2 (Pitching table) mass center is 

2, the position vector of the mass center of table 3 (Rolling 

table) is 3. The concrete position of mass centres and their 

position vectors are expressed in Fig. 4. The topology rela-

tion of the whole system can be expressed as in Fig. 5. 

With the above attitude relation, the kinematic re-

lation of each body in space is derived as follows. The kin-

ematics analysis includes the pose and attitude of mass cen-

ters, the velocities and accelerations, which offers the basis 

for the following dynamics modeling. According to the to-

pology relation in Fig. 5, the position vectors of three tables’ 

mass centers in the inertia coordinate is as in Eq. (2) 
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The velocities relations are derived as follows. The 

first-order derivatives of relative rotation matrixes z y xR R R  

satisfies the following characters, as in Eq. (3): 
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In Eq. (3), the concrete expressions of ( )iS e are 

as follows: 
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Take derivation to Eq. (2), the velocities of mass 

centres are as in Eq. (4) 
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Then substituting Eq. (3) into Eq. (4), the mass 

centre velocities as in Eq. (5): 
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Take derivation to Eq. (5), the accelerations of 

mass centres are as in Eq. (6): 

 

( ) ( )

( ) ( ) ( )

2

1 3 1 3 3 1

2 2

2 3 1 3 2 2 2 2 2 2 3 3 1 3 2 3 2 2

2

3 1 3 2 3 2 1 3 1 3 3 2 1 3 3 2 1 1 3 3

2

= ,

= 2 ,

=

z z z z

z z y y z y y z y z z y y z z y

x z y x y z y x z z y x y z z y y x

y

l l

l l l l l

 

     

   



+

+ + + + + +

+ + + + + + + + +

+

s R S R S S

s R S e R R R S R R S S R S S e R R S R S

s R R R S R R S R r e R S e R R r R e R S S R e e R R

 

    

 

( ) 2

2 2 2 1 3 1 1 3 2 3 2 1 3 2 3

3 1 3 2 1 3

2 2

2 2 .

z y x x z y x y z z y z y z y x

z x z y x y x z y x

l l    

   

+ + + + +

+ +

R R S S e R R R R S S R S R S e R S R S R

R S R R S R R S R S

  

   (6)

From the above analysis, the kinematics relation 

with the relative rotation matrix has a complex structure, 

which bring difficulties in following dynamics modelling, 

so some new expression methods should be considered. If 

the motion of the bodies is expressed by absolute attitudes 

in space, the absolute mass centre positions are expressed as 

in Eq. (7): 
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Supposing that the absolute angular velocities of 

body 1, 2, 3 are ω1, ω2, ω3 respectively. The velocities of 

mass centres are as in Eq. (8): 
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Similarly, the accelerations which expressed by 

absolute rotation matrix are as in Eq. (9): 
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The relations of absolute and relative angular ve-

locities are derived in following. According to R1 = Rz, so 

the absolute angular velocity of body 1 in space is 

1 3 3z z = =e e . According to R2 = Rz Ry, the derivation of 

it is as in Eq. (10): 
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According to ( ) ( )T TS S=R x R x R , Eq. (10) can 

be simplified as in Eq. (11): 
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So 2 3 2

T

z y y = R e + e . Similarly, the absolute 

rotation matrix of the platform is 3 z y xR = R R R . Take deri-

vation to it and the result is as in Eq. (12): 
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z y x y x x  = + +R R e R e e .Accord-

ing to the expressions of 1 2 3, ,   , the angular accelera-

tions of each body are as in Eq. (13): 
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4. Dynamics Modelling 

There are three rigid bodies in the above platform 

system. Each motion is the combination of the mass centre 

movement and the rotation along the mass centre. For con-

venient, the base points of each body are coinciding with the 

hinge joint of the body connects with the upper stage body. 

In this platform, all of the bodies are rotating along the point 

B in space. The motion of each body is divided into two 

parts, the movement of the mass centre and the rotation 

along the mass centre. The Lagrange function need to be 

built firstly. Supposing that the masses of three bodies are 

m1, m2, m3 respectively, and the moment of inertia are J1, J2, 

J3. The Lagrange function of the system is as Eq. (14): 
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The elements in Eq. (14) are written as matrix type as fol-

lows, which makes Lagrange function simple:  
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The dynamics model of the system is derived as 

follows. Taking variation to the angular velocity and the re-

sults is as in Eq. (15): 

 ( )L L ,   = D R . (15) 

According to the kinematics relation in Eq. (8), Eq. 

(15) can be written as Eq. (16): 

 ( ) ( ) ( )
T T

L ,   = +D R J Ms s  . (16) 

According to 1 3z= e , 2 3 2

T

z y y = R e + e ,

( )3 3 2 1

T
T

z y x y x x  = + +R R e R e e , the variation relation 

of absolute and relative angular velocity is as Eq. (17): 

 1 C = Q . (17) 

In Eq. (17),  1 2 3; ; =    is the absolute angular velocity 

vector, and C is the relative angular velocity vector. The 

concrete expressions of middle parameters in Eq. (17) are as 

follows: 
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Take variation to s , and the result is as Eq. (18): 
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In Eq. (18), the middle parameter 2Q is as follows: 
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Substituting Eq. (17) into Eq. (18), and the result is as 

Eq. (19): 

2 1 C −s = Q Q  .
 

(19) 

According to Hamilton theory the variation of an-

gular velocity to Lagrange function equal to the angular mo-

mentum of the system, as in Eq. (20): 

 ( )L , = D R . (20) 

Substituting Eq. (17) and Eq. (19) into Eq. (16), and the rel-

ative momentum which expressed by the relative angular 

velocity is as in Eq. (21): 
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The absolute momentum of the system which ex-

pressed by the absolute angular velocities is as Eq. (22): 
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In space rotation, the inertia moment also includes 

the coupling part which expressed by the angular velocity 

and angular momentum, as Eq. (23): 
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If the joint rotation has a single freedom, the coupling part 

satisfy the following character as in Eq. (24): 
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So, in the 3D table, if the rotation of the rigid bod-

ies is expressed by relative angular velocity C, Eq. (24) is 

satisfied, if the absolute one as , Eq. (23) is satisfied. Sub-

stitute Eq. (22) in to Eq. (23), the coupling part under the 

absolute one is as Eq. (25): 

 ( ) ( ) ( )2 .* Tad L ,    =  −D R S J Q Ms  (25) 

In Eq. (25), ( )S is the combination of skew matrixes 

which is expressed as follows: 

( )

( )

( )

( )

1 3 3 3 3

3 3 2 3 3

3 3 3 3 3



 



 

 

 

 
 

=  
 
 

S 0 0

S 0 S 0

0 0 S

. 

At last, the inertia moment which lead by the po-

tential energy is as follows. Take variation to R in Lagrange 

function L, the process is expressed as Eq. (26): 

 ( )L L , = R RD R  . (26) 

In Eq. (19), is a row vector, take transposition to it, 

as in Eq. (27): 

 ( ) ( )( )
T*

e L , L ,  =R R RT L R RD D . (27) 

According to Eq. (14), the variation to L, the result is as Eq. 

(28): 

 

( ) ( )

( ) .

T

R

T T

R R

L ,

g

 

 

 = +

+ −

RD R J

Ms s E M s

  

 (28) 

Solve , ,R R R   s s respectively. Take variation to 

rotation matrix and angular velocity, and the results are as 

in Eq. (29) and Eq. (30): 

 

( )

( ) ( )

( ) ( )

( )

1 3

2 3 2

3 3 2

1

,

,

z z

z z y y z y

z z y x y z y x

x z y x ,

 

  

  



=

+

+ +

+

R R S e

R = R S e R R R S e

R = R S e R R R R S e R

R R R S e  (29) 

 3R C = Q  . (30) 

The expressions of middle parameters of 3Q  and C  are as 

follows: 

( )

( )( )
( )( )

( )

3 1 3 1 3 1

3 3 1 2 3 3 1

1 3

3 1 2 3

1 2

,

; ; 

T

z y

T

T z y x

z y x
T

y x

C z y x .








  

  

 



 
 
 
 
 = −
 
 
 
 − 

 =  

0 0 0

Q 0 S e R e 0

R R S e e
0 R S e R e

S e R e

  

Take variation to the velocity of mass centre, as in Eq. (31): 

 ( )4 2 4 2 3R C R C = − − = − +s Q Q Q Q Q   . (31) 

The expressions of middle parameters of 4Q  is as follows: 



 265 

( ) ( )

( ) ( ) ( )( )

( )

( ) ( ) ( )( )

( ) ( )

( ) ( ) ( )( )

( ) ( )

11

4 3 1 3 1

21 22

4 4 4 3 1

31 32 33

4 4 4
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4 1 3 1 1

21

4 1 3 1 3 1 2 2

31

4 1 3

1 3 1 2 1 2 3 3

22

4 2 2 2 2

32

4 2 2 2 1 2 3 3

33

4 3 1 3 3
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,

,

,

,

,

.

y

y y x

x

Q

Q Q

Q Q Q

Q

Q l

Q

l l

Q

Q l

Q

 



 
 

=  
 
 

=

= +

=

+ +

=

= +

=

0 0

Q 0

R S e S

R S e S e R S

R S e

S e R S e R R S

R S e S

R S e S e R S

R S e S

 

  

   

 

  

 

 

Take variation to the displacement vector of mass 

centre, and the result is as Eq. (32): 

 5R C =s Q  . (32) 

The expressions of middle parameters of 5Q  is as 

follows: 

( )

( )( )

( )( )
( )

( )( )

( )

511 3 1 3 1

5 521 522 3 1

531 532 533

511 3 1

521 3 1 3 2

531 3 1 3 2 1 3

522 2 2 2

532 2 2 2 1 3

533 3 1 3

,

,

,

,

,

,

z

z y

z y y x

x

l

l l

l

.

 



 
 

=
 
  

=

= +

= + +

=

= +

=

Q 0 0

Q Q Q 0

Q Q Q

Q R S e

Q R S e e R

Q R S e e R e R R

Q R S e

Q R S e e R

Q R S e













 

According to Eq. (30), Eq. (31) and Eq. (32), the inertia mo-

ment lead by gravity is as in Eq. (33): 

 

( )

( )3 4 2 3 5 .

*

e

TT T

L ,

g

 =

= − + −

R RT L D R

Q J Q Q Q Ms Q ME  (33) 

When the system is expressed by absolute rotation, the iner-

tia moment can be written as in Eq. (34): 

 ( ) ( )
T* T

e R RL , g   = −R RT L D R Ms s E M s . (34) 

Take variation to the position vector of mass centre, and the 

result is as Eq. (35): 

 

1 1

2 2 2 2

3 3

R

R R

R



 



   
   

= = − −   
      

s

s s Q Q

s



 = 



. (35) 

Take variation to velocity vector of mass centre, and the re-

sult is as Eq. (36): 

 

1

2 6

3

R

R R

R



 



 
 

= − 
  

s

s = s Q

s

 . (36) 

The middle parameter Q6 is expressed as follows: 

( )( )
( )( ) ( )( )
( )( ) ( )( ) ( )( )

1 1 1 3 3 3 3

6 1 1 1 3 2 2 2 3 3

1 1 1 3 2 2 2 1 3 3 3

l

l l

 



 
 

=  
 
  

R S S 0 0

Q R S S e R S S 0

R S S e R S S e R S S

 

  

   

. 

According to Eq. (35) and Eq. (36), the inertia moment un-

der the absolute rotation is as Eq. (37): 

 ( ) 2 6

* T T T

e L , g = −R RT L D R Q M E Q Ms . (37) 

The dynamics equation of the system is as Eq. (38): 

 

( ) ( )

( ) .

*

*

e

d
L , ad L ,

dt

L ,

   



−  −

−  = 0R R

D R D R

T L D R  (38) 

If the system is working on planar, the dynamics 

equation can be simplified as Eq. (39): 

 ( ) ( )*

e

d
L , L ,

dt
  −  = 0R RD R T L D R . (39) 

From Eq. (38) and Eq. (39), if the dynamics equa-

tion of the system is expressed as the Lagrange type, the dif-

ference derivation is needed to the concrete expression of 

momentum, which will lead to the complexity of the system. 

So according to the Legendre transformation, the momen-

tum can be used as a variable of the system, which can re-

duce the complexity of the system obviously. So according 

to Eq. (16), Eq. (22) can be transformed to be a dynamics 

equation with the Hamilton type, as in Eq. (40): 

 ( ) 0* *

ead L , − −  =g RT L D R  . (40) 

According to Eq. (40), the dynamics equations 

which express by absolute and relative parameters are as 

Eq. (41) and Eq. (42) respectively: 

 

( )( )

( )

6 2 2

2 2

0,

,

T T T

T

g+ − −

= +

S Q MQ Q M E =

J Q MQ

  

   (41) 

 

( )( )

( )

3 1 4 2 3 2 1

5

1 2 2 1

0,

.

TT

C C

T

T T

C C

g

− + + +

+

= +

Q JQ Q Q Q MQ Q

Q ME =

Q J Q MQ Q

 

   (42) 

According to Eq. (41) and Eq. (42), the Lagrange 

dynamics equation which expressed by the angular velocity 

is transformed to be the Hamilton dynamics equation, and 

the momentum is used as the variables. For the difference 

calculation is not needed in the Hamilton equation, the com-

plexity of the system is reduced, which is convenient to the 

realization of programming. 
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For the multibody system in planar, the rotation 

coupling relation can be expressed as absolute and relative 

types which has same complexity. However, for the multi-

body system in space, this equal relation is not suit. Com-

paring Eq. (41) and Eq. (42), the dynamics equation with 

absolute parameter is more simple than relative one, but the 

motion relation is destroyed in the absolute one. As in 

Eq. (41), the rotation matrix and angular velocities of each 

body has the same structure, which is different with the ac-

tual motion. The absolute and relative type dynamics equa-

tions of multibody system with different rotation structures 

in space are essentially different, which is the most obvious 

characters distinguish with the system in planar. As sum-

mary, when the rotation axis of joint in multi-body system 

has different rotation directions, the rotation matrix has dif-

ferent structures, so the absolute expression is not suit to use 

in the dynamics modelling. 

5. Numerical computation 

The computation of dynamics equation of the 

multi-body system is based on the combination of dynamics 

equation and the kinematics equation. The equation is an or-

dinary differential equation, and the number of the variables 

equal to the number of dimensions. Under the frame of Lie 

group and Lie algebra expressions, the kinematics equation 

has two expression types, the first is Lie group one which 

using the attitude matrix as parameter, the second is the Lie 

algebra one, which use the rotation angle as the parameter.  

The angular velocity C in Eq. (42) can be replaced by the 

expression of C .The kinematic equation of the system can 

be written as Eq. (44), and the concrete expressions of R

and ( )S  are as follows: 

 ( )C C C=R R S  . (43) 

Here: 

( )

( )

( )
( )

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3
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 

 

 
 

=
 
  
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 

=  
 
  

R 0 0

R 0 R 0

0 0 R

S 0 0

S 0 S 0

0 0 S



 



 

The angular velocity in Eq. (44) can also be re-

placed by C : 

 

( )( )

( )( )

( )( )

3 1 4 2 3 2 1

1

1 2 2 1 5

1

1 2 2 1

,

TT

C

T T T

C

T T

C C C

g
−

−

+ +

+ −

 = + 
 

= Q JQ Q Q Q MQ Q

Q J Q MQ Q Q ME

R R S Q J Q MQ Q





 . (44) 

In Eq. (44), the kinematic part is a matrix, which can be 

changed as a vector type by Eq. (45):  

 ( )( )

3

1

1 2 2 1 3

T

C

T T T

C C

−

=

 = − + 
 

R E

S Q J Q MQ Q R E . (45) 

In Eq. (45),  3 3 3 3= ; ;E e e e . All the parameters in rotation 

matrix are needed to be computed, so the total dimension of 

the dynamic equation is 30. The matrix’s elements are com-

puted directly, the structure conservation characters can 

clearly be represented according to the conservation ele-

ments in rotation matrix. The dynamic equation which uses 

rotation angle as parameter is as follows. In the kinematic 

relation, ωC is the first order derivation of θC, so the kine-

matic equation can be obtained by ΠC directly. The dynam-

ics equation is as in Eq. (46). For the parameters are θC and 

ΠC, so the dimension of the dynamic equation is 6, which is 

much smaller than the former one. 

 

( )( )

( )( )

3 1 4 2 3 2 1

5

1 2 2 1

0,

0.

TT

C C

T

T T

C C

g

− + + +

+

− +

Q JQ Q Q Q MQ Q

Q ME =

Q J Q MQ Q =

 

   (46) 

6. Simulation 

The structure parameters of the system are as fol-

lows. the parameters of the system can be obtained by the 

measurement of the 3D model. 
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= 

 

The initial rotation angles of the system are as 

θ10 = π (rad), θ20 = 60°, θ30 = 60°, the initial angular veloci-

ties are ω10 = π (rad/s), ω20 = 60 (°/s), ω30 = 60 (°/s). Sup-

ping that there is no extra torque on the joint, the system can 

move free by the action of gravity. The simulation time is 

10 s, the simulation results are as in Fig. 6 to Fig. 9.  

The time variation of angular momentum is as in 

Fig. 6. According to the simulation results, the momentum 

which rotate along the x axis is conserved at 0 during the 

whole simulation. The variation of the other two momen-

tums occurs an aperiodic change character, because the 

structure of the system is not symmetry in actual design pro-

cess. The variation of rotation matrix Rz is as in Fig. 7. From 

the simulation results, the elements R13, R23, R31, R32 are all 

keep 0 during the whole simulation, R33 keeps 1, R11 and R22 

keeps the same regular, R12 and R21 have the different sign 

symbol. according to the above results, the structure of Rz is 

conserved. Similarly, the variation of Ry and Rx are as in 
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Fig. 8 and Fig. 9, and the simulation results also indicates 

the structure conservation of these two rotation matrixes.  

The red curves in Fig. 6, Fig.7, Fig.8 and Fig. 9 are 

the simulation results of dynamic equation which use rota-

tion angle as parameter. According to the simulation results, 

the two dynamics equation have the same results at begin-

ning, and the simulation results occur obvious distinguish at 

5 seconds. The simulation indicates that different geometry  

 

Fig. 6 The time variation of momentum 

 

Fig. 7 The time variation of rotation matrix of Rz 

 

Fig. 8 The time variation of rotation matrix of Ry  

 

Fig. 9 The time variation of rotation matrix of Rx 

dynamics equation has different structure conservation 

character. Although the dimension of the geometry dynam-

ics equation which using rotation matrix as parameter is 

much bigger, the structure of the system is much better con-

served than the geometry dynamic equation which use rota-

tion angular as parameter. 

7. Conclusion 

The 3D table with three different rotation coupling 

is a widely used model in the domain of spacecraft experi-

ment, machine tool and robotics. It is also a typical model 

which can bridge the space rotation theory and engineer de-

sign together.  In this exploration, the dynamics model of 

3D table with three different rotation coupling is built with 

Lie group variational integrator method. The triangle trans-

formation is avoided in the modelling process and the ex-

pression of dynamics equation change simplifier because 

the equation constitutes by matrix blocks. The simulation 

results indicate that the dynamics don’t need special numer-

ical solution algorithms because the geometry structure is 

conserved by the dynamics equation directly. It’s a new dy-

namic equation which is friendly to engineer programming 

realization. This exploration also testify that two different 

dynamic model of 3D table lead to obvious different simu-

lation under the same numerical algorithm. The most obvi-

ous character is that the simulation results occur obvious dif-

ference in 5 seconds, which is much smaller than 50 seconds 

in planar system (see reference [19, 20]). It means the dif-

ferent direction rotation coupling have a big influence on the 

structure conservation. This result testified that the geome-

try structure conservation character is influence both by the 

dynamics equation and numerical algorithms, so the conser-

vation is not absolutely. 
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LIE GROUP VARIATIONAL INTEGRATOR FOR 

MULTI-BODY SYSTEM WITH ROTATION 

COUPLING IN SPACE  

S u m m a r y 

In multi-body system dynamics modelling, the 

body which rotate in space is complex and not easily to be 

expressed by Newton method, because the space rotation is 

realized by multi-joints rotation coupling with different di-

rection. In this exploration, the Lie group variational inte-

grator method is used to the dynamics modelling problem of 
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multi-body system with three orthogonal direction joints 

coupling.  Firstly, a mechanism accords with Cardan rota-

tion regular is designed which can represent 3 different di-

rections coupling, the kinematics model is derived out by 

matrix operation without triangle function. With inertia ma-

trix and mass matrix of the multi-body system according to 

the topology structure, and the Lagrange function is built, 

and the dynamics equation is derived out with Lie group 

variational integrator method. With Legendre transfor-

mation, the Hamilton dynamics model is obtained. The dif-

ferential computation of the momentum part is avoided, the 

scale of the dynamics model is greatly reduced. The Hamil-

ton dynamics model with two different kinematics part are 

compared in simulation. The simulation results indicate that 

the different kinematic expression can lead to different 

structure conservation characters under same numerical 

computation method. This exploration offers a benefit at-

tempt of using geometry method to dynamics modelling 

problem of tree structure multi-body system with differ-

ent structure rotation matrixes coupling.  

Keywords: rotation table, geometry dynamics, multi-body, 

numerical computation. 
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