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1. Introduction 

 

Bridge response is defined in terms of the dynam-

ic amplification factor (DAF), which is the ratio of the 

maximum response resulting from moving loads, to the 

maximum static response. Determining the real DAF is not 

easy; it depends on important parameters such as the 

bridge’s geometrical properties and the roughness of the 

rails. For this reason, there is no international consensus on 

the calculation of the DAF and divergences exist between 

the recommendations of various standards and codes in the 

dimensioning of bridges. The first study developed analyt-

ical solutions for simple cases of moving forces on a beam 

with two simple supports [1]. Certain authors propose solu-

tions to solve the case of a mass moving over the beam 

with various supports configurations [2]. For arch bridges 

traversed by a single moving load, [3] use a mixed ap-

proach in which the advantages of continuum and lumped 

mass methods have been combined. On the other hand, [4] 

determined the dynamic responses of a circular curved 

Timoshenko beam caused by a moving load using the 

curved beam elements. Thereafter, a discrete mechanical 

system was employed for a better representation of the 

vehicle movement [5]; the case of a convoy of vehicles 

was studied. The simplest model made up of a rigid block 

with three degrees of freedom gives results similar to the 

models having more degrees of freedom [6]. Studies of 

experimental codes carried out on bridges [7] aimed to 

determine the principal dynamic characteristics of the 

bridge: they constitute an excellent means to study the 

phenomena of interaction between the vehicle and the 

bridge; nevertheless they do not make it possible to con-

duct complete parametric studies. The studies by [5] and 

[8] modeled the dynamic behavior of the bridges using 

finite element programs. There are very few published in-

vestigations of joints in track. In [9], it was sought to ob-

tain rail joints with a better mechanism by analyzing the 

outcome of the rail joints using continuously welded rails 

along with a vertical load. 

For the study of certain parameters, the numerical 

analysis is more attractive despite the problems of ade-

quately modeling the complex phenomenon of the dynamic 

interaction between the vehicles and the bridge. The dy-

namic behavior of the bridge is carried out through a par-

ametric study for various speeds, for different rail rough-

ness conditions, and for various defect of the rail (joint). 

 

2. Dynamic model of a train–bridge interaction system 

 

2.1. Rail profile generation 

 

Then roughness profile of the rail in its discrete 

form is given by [10]: 
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where Ar is the roughness coefficient in m
3
/cycle, ωs0 is the 

discontinuity frequency equal to 1/2π (cycle/m), 

ωsk = 2πk
 
/
 
Lc and Lc is, in general, twice the length of the 

bridge. The phase angle φk is produced by a generator of 

random numbers. In general, random sampling algorithms 

are based on the use of random numbers ξ uniformly dis-

tributed. Among the “good” random number generators 

currently available, the simplest ones are the so-called mul-

tiplicative congruential generators [11]. A popular example 

of this type of generator is the following: 

  312 1n nR .    (2) 

This provides a sequence of random numbers ξn 

uniformly distributed in [0, 1] from a given seed  

R0 < 2
31

 1: 

 31 31

17  2 1n nR R mod .   (3) 

The generator (2) is known to have good random 

properties. However, the sequence is periodic, with a peri-

od on the order of approximately 10
9
. 

 

2.2. Modeling of rail joints 

 

The train/track model can simulate many defects 

such as rails with a crushed head, fatigue-damaged rails, 

rail joints, surface roughness, corrugated rails, (Fig. 1) etc. 

The rail joints always have a space between two consecu-

tive rails to adapt to the dilation and the shrinking of the 

material caused by variations in temperature. In this paper, 

only rail roughness and rail joints are investigated. The 

joints between the rails are modeled by singular and peri-

odic irregularities. The rail joint model is shown in Fig. 2. 
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Fig. 1 Rail defects: Insulated rail joint with wide gap (left) 

and rail weld (right) 

 

The joint profile can be mathematically expressed 

by the following function: 
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where C = B + k (b + A), k = 0, 1, 2,...Nj , a, b denote the 

depth and length of the joint, respectively, A is the rail 

length between two joints, B is the distance from the origin 

to the first joint, Nj = (L – B)/(A + b) is the joint number. 

 

 

Fig. 2 Model of rail joints defect 

 

To the roughness profile of the rail (Eq. 1), one 

can superimpose other curves representing singular irregu-

larities or periodic defects (Eq. 4): 

     r dr x r x r x .   (5) 

2.3. Train model 

 

Consider a simply supported beam subjected to a 

high-speed train. The bridge is modeled by Euler-Bernoulli 

beam [12]. Fig. 3 shows a train that is modeled by a set of 

identical cars with a constant spacing, and moving at a 

constant speed, v, over a bridge. The vehicle is composed 

of two masses, the one at the top representing the mass of 

the car body, mv, and the one at the bottom representing the 

mass of the wheel assembly ms (Fig. 3, b) [13]. The two 

masses are connected by a spring and dashpot to account 

for the vehicle suspension (system with 2DOF). 

The dynamic equilibrium equations of ms and mv 

are as follows [13] (Fig. 4): 

    ;s s v v s v v s s im z c z z k z z k       (6) 

   v v v s v v s vm z c z z k z z ,     (7) 

where kv the vertical stiffness of primary suspension, cv is 

the damping of the primary suspension, zv is the vertical 

displacement of the mass mv, ks is the rigidity of wheel 

suspension. 

 

 

Fig. 4 Dynamic rolling systems with two degrees of free-

dom vehicle 

 

The relative vertical displacement between the ith 

wheel and the bridge is Δi = – zs + w + r where zs is the 

vertical displacement of the ith wheel, r is the rail rough-

ness under the ith wheel and w is the bridge vertical dis-

placement under the ith wheel. 

 

2.4. Bridge model 

 

Only a single span of this simply supported multi-

girder highway bridge is considered in order to study the 

DAF under the action of a moving vehicle. We can use the 

well-known Lagrangian formulation with the Lagrangian 

function L = V – U and 
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where nv is the number of forces applied to the bridge 

 

 

Fig. 3 Model of bridge-train: a) high-speed train, b) a series of systems with two degrees of freedom 
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(number of the cars), δ is the Dirac function, V is the kinet-

ic energy, and U is the potential energy. Their expressions 

are given in [13]. The Fj(t) is the generalized force. The 

position of the force on the bridge can be calculated as 

follows with a0 = 0: 

1

1

k

k l l
l

x x a .




   (9) 

Employing the modal analysis method, the bridge 

deflection can be approximated by a series of n sinusoidal 

modes: 
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where     j kx t sin j x L   is the shape of the jth 

beam mode, for a simply supported beam and the circular 

frequency is given by: 

 
2

j lj L EI m .   (11) 

The term in Eq. (10) and (11) are: qj(t) the gener-

alized coordinates of the system, n the number of the 

adopted vibration modes, E the Young modulus, I the mo-

ment of inertia, and ml the mass per unit length. 

The projection of the Eq. (8), in the modal space 

[14] is given by: 
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where: 
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From Eqs. (6), (7) and (12) the problem can be in-

troduced by the following matrix formulation: 
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where the sub-matrices and sub-vectors are given below: 
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The system of differential Eq. (14) can be solved 

with different integration techniques. In this work, the 

Eq. (14) are solved using implicit Newmark integration 

scheme [15] and Δt = 0.25e-3 s. This method yields a stab-

le and accurate solution, with Newmark’s parameters 

γ = 0.5 and β = 0.25. By solving this equation, the displa-

cement of the vehicle and bridge can be obtained as a func-

tion of time. We propose a numerical algorithm (Fig. 5) to 

solve the problem of the bridge–vehicle interaction. The 

algorithm is composed of two overlapping loops: the first 

one for the time-steps, the second corresponds to the nu-

mber of vehicles. The dynamic response of the bridge is 

estimated by superposition of the modes up to the 10th. A 

computer program in FORTRAN is developed for the ana-

lysis of railways defects on the dynamic response of a 

bridge. Both the DAF, and the speed parameter α, which 

are dimensionless, are useful parameters in analyzing the 

vehicle induced vibrations. The dynamic effects induced 

by the moving train on the railway bridge were investiga-

ted by computing the dynamic amplification factor, defi-

ned as: 

   d sDAF R x R x ,  (16) 

where Rd (x) is the maximum dynamic displacement and 

Rs (x) is the maximum static displacement (null speed) at 

the mid-span of the bridge. 

The dimensionless frequency parameter α is defi-

ned as the ratio of the excitation frequency of the moving 

train, to the natural frequency of vibrations of the bridge, 

as: 

v Bf f .   (17) 

The applied load frequency fv (trainload frequen-

cy) is given by the following equation [5]: 
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f k

d
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where v is the train speed and d is the carriage length. 

When fv equals fB (α = 1), the resonance of the 

bridge and trainload is obvious. The critical speeds, vcr to 

resonate under the passage of the train are provides by 

[16]: 

1 2 1 2 3 ,
Bj

cr

d f
v , j , , ,n, k , , ,

k
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where fBj = ωj/ 2π is natural frequency of the bridge and the 

carriage length is d = a1 + a2 + a3 + a4. 

 

3. Validation test 
 

To validate the present algorithm (Fig. 5), a sim-

ple example is considered (Fig. 6), which has been studied 

by several authors [2, 8]. As shown in Fig. 6, a simple 

beam of span length L = 25 m is subjected to a moving 

mass-spring. The flowing data are adopted [8]: Young’s 

modulus E = 2.87 GPa; The flowing data are adopted [8]: 

span length L = 25 m; Young’s modulus E = 2.87 GPa; 

moment of inertia I = 2.90 m
4
, mass per unit length 

ml = 2303 kg/m, suspended mass mv = 5750 kg, suspension 

stiffness kv = 1595 kN/m, and speed v = 27.78 m/s. 
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Fig. 5 An algorithm to solve the bridge–train interaction 

 

 

Fig. 6 Beam subjected to a moving mass-spring system 

 

The present algorithm has been applied to calcu-

late the non dimensional displacement at the midpoint of 

the beam (Fig. 7). 
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Fig. 7 The midpoint displacements of the beam 

 

The results obtained are presented in Fig. 7 and 

compared to those obtained in [2]. From the comparison, 

one can note that the present algorithm is in very good 

agreement with this reference. 

 

4. Parametric study of the bridge-train model 

 

The developed methodology can be used in the 

parametric study to predict the bridge dynamic response 

under moving vehicles. The train consists of identical cars 

and travels over a bridge. The data assumed below are 

close to those used in the case of high-speed train and rail-

way bridges. The model depicted in Fig. 3 is considered 

with the following parameters [5]: mv = 12000 kg, 

kv = 1200 kN/m, cv = 10 kN-s/m, ms = 5000 kg, and 

ks = 1.e7 N/m. The train is assumed to have five carriages. 

The train car length, d = 25 m. A simply-supported beam 

modeling the bridge possesses the following properties [5]: 

Young’s modulus E = 2.e11 Pa, length of bridge L = 30 m, 

moment of inertia I = 0.17238 m
4
, masses per unit of 

length ml = 1.e4 kg/m, and damping coefficient ξ = 2.5%. 

Also, the circular frequency of the bridge is obtained from 

the Eq. (12) as 20 36 rad/sB .  . 

 

4.1. Influence of the speed 

 

Several features should be considered in the de-

sign of bridges used in high speed railways; the speed of 

the train is the first factor to be taken into account. In this 

study, the influence of train speed is studied using the pre-

sent method. In modern analysis speeds go up to 500 km/h 

(138.88 m/s) for high-speed trains. The first natural fre-

quency of the bridge is fB = 3.24 Hz. The Eq. (19) we ob-

tain vcr1 = 81 m/s. Similarly, the second, the third, the 

fourth and the sixth speeds are vcr2 = 54 m/s, vcr3 

= 40.5 m/s, vcr4 = 27 m/s and vcr5 = 20.25 m/s. 

The Fig. 8 simulates the passage of the train on a 

perfectly smooth surface with critical speeds of the vehicle. 
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Fig. 8 The vertical central deflection of the bridge as a 

function of vehicle position 

 

Fig. 9 shows the bridge deflection as a function of 

the frequency ratio for the perfect rail, with no roughness, 

no joints, nor defects. Computations are made in the inter-

val [0, 100] m/s with a step of 5 m/s (α = v/vcr1). The de-

flection increases with frequency ratio and reaches its max-

imum at α = 1.02 (v = 82 m/s) which is almost coincident 

with vcr1 = 81 m/s. Similarly, we obtain α = 0.68 

(v = 55 m/s) which is almost coincident with vcr2 = 54 m/s, 

α = 0.37 (v = 29 m/s) which is almost coincident with 
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vcr4 = 27 m/s, α = 0.25 (v = 20 m/s) which is almost coinci-

dent with vcr5 = 20.25 m/s and α = 0.12 (v = 9.6 m/s) which 

is almost coincident with vcr6 = 10.125 m/s. The bridge 

central deflection is highly dependent on the frequency 

parameter α. 
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Fig. 9 Bridge central deflection as a function of the fre-

quency parameter 

 

4.2. Influence of rail roughness 

 

To adequately represent the various curves of 

spectral concentration of power, one uses Eq. (4) with N 

terms. Each curve has a frequency range in which the den-

sity curve is valid. Using Eq. (4) with N = 180, the phase 

angle φk is randomly generated by the present method, as 

shown in Fig. 10. 
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Fig. 10 Phase angle φk 

 

The surface quality may be classified into several 

classes in terms of spectral roughness coefficient (Fig. 11). 
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Fig. 11 Rail roughness 

 

The Fig. 12 shows the mid-span deflection versus 

time t for the bridge is given for first critical speed 

(vcr1 = 81 m/s) with and without rail roughness. Fig. 13 

shows the DAF according to the speed parameter for the 

perfect rail and with various values of rail roughness. 
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Fig. 12 Bridge central deflection for vcr1 = 81 m/s with and 

without roughness 

 

For three cases of rail roughness, the rail rough-

ness has a considerable effect on the dynamic response of 

the bridge, and particularly around the critical speeds. The 

most distinctive difference can be seen for α = 0.5, where 

the difference between the good and poor profiles reaches 

10.5%; followed by α = 1, where the difference between 

the good and poor profiles reaches 6.9%. 
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Fig. 13 DAF under four different rail roughness conditions 

 

4.3. Influence of rail-joint 

 

Rail-joint parameters are: joint length, 

bJ = 100 mm, distance between two joints, AJ = 25 m, and 

tree cases for joint depth, aJ = 20 mm, 40 mm, and 60 mm. 

Four cases for joint position (BJ, distance between the 

origin and the first joint) have been considered (Fig. 14), 

namely BJ = (L – AJ)/2 = L/12, L/4, L/2 and 3L/4. 

In Fig. 15, the mid-span deflection versus time t 

for the bridge are given for critical speed 20 m/s (72 km/h) 

and BJ = L/2 with and without joint defect. The numerical 

results in Fig. 15 do not include the influence of rail 

roughness, only the defect of the joint is considered. From 

the Figs. 15 one can see that the effect of the joint defect 

starts from 0.75 s because the defect is located at x = 15 m. 

This effect is significant on the dynamic response 

of the bridge for low speeds (α = 0 to 0.5), see Fig. 16, it is 

about 25% for α = 0.125 (v = 10 m/s) and of 20% for 

α = 0.25 (v = 20 m/s). On the other hand for high speeds 

from α = 0.5 to 1(v = 40 to 100 m/s), the effect is unim-

portant it is about 2%. 



51 

0,0 0,2 0,4 0,6 0,8 1,0

-18

-12

-6

0

6

12
 B

J
 = L/2

 B
J
 = 3L/4

 B
J
 = L/12

 B
J
 = L/4

r 
(m

m
)

x/L  
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joint defects for 4 cases of BJ 
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Fig. 15 Bridge central deflection for vcr5 = 20 m/s with and 

without joint defect 
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Fig. 16 DAF for BJ = L/2 under four different aJ conditions 
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Fig. 17 DAF under four different BJ conditions 

 

In Fig. 17 one can see the DAF for various posi-

tions of a discontinuity with a depth aJ = 60 mm at 

BJ = L/12, BJ = L/4, BJ = L/2 and BJ = 3L/4. 

It can be seen that the most favorable case is 

when there is a discontinuity at position BJ = L/12 and 

BJ = 3L/4. The most unfavorable situation is BJ = L/2 and 

BJ = L/4. 

Finally, one can conclude that the combined ef-

fect of train loading with the presence of a rail discontinui-

ty may be catastrophic at certain train speeds within the 

actual range of traveling speeds. 

 

5. Conclusions 

 

The dynamic responses of the bridge subjected to 

high-speed trains are obtained in the time domain by using 

the bridge–vehicle coupled model. Parameters such as the 

bridge deflection and especially the track irregularity with 

rail defects are investigated. Based on the results obtained, 

the following conclusions can be drawn: 

1. The bridge central deflection is highly depend-

ent on the frequency parameter α. 

2. The rail roughness has a considerable effect on 

the dynamic response of the bridge, and particularly 

around the critical speeds.  

3. The presence of a rail discontinuity leads to an 

amplitude increase. In particular, in the case when the train 

speed coincides with the critical speed (resonance) and 

especially for speeds relatively low (0 to 40 m/s) for TGV, 

the high-speed train.  

4. One can see the DAF for various positions of a 

discontinuity, it can be seen that the most favorable of the 

cases is when there is a discontinuity at position BJ = L/12 

and BJ = 3L/4. The designer must avoid placing rail dis-

continuities near the location BJ = L/2 and BJ = L/4 of the 

bridge since this is proven as the most unfavorable situa-

tion. 

The combined effect of moving loads and impact 

caused by these irregularities may prove to be catastrophic 

for certain values of train speeds. 
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Y. Khadri, S. Tekili, E. M. Daya, A. Daouadji, B. Merzoug 

 

BĖGIŲ SUJUNGIMŲ IR TRAUKINIŲ KRITINIO 

GREIČIO ĮTAKA TILTŲ DINAMIKAI 

 

R e z i u m ė 

 

Geležinkelio tiltų dinaminių procesų intensyvėji-

mas pervažiavus sąstatui priklauso nuo įvairių veiksnių. 

Tai gali būti bėgių paviršiaus nelygumai, bėgių tarpusavio 

sujungimai ir t. t. Šie defektai paprastai turi įtakos sąstato 

ir tilto tarpusavio sąveikai. Šiame darbe bėgių sujungimų 

defektų įtaka siejama su sąstato kritiniu greičiu. Bėgių su-

jungimai modeliuojami atsižvelgiant į periodinius nukry-

pimus nuo normos. Tiltas modeliuojamas kaip atremta 

pastovaus skerspjūvio sija. Traukinys modeliuojamas kaip 

pastoviu greičiu judanti vagonų vilkstinė. Pagrindinių tilto 

ir traukinio judėjimo lygčių sistema išvesta pritaikant Lag-

ranžo ir formų superpozicijos techniką. Šios lygtys skait-

meniškai integruojamos Njumarko metodu. Straipsnyje 

pateikta programa FORTRAN paminėtų defektų įtakos 

tilto dinamikai analizei atlikti. 

 

 

Y. Khadri, S. Tekili, E. M. Daya, A. Daouadji, B. Merzoug 

 

EFFECTS OF RAIL JOINTS AND TRAIN'S CRITICAL 

SPEED ON THE DYNANIC BEHAVIOR OF BRIDGES 

 

S u m m a r y 

 

The dynamic amplification of the railway bridges 

caused by the passage of a train varies according to several 

factors. Among these factors: defaults of roughness of the 

rail and its joints, etc. These defects are usually encoun-

tered in railways and they influence the dynamics of the 

vehicle–bridge interaction, whence the importance of this 

study. In this paper, the defect of rail joint is investigated 

with train's critical speed. The joints between the rails are 

modeled by periodic irregularities. The bridge is modeled 

by a simply supported uniform beam. The train is modeled 

as a convoy of vehicles moving with a constant speed. The 

governing equations of motion for the bridge–train interac-

tion system are derived using the Lagrangian formulation 

and the modal superposition technique. These equations 

are integrated numerically by applying the Newmark 

method. This paper presents a computation code in 

FORTRAN to analyze the effect of the above-mentioned 

defects on the bridge’s dynamic response. 

 

Keywords: bridge dynamics, rail roughness, rail joint, 

critical speed, dynamic amplification factor. 
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