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1. Introduction 

 

When analysing the states of stresses of flexural 

reinforced concrete elements in the stages of failure, the 

operation of tensile concrete usually is not estimated [1-2] 

but its operation has the effect on the cracking moment and 

stiffness before the crack opening. The expressions of 

stress-strain relationship of compression concrete are de-

fined by the rules of EC2 (Eurocode 2) as well as in literal 

sources [3-7]; however there are few sources about the 

stress-strain relationship of tensile concrete, especially in 

flexural elements. 

The description and evaluation of compression 

concrete stress-strain relationship of flexural reinforced 

concrete elements when calculating their stiffness in dif-

ferent states is a complex problem which is usually solved 

using simplified methods. As the research shows [8], when 

calculations are made using the method of ultimate limit 

states, the coefficient values of concrete stress sheet have a 

significant effect on the change of the results according to 

different methods, and it is even more difficult to define 

the concrete stress-strain relationship before cracking. 

One more important value subject to the concrete 

stress sheet is a limit relative height of compressive zone. 

In EC2 standards, this value depends only on reinforce-

ment grade for lower class concrete in flexural reinforced 

concrete elements, i.e. concrete limit strain does not de-

pend on its strength class in this case. However, when con-

crete class varies from C8/10 to C50/60 (more than 6 

times), the concrete modulus of elasticity increases more 

than 1.5 times. If concrete strain characteristics change and 

reinforcement characteristics remain the same (in the same 

class), a limit relative height of compressive zone also 

changes. It can be concluded that a concrete stress-strain 

curve varies but, according to EC2, concrete stress diagram 

coefficients λ and η [8] are constant for the concrete of 

examined classes. In this case the construction technical 

regulations (STR) [2] evaluate concrete strength when cal-

culating a limit relative height of compressive zone. On the 

ground of the research presented in literal sources [9-10], it 

can be stated that concrete limit strains also depend on 

concrete strength. Although this article does not discuss the 

ultimate limit state and concrete stress diagram in the fail-

ure stage; however the principle of description of concrete 

stresses is important. 

For uncracked section, it is more important to 

know the tensile stress-strain relationship because the 

compressed concrete operates elastically in most cases. But 

the investigation of relationship of concrete tensile stress-

strain is more complicated than the investigation of com-

pression stress. EC2 does not describe that relationship and 

STR specifies the rectangular tensile stress diagram for the 

calculation of cracking moment. It is difficult to describe 

the relationship of concrete tensile stress and strain. Thus, 

the limit strain values of tensile concrete are used in some 

methods [11, 12]. 

One more method of problem solving (having 

evaluated the modulus of elasticity and the strain of con-

crete) is the description of stress-strain relationship of 

compression and tensile concrete on the ground of the rela-

tion of elastic and elastoplastic concrete strain λc and λct. 

With regard to the experimental results [13], coefficient λc 

varies from 1 to 0.15 for compression concrete and coeffi-

cient λct is equal to 0.5 for tensile concrete, approaching a 

short-term strength. Since coefficient λc depends on load-

ing time and extent (when time and loading extent in-

crease, λc decreases), it is taken that these coefficients are 

equal for both tensile and compression concrete 

λct = λc= 0.5. In this case it is accepted that with the in-

crease of loading, tensile and compression concrete change 

from the elastic to the plastic stage gradually, i.e. the coef-

ficients vary gradually from λct = λc = 1.0 to 0.5. Having 

accepted these initial conditions, it is possible to express 

the stress-strain relationship of concrete and to describe the 

equations of equilibrium of flexural reinforced concrete 

elements. The direct solution of the obtained equation sys-

tem is quite complex; however, the solution can be found 

by the method of approximation. It is also possible to cal-

culate the height of compressive zone and concrete strains 

using iterative procedure and dividing the element section 

into layers. Moreover, the solution can be found using the 

finite element method (FEM) by means of changing layers 

into finite bar elements. With the sufficient number of lay-

ers, the error is minor. 

 

2. Concrete stress-strain relationship 
 

Having accepted that the elastic part of both ten-

sile and compression concrete ranges up to 0.4fct and 0.4fc 

the limit strains of elastic zone for tensile concrete 

, 0 4ct el ct c. f E   and for compression concrete 

, 0 4c el c c. f E  . According to the classic model, the coef-

ficient of elastoplastic concrete strains which evaluates the 

relation of elastic and total strains is equal to 

 , 0 5ct lim ct ,el ct ,el ct ,pl .       at the time of crack open-

ing. The same coefficient of elastoplastic concrete strains 

can also be taken for compressive concrete zone, i.e. 

λc,lim = 0.5. Thus, in the elastic zone the coefficient 

λct = λc = 1 and when stresses (or strains) exceed the elas-

ticity limit, the coefficient decreases until it becomes equal 
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to 0.5 (when limit stresses are reached). On the assumption 

that the coefficient λct changes gradually from the elasticity 

limit to the concrete tensile strength limit, it can be ex-

pressed as follows: 

, ,

, ,

1 0 5
ct i ct el

ct

ct lim ct el

.
 


 


 


, (1) 

where ,ct lim  is limit strain of tensile concrete that con-

forms to tensile strength, i.e.: 

,

,

2ct ct
ct lim

ct lim c c

f f

E E



  . (2) 

Having the accurate data of stress-strain relation-

ship and the strain modulus of tensile and compression 

concrete, it is possible to describe the variation of the 

modulus of strain more accurately when elastoplastic 

strains are applied in concrete. Having such relationship 

between stresses and strains of compression concrete, it 

can be compared with relationship according to EC2, and 

can be illustrated in the following way (Fig. 1). 
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Fig. 1 Stress-strain curves: 1 - curve of flexural element 

calculated according to the proposed method; 2 -  

curve calculated according to EC2; 3 - simplified 

curve calculated according to EC2 

 

The variation of coefficient λc according to EC2 

and the proposed model is presented in Fig. 2. 
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Fig. 2 The relationship of elastoplastic strain coefficient of 

compression concrete to relative strains according to 

the proposed and EC2 methods 

 

 

3. The state of stresses when concrete operates  

elastically in the compressive zone 

 

In most cases, the strains in the compressive zone 

are elastic before the crack opening. When loading ap-

proaches the limit of element cracking, Hooke's law also 

holds in the tensile zone from the neutral axis to elastic 

strain limit εct,el and the stress-strain relationship becomes 

nonlinear from εct,el to εct (Fig. 3). 
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Fig. 3 Strains and stresses of element when compressive 

concrete zone operates elastically 

 

Equality ctcctct E    holds in this zone. Having 

stress-strain relationships in these three zones, we can 

write the equations of equilibrium of force projections and 

bending moments; therefore, we can obtain the compres-

sive zone height of flexural element and the strains and 

stresses of edge layers. Thus, the resultant of rectangular 

section element in the compressive concrete zone follow-

ing the assumption of flat sections is calculated as follows: 

0

0 5
x

c c ci c cF bE dy . bE x     , (3) 

where 
x

yc
ci


  . 

The resultant in the elastic part of tensile zone is: 

2

,

,

0

0 5 0 5
elx

ct el

ct ,el c ci c ct el el c

c

F bE dy . bE x . bE x


 


   , (4) 

where 
,ct el

el

c

x
x




  and 

,ct el

ci

el

y

x


  . 

The resultant in the elastoplastic part of tensile 

zone is calculated as follows: 


plx

ci

*

cpl,ct dybEF
0

 . (5) 

Having evaluated that 
*

c c ct cE E E    

,

, ,

1 0 5
ci ct el

ct lim ct el

.
 

 

 
  
  

 and having indicated 
,

1
ct el

c

k



   

(then ,pl ct elx h x x h kx     ), we obtain: 

,

,

, ,0

1 0 5
h kx

ci ct el

ct pl c ci

ct lim ct el

F bE . dy
 


 

  
  

  
 . (6) 
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Strains in elastoplastic zone can be expressed as 

follows:  , ,ci ct el ct ct el

y

h kx
     


. (7) 

Then the resultant is calculated: 

 

 
 

, , ,

, , ,

, ,0

1 0 5
ct el ct ct el ct elh kx

ct pl c ct el ct ct el

ct lim ct el

y

yh kx
F bE . dy

h kx

   

  
 



  
    

        
   
 
 

 . (8) 

Having evaluated that 
 

x

xhc
ct





  and having solved an integral expression, we obtain: 

  
     

22

, 2

, , ,2

, ,

0 5 1
0 5

2 6 63

c c c ct el

ct pl c ct el ct el

ct lim ct el

h x h x h x.
F bE h kx .

x xx

   
 

 

     
          

         

. (9)

Finally, the resultant in tensile reinforcement: 

 
ss

c
ssss AE

x

xd
AEF





  (10) 

Bending moments around neutral element axis are 

calculated in an analogical manner. Bending moment from 

the resultant of compressive concrete zone: 

 

x

cccicc xbEydybEM

0

2

3

1
 . (11) 

Bending moment from the resultant of elastic part 

of tensile concrete zone: 

3

, 2

, 2

0

1

3

elx
ct el

ct el c ci c

c

M bE ydy bE x





  . (12) 

Bending moment from the resultant of elasto-

plastic part of tensile concrete zone: 

  

 
 

        

        

2

, ,

,

, ,

22 2

, , ,

2

22 2

, ,

2

, ,

0 5
0 5

2

6 6 3 63

0 5

6 124

ct el ct el

ct el

c c ct lim ct el

c c ct el ct el c ct el

ct ,pl c

c c ct el ct el

ct lim ct el

x . x
. h x

h x h x h x h kx h kx
M bE h kx

x xx

h x h kx h x h kx h kx.

xx

 


   

     

   

 

   


     
        
 
 

     
   




 
 
 
 
 
 
 
 
 
  
  

 

. (13) 

Bending moment from the resultant of tensile re-

inforcement: 

 
 

ss
c

ssss AE
x

xd
xdAEM

2





 . (14) 

Having the expressions of resultants and bending 

moments produced by them, we find unknown values x 

and εc from the equation system: 

, ,

, ,

0 ;

.

c ct el ct pl s

c ct el ct pl s

F F F F

M M M M M

   


   
 (15) 

Basically, the calculation of strains, are made ana-

logically when compressive concrete zone operates elas-

tically and plastically, but equation members Fc and Mc 

become more complex functions in this case. 

 

4. The cracking moment when concrete operates  

elastically in the compressive zone 

 

The calculation of cracking moment is simpler 

because of known maximum tensile strain value εct = εct,lim 

before a crack opens. In this case, the value  and the elas-

toplastic strain could be expressed in another form: 

1 0 5
y

.
h kx

  


; (16) 

 , , ,ci ct el ct lim ct el

y

h kx
     


. (17) 

So, the resultant values of the compression zone 

and elastic tensile zone are the same and the resultant of 

elastoplastic tensile zone after some changes according to 

Eqs. (16) and (17) will be: 

 
, ,

,

5

12 3

ct el ct lim

ct pl cF bE h kx
  

   
 

. (18) 

The resultant of tensile reinforcement is: 

 ,ct lim

s s s

d x
F E A

h x

 



. (19) 
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The compression zone height can be expressed 

from the forces equilibrium equation: 

02  CBxAx , (20) 

where  ,

1 , , 1

,

0 5 0 5
ct el

ct lim ct el

ct lim

A e . . e


 


    ; 

 , ,

1 , 1

,

2 2
ct el ct lim s s

ct el

ct lim

A
B e h h e h

b

  



    ; 

 , ,2 2 2

, 1 1

,

0 5
ct el ct lim s s

ct el

ct lim

A d
C . h e h e h

b

  



    ; 

1

5

12 3

ct ,el ct ,lim
e

  
  
 

. 

When the compression zone height is known, the 

cracking moment is calculated as follows: 

:

 

 
      

 

, , , ,, ,

23

,2 2

2

53

4 3 3 24

1 1
.

3 3

ct lim ct el el ct lim ct elct el el ct el

crc c

ct el c

c c c s s

c

x h kxx h kx
M bE h kx

d x
bE x bE x E A

x

    

 




   
      
  


  

 

(21) 

Section dimensions (b, h, d), the amount of rein-

forcement sA , the properties of concrete ( ct ,el ct ,lim c, ,E  ) 

and reinforcement ( sE ) have the main influence on the 

cracking moment.  

 

5. Layer calculation method of a flexural element with 

rectangular section 

 

The solution of equations system (15) is complex 

because the equations in both first and second system ex-

pressions are not linear. Therefore, it is more convenient to 

find unknown values x and εc using iterative procedure and 

dividing a member into separate equal layers (Fig. 4). 
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Fig. 4 The division of flexural element into layers 

 

In this case, when making equations of equilibri-

um it is more convenient to express the strains of layers 

according to the scheme of Fig. 5 because when the loca-

tion of neutral axis is unknown it is difficult to find how 

many layers are included into compress and tensile zones. 
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Fig. 5 The description scheme for the strain of i layer 

 

According to the mentioned scheme, the strain of 

i layer can be found from the following equation: 
 

 

    1

1

c ct ic ct ci ct
ci ct* *

i

h i

h ih h

    
 

  
   


, (22) 

where hi is the height of i layer, i layer number. 

Having expressed the strain of outer layer of ten-

sile zone 
 

x

xhc
ct





 , we obtain: 

   







 








*

i
*

c*

i
cci

h

ih

x

xh

h

ih 1
1

1
 . (23) 

Then, the height of compressive zone can be ex-

pressed from the equation of equilibrium of force projec-

tions: 





n

i
ssscicici AEAE

1

0 , (24) 

where ccici EE  , ici bhA  . 

Having evaluated expression (23) and the fact that 














*

s
*

c*

s
cs

h

a

x

xh

h

a
1 , we can get the proportion 

x

xh
H

* 
  from expression (24): 

 

 
1

1 1

1

1

n
i s

ci ci s s* *
i

n n
i s

ci ci ci ci s s s s* *
i i

h i a
E A E A

h h
H

h i a
E A E A E A E A

h h



 







  



 

, (25) 

where as is distance from the edge of tensile concrete to the 

weight centre of tensile reinforcement. 

Having obtained value H from the equation of 

equilibrium of bending moments, we can calculate the 

strain of compressive zone edge in the following way: 
 

 

  
 

  
2 2

2 2

1 1 1

1 1
1

n n n
i i s s

ci ci ci ci i ci ci s s s s s s s* * * *
c i i i

h i h i a a
E A E A Hh i E A E A E A Ha E A H Mh h h h

  

  
        
 
 

   ; (26) 
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  

      
 





n

i

n

i
sss*

s
ssicici*

i
cici

c

HaAEH
h

a
AEiHhAEH

h

ih
AE

M

1 1

22

111
1

 . (27) 

 

In this case, it is not necessary to solve equation 

system but the solution is repeated in order to make layer 

Eci more precise. 

This iterative solution can also be written in a ma-

trix form: 

F = E . (28) 

If we divide element into 6 equal layers and mark 

the bottom tensile layer with number “1”, and the rein-

forcement weight centre is between the axes of layers 

“1”and “2”, then matrix E is equal to: 

 

  







































issi

sSsicciccicciccicc

Sscccccccccccc

haah

aAEhAEhAEhAEhAEhAE

AEAEAEAEAEAEAE

0000

54320

0121000

0012100

0001210

0000121

6655443322

665544332211

E . (29) 

Displacement vector 

 1 2 3 4 5 6

T

c c c c c c s      ε  and force vector 

is calculated -  TM 000000F . 

When element is divided into quite small parts, 

the weight centre of tensile reinforcement will probably 

coincide with the axis of one of the layers. Let us suppose 

that it will coincide with the axis of layer “2”. Then, mem-

ber E(5, 2) of matrix E will be equal to  sscc AEAE 22  

and member E(6, 2) – to   isscc hAEAE 22 . In this case, 

members of the final line and final column as well as vec-

tor members ε(7) and F(7) will be equal to 0. 

It is convenient to solve the discussed element di-

vided into layers using the (FEM). In this instance, each 

layer will correspond to a bar element and stiffness of that 

layer (Fig. 6). In order to obtain a flat section strain, the 

external bending moment is added to the element with high 

stiffness which has the following characteristics stst IE . 

Also the calculation can be made with reinforcement in the 

compression zone. In this case, the solution is the same as 

in the case of tensile reinforcement. 
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Fig. 6 Calculation model of the finite element method 

 

Having calculated a particular element of rectan-

gular section (Eq. 15), the results of expression members 

are obtained similar according to expressions (3-4), (9-10) 

and (11-14), the layer method and FEM. The element cal-

culation results (b = 0.2 m, h = 0.21 m, d = 0.185 m, 

fck = 30 MPa, fct = 2 MPa, As = 5 cm
2
, Ec = 30 GPa , 

Es = 200 GPa, εct,el = 2.667e-5, εct,lim = 1.333e-4), when 

3 kNm bending moment is applied, are presented in  

Table.  

The stress and strain relationship of the examined 

element when bending moment is equal to 3 kNm is  

presented in Fig. 7. 

 

 

Table 

The comparison of calculation results of presented example according to different methods 

 

 Fc, kN Fct,el, kN Fct,pl, kN Fs, kN Mc, kNm Mct,el, kNm Mct,pl, kNm Ms, kNm 

By (3-4), (9-10) and 

(11-14) expressions 
21.308 3.589 13.222 4.500 1.553 0.107 0.999 0.341 

By “Layer method” 

and “FEM” (21 layers) 
21.350 2.957 13.885 4.51 1.553 0.079 1.027 0.341 

By “Layer method” and 

“FEM” (189 layers) 
21.309 3.633 13.176 4.500 1.553 0.109 0.997 0.341 
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Fig. 7 The stress-strain relationship (“–“ means tensile) of 

the examined element when bending moment is 

equal to 3 kNm 
 

6. The comparison of the results of different methods 
 

Comparing the proposed model with other meth-

ods laid down in STR, EC2, ACI [14] and the method pre-

sented in [12], different height of an element with the con-

stant width 0.2 m was chosen. The differences of results 

could be seen in Fig 8. The comparison of the proposed 

method with EC2 and ACI codes is complicated because 

the influence of reinforcement is ignored. The cracking 

moment depends only on section dimensions in these 

codes. 
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Fig. 8 The dependence of cracking moment on the height 

of element when the width is 0.2 m. 
 

The relationship between the cracking moment 

and reinforcement amount was calculated according to 

STR and the proposed model (Fig. 9). 

To find out the influence of such parameters as 

the element dimensions and the reinforcement amount on 

the cracking moment, the rectangular section with different 

dimensions and reinforcement amount was calculated. The 

width varies from 0.1 m to 0.3 m, height – 0.2 m – 0.45 m 

and the cross-section of reinforcement – 2.5 cm
2
 – 20 cm

2
. 

In order to eliminate the influence of width, values Mcrc/b 

and Ieff/b were compared. The comparison of the average 

values of cracking moment calculated by expression (21) 

and STR is shown in Fig. 10, where differences vary from 

5 to 15%. It can be seen from this figure that the influence 

of a section dimensions on the character of cracking mo-

ment variation is quite similar. The area of reinforcement 

to the inertia moment is not estimated in ACI and EC2 

codes. Thus, the comparison with STR and the proposed 

method is not quite precise. 
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Fig. 9 The dependence of cracking moment on the cross-

section area of tensile reinforcement 
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Fig. 10 The relationship of cracking moment and section 

dimensions by STR and the proposed model 

 

For model testing, the cracking moment of ele-

ment (b = 0.2 m, h = 0.5 m, d = 0.46 m, As = 14.7 cm
2
, 

C25/30, S400) was calculated and it was equal to 

44.195 kNm. The cracking moment calculated according to 

STR is equal to 54.4 kNm, EC2 – 21.4 kNm; and  

ACI - 28.3 kNm. This quite significant difference of pro-

posed method result compared with EC2 and ACI occurs 

because of the amount of tensile reinforcement. 

 

7. Conclusions 

 

It is convenient to calculate the cracking of flex-

ural elements by applying the coefficients of elastoplastic 

strain of tensile and compression concrete. Moreover, us-

ing the proposed calculation model, it is not difficult to 

evaluate the coefficients of elastoplastic strain that are dif-

ferent for tensile and compression concrete, i. e. when 

λct ≠ λc. In this case, concrete strengths that have essential 

effect on the limit strains when describing the cracking 

moments are also evaluated. 

Since the stress sheet of tensile zone is not rectan-

gular, the obtained values of cracking moments are slightly 

lower than those of classic calculation methods. The solu-

tions of chosen iterative method of layers are quite precise 

and simple, therefore it is possible to avoid solving of more 

difficult integral equations. The FEM can also be used for 

the solution. 
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M. Augonis, S. Zadlauskas 

 

TAMPRIAI PLASTINIŲ DEFORMACIJŲ ĮTAKA 

GELŽBETONINIŲ STAČIAKAMPIO SKERSPJŪVIO 

ELEMENTŲ PLEIŠĖJIMO MOMENTUI IR  

DEFORMACIJOMS 

 

R e z i u m ė 

 

Darbe atliktas lenkiamų gelžbetoninių elementų 

pleišėjimo momento skaičiavimas atsižvelgiant į betono 

tampriai plastinį būvį. Betono deformacijų modulis plyšio 

atsivėrimo metu apskaičiuotas remiantis tampriai plastinių 

deformacijų koeficientu. Atliekant  skaičiavimus buvo lai-

koma, kad betono tampriai plastinių deformacijų koeficien-

tas įtempiams artėjant prie maksimalių tiek tempiamai, tiek 

gniuždomai zonai yra vienodas. Naudojantis pateiktu mo-

deliu galima apskaičiuoti lenkimo momento, neviršijančio 

pleišėjimo momento, sukeltas nesupleišėjusio elemento 

skerspjūvio įtempių ir deformacijų reikšmes. Šiuo atveju 

laikoma, kad įtempiams viršijus tamprumo ribą tampriai 

plastinių deformacijų koeficientas iki ribinio, kai pasie-

kiami maksimalūs įtempiai, mažės tolygiai. Sudarytų in-

tegralinių lygčių sprendimui supaprastinti galima taikyti 

sluoksnių ar baigtinių elementų metodus. Siūlomas meto-

das patogus tuo, kad juo naudojantis nesunku nustatyti 

galimus betono tampriai plastinių koeficientų pokyčius. 

 

 

M. Augonis, S. Zadlauskas 

 

THE ELASTOPLASTIC CONCRETE STRAIN 

INFLUENCE ON THE CRACKING MOMENT AND 

DEFORMATION OF RECTANGULAR REINFORCED 

CONCRETE ELEMENTS 

 

S u m m a r y 

 

The calculation of cracking moment of flexural 

reinforced concrete elements is made in the article by eval-

uating the elastoplastic state of concrete. At the time of 

crack opening, the concrete strain modulus is calculated on 

the ground of the coefficient of elastoplastic strains. It is 

accepted in the calculations that, when stresses reach max-

imal values, the coefficient of concrete elastoplastic strains 

is the same for both tensile and compressive zone. The 

presented model can be used to calculate the stress and 

strain values of uncracked element section with regard to 

bending moment not exceeding cracking moment. In this 

case, it is taken that when stresses exceed elasticity limit 

the coefficient of elastoplastic strain will decrease gradual-

ly to the limit value if maximal stresses are reached. In 

order to simplify the solution of formed integral equations, 

the method of layers and the finite element method are 

proposed for solving. The proposed method is convenient 

because it can easily be used to evaluate the potential 

changes of concrete elastoplastic coefficients. 

 

Keywords: reinforced concrete, layer modeling, stresses, 

elastoplastic strain, cracking moment. 
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