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1. Introduction 

 

A blast wall is a physical barrier separating a vul-

nerable object from a potential explosion which produces a 

blast loading capable to damage the object [1]. Blast walls 

are normally deployed to provide structural protection 

against military weapons or improvised explosive devices. 

However, blast walls are in principle suitable to mitigate 

the level of blast loading generated by accidental explo-

sions occurring in industrial facilities and during a trans-

portation of hazardous goods. Such blast loading is some-

times accompanied by impact of projectiles and spread 

thermal radiation (e.g., [2]). 

Blast wall can be relatively lightweight and weak 

and still offer some degree of protection because a high 

level of deformation can absorb a significant amount of the 

blast wave energy. The cost of rigid, non-destructible walls 

is often prohibitive and a significant mitigation of blast can 

be achieved using relatively lightweight frangible or sacri-

ficial walls [1, 3]. The energy of blast loading can be ab-

sorbed by lightweight systems used as sacrificial cladding 

(SC). They can be mounted on the front of a non-sacrificial 

structure to be protected or serve as a component of a blast 

wall [4-7]. 

Studies concerned with the performance of blast 

walls in providing protection against the damaging effect 

of blast loading deal, almost exceptionally, with two prob-

lems: (i) developing deterministic models of blast-wall 

interaction and wall behaviour under the blast loading; and 

(ii) verification of blast wall designs in highly specific ex-

perimental set-ups. In either case, characteristics of blast 

loading and structure subjected to it are (assumed to be) 

known in advance. It is a paradox that in fact no attention 

was paid to uncertainties related to this type of loading and 

structures exposed to it. In other words, the field remains 

almost fully deterministic. 

It is obvious that blast loading generated by attack 

weapons, terrorist devices and industrial accidents is un-

certain to a large measure. Uncertainties of certain degree 

will be always inherent in mechanical models describing 

behaviour of blast walls. A consistent quantification of the 

uncertainties related to blast loading and protective struc-

tures subjected to it is possible by a combined application 

of structural reliability analysis (SRA) and methodological 

tools developed in the field of quantitative risk assessment 

(QRA) [8-11]. 

The problem of uncertainty quantification in the 

case of blast loading generated during industrial accidents 

is that such accidents are unique and unexpected events, to 

a large margin. Post mortem statistical data on blast load-

ing characteristics can be either unavailable or not repre-

sentative. However, a design of a blast wall can be based 

on an experimental simulation of an accident, in which 

blast loading to be mitigated by the wall will be imitated 

either physically or numerically. A series of such experi-

ments may yield a statistical sample of blast loading char-

acteristics. This sample will contain information on the 

variability of these characteristics and, indirectly, variabil-

ity of potential damage to the wall and effects on the object 

to be protected. With such a sample, a design of blast wall 

will be possible even in the case when the size of the sam-

ple will be small from the standpoint of the classical statis-

tics [12-14]. In addition, elements of this sample can be the 

so-called uncertain data, that is, data represented by proba-

bility distributions and not fixed, crisp values. 

The present study describes how to design in a 

probabilistic way an SC of a blast wall deployed to protect 

vulnerable object against an accidental explosion. The 

basic idea is that a cladding failure probability may serve 

as a measure of explosive damage to the SC. It is shown 

how to estimate this probability by an approach which 

combines methods of SRA and QRA. The estimation is 

based on a separate treatment of stochastic (aleatory) and 

epistemic (state-of-knowledge) uncertainties related to a 

mechanical model of SC. The proposed estimation proce-

dure allows also the data on blast loading to be uncertain in 

the epistemic sense. The study is aimed at increasing safety 

of industrial facilities and parts transportation infrastruc-

ture where accidental explosions can cause major acci-

dents. 

 

2. Amenability of sacrificial cladding to mathematical 

modelling 

 

SC is generally designed as a multi-layered struc-

ture attached to a non-sacrificial frame [4-7, 15]. A build-

ing wall to be protected by SC serves as a typical support. 

A certain degree of energy absorption and dissipation can 

be achieved also by cladding built as a part of blast walls 

and supported along some contours, where cladding is at-

tached to the frame of a blast wall [16, 17]. The frame can 

provide support over most of the cladding area or, alterna-

tively, the support can be reduced to the minimum and be 

provided by vertical non-sacrificial or less frangible posts 

(Fig. 1). The configuration of a non-continuous support 

may influence a production projectiles which after an SC 

failure may damage the object protected by the wall. 

http://dx.doi.org/10.5755/j01.mech.19.1.3621
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Fig. 1 Non-sacrificial frames supporting sacrificial clad-

ding: (a) densely distributed support; (b) cladding 

supported by cantilever posts 

 

The possibility to predict the behaviour of SC 

subjected to blast loading will depend on the presence of 

mathematical models which allow to obtain a deformation-

time relationship and formally express a criterion for SC 

failure (cessation to accomplish the protective function in 

the course of blast loading). Studies of SCs and their com-

ponents published in the recent two decades provide dif-

ferent possibilities of a mathematical modelling of SC be-

haviour. These studies can be subdivided into four groups: 

1. Experimental measurements of SC defor-

mations which do not contain any attempts to carry out a 

parallel analytical or numerical modelling [18, 19]. 

2. Experimental studies with a parallel numerical, 

finite element (FE) modelling [20, 21]. 

3. Studies on an FE analysis only [17, 22, 23]. 

4. Studies which develop analytical models only 

or in addition to experimental measurements and/or FE 

computations [4-6, 15, 16, 24-26]. 

Most studies deal with the sandwich cladding 

which responds to blast loading by a compaction perpen-

dicularly to the continuous base (Fig. 2, a). A closer look at 

the analytical models allows to conclude that the most of 

them are based on a single-degree of freedom (SDOF) 

elastic or elastic-plastic idealisation of an SC fragment 

which deforms axially along the blast action 

[15, 17, 22, 24, 25, 27, 28]. Louca et al. [16] apply an 

SDOF idealisation to a blast wall cladding consisting of 

profiled steel sections which act as one-way slabs 

(Fig. 2, b). Bahei-El-Din et al. [17] used an FE analysis to 

study blast-tolerant sandwich plates which are also ideal-

ised as beam elements (Fig. 2, c). Both claddings have 

some energy dissipation capability; however, their studies 

do not reveal how to assess the alleviation of blast action 

transmitted to the supporting frame. 

All analytical SC models known to us attempt to 

predict deformations of individual cladding layers. An in-

teraction between SC and supporting frame is not consid-

ered, and so criteria for cladding failure to accomplish the 

protective function are not expressed formally. However, 

some authors state that such a criterion should be based on 

a difference between the energy SC is capable to absorb, 

Eabsorb, and the total energy imparted by the blast impulse, 

Eblast. Correspondingly, the failure criterion expressed 

through a safety margin m (a concept widely used in SRA) 

may have the form: 

 m = Eabsorb – Eblast ≤ 0. (1) 

Attempts to compute Eabsorb and Eblast were made 

by Hansen et al. [6] and Ma and Ye [29]. 

A failure criterion derived from a dynamic model-

ling of the sandwich cladding shown in Fig. 2, a is present-

ed by Theobald and Nurrick [26]. They relate the failure 

criterion to a maximum crush distance of the sandwich 

core, δmax (Fig. 2, a). This distance is used to obtain the 

time at which compaction of the core occurs, tc, and com-

pare it to the total cladding response duration tm. If tc  tm, 

the cladding will be able to absorb a prescribed blast load. 

The failure criterion can be expressed through a safety 

margin m as follows: 

 m = tc – tm ≤ 0. (2) 
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Fig. 2 Types of sacrificial cladding: (a) sandwich cladding 

attached to a continuous base; (b) profiled section 

wall supported by posts; (c) sandwich cladding 

 

Louca et al. [16] proposed two safety margins 

based on a maximum dynamic response of the profiled 

section cladding shown in Fig. 2, b. 

 m1 = pR – y1 ≤ 0; (3a) 

 m2 = upl,max – upl,dyn ≤ 0, (3b) 

where pR is the resistance (dynamic pressure capacity) of 

the profiled section; y1 is the reflected peak overpressure of 

uniformly distributed blast loading; and upl,max and upl,dyn 

are the maximum dynamic plastic deflection and the dy-

namic plastic deflection due to the blast load, respectively. 

The above safety margins mi (i = 1, 2) were derived by 

considering plastic deflection limit, that is, a limit point 

where all the reserve strength of the profiled section have 

been utilised. Consequently, the negative values of mi 

mean that the profiled section is “sacrificed” and this in-

volves large plastic deformation, possible tearing of welds 

at supports and potential formation of a projectile. 

The failure criterion expressed by Eq. (3b) can be 

related to the criterion based on the difference of absorbed 

and imparted energies expressed by Eq. (1). The maximum 

deflection upl,max is proportional to the potential energy 

transferred to the cladding at the end of loading and so the 

absorbed energy [29]. Therefore, one can state that an oc-

currence of the event Eabsorb – Eblast ≤ 0 leads to an occur-

rence of the event upl,max – upl,dyn ≤ 0, and vice versa. 
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Fig. 3 A schematic illustration of the epistemic uncertainty in the value of the fragility function )( y
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Analytical and numerical models of SC behaviour 

cited above are purely deterministic on both loading and 

structural side. The problem of model accuracy (uncertain-

ty) is not considered formally in the aforementioned stud-

ies. From an SRA viewpoint, the deterministic analytical 

and numerical models of SC behaviour, mi, may serve as a 

basis for a probabilistic analysis of this protective struc-

ture. The need for such an analysis will arise in the case 

where blast loading can vary to a large degree and is diffi-

cult to predict it with fair degree accuracy. Uncertainties 

can be inherent not only in the loading but also the re-

sponse of SC to it. A consistent quantification of these un-

certainties will generally require to apply methods devel-

oped in the field of QRA. By the way, an assessment of 

potential consequences caused by an accidental explosion 

is in essence a problem of QRA. 

The standard QRA approach to uncertainty mod-

elling is a separate treatment of stochastic and epistemic 

uncertainties, usually by applying a nested-loop stochastic 

simulation (e.g., [11, 12]). This simulation will require to 

evaluate the SC models mi a large number of times and so 

the complexity of mi will be an important factor influenc-

ing the computational time. 

Attempts to “marry” deterministic FE analysis 

and uncertainty quantification are well-known in SRA 

(e.g., [30]). Even though blast wall cladding is a relatively 

simple mechanical object, FE models expressing the safety 

margins mi can be too cumbersome to incorporate them 

into a nested loop simulation procedure used in QRA for 

uncertainty propagation. Therefore, the further probabilis-

tic analysis of blast wall cladding will be based on analyti-

cal and not numerical FE models, however accurate the 

latter might be. The objective to be pursued by this analy-

sis will be an estimation of an SC failure probability which 

can be used as a measure of explosive damage to SC. 

 

3. Failure probability of sacrificial cladding as a  

measure of damage degree 

 

In the case where all individual components of SC 

are nominally identical or a continuous SC can be discre-

tised notionally into nominally identical components, a 

different number of them will fail (will be “sacrificed”) at 

different intensities of reflected blast wave. Characteristics 

of a pressure history of this wave can be represented by a 

ny-dimensional vector y with the components y1, y2, y3, … , 

yny  expressing overpressure, positive duration, impulse, 

etc. (ny  1). Then the relative number of the failed com-

ponents and so the degree of damage to SC can be estimat-

ed by a conditional probability of failure of an individual 

component: 

 ( ) ( )f i iP y P D | y , (4) 

where Di is the random event of damage to an SC compo-

nent related to the failure mode i (the ith damage event, in 

brief). The function Pf(y) is known in SRA and QRA as a 

fragility function and its arguments y are called the demand 

variables (e.g., [31, 32]). 

If the blast wave characteristics are uncertain and 

represented by a random vector Y, the unconditional prob-

ability of SC component failure, Pf, can be expressed as a 

mean value of the fragility function Pf() with a random 

arguments Y, namely: 

 ( ) ( ) d ( ( ))f f Y Y fy
P P f E P  y y y Y , (5) 

where fY(y) is the joint probability density function of Y. 

Eq. (2) is a standard definition of a failure probability 

widely used in SRA. The problem of estimating Pf for blast 

loading generated by an accidental explosion is that statis-

tical data for fitting the model fY(y) will typically be una-

vailable. However, Pf can be estimated with a small-size 

sample consisting of observations yj of Y obtained by ex-

periment [10, 11]. Let this sample be: 

 y = {y1, y2, … , yj, … , yn}. (6) 

Elements of y can be transformed into fragility 

function values Pf(yj) and a new, artificial sample {Pf(y1), 

Pf(y2), … , Pf(yj), … , Pf(yn)} formed. The latter sample can 

be used to compute a bootstrap confidence interval []0, fP  

for Pf. The closer is the upper limit fP  to unity, the larger 

number of SC components should be expected to be lost in 
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case of an explosion. Consequently, fP  can be used as a 

conservative measure of the damage to a blast wall. 

The interval estimate []0, fP  comes from the 

classical, Fisherian statistics. If necessary, the sample y can 

be used to estimate Pf in a Bayesian format, namely, by a 

conservative percentile of a posterior distribution obtained 

by applying y [12-14]. 

The form of the sample y assumes that there are 

no uncertainties in the data yj. This assumption may not be 

correct in a number of cases. For example, if the blast 

wave characteristics are not directly recorded in experi-

ment but are obtained by means of a mathematical model-

ling, the elements of y can be uncertain (fuzzy). Uncertain-

ty in an individual element of y, say, the element j can be 

quantified by an epistemic probability distribution with the 

density fj(y) [33]. A one-dimensional visualisation of a 

crisp and uncertain data points yj and fj(y) is shown in 

Fig. 3. The interval estimation of Pf is possible also with 

the uncertain, as shown in the next section. 

 

4. Dealing with uncertainties in the mechanical model 

of sacrificial cladding 

 

In the case where the damage event(s) Di are 

backed by the model(s) mi, the fragility function Pf(y) can 

be expressed as: 

 0))),((()(  |yZy iif mPP  , (7) 

where Z is the vector of random input variables;  is the 

vector of parameters of the model of mi(). The random 

safety margin mi(Z, y | ) is a standard function of SRA, in 

which the vector Z and so the function mi express the sto-

chastic uncertainty (e.g., [34]). The uncertainty modelling 

prevailing in QRA requires to consider an epistemic uncer-

tainty related to the parameter vector  (e.g., [35]). This 

uncertainty can be expressed by a random vector Θ with a 

joint density (). One or more components of Θ can be 

used to express uncertainty in the accuracy of the model 

mi(). One can interpret the epistemic density () of the as 

a prior distribution which can be updated, at least in theo-

ry, given a new data. Then the posterior density will have 

the form ( | data). 

With the random parameter vector , the fragility 

function P(Di | y) becomes an epistemic random variable 

defined as: 

0)))|,((()()(  ΘyZ|yy
~

iiff mPPP  . (8) 

An illustration of the random fragility function 

)( y
~

fP  is shown in Fig. 2. This illustration assumes that 

the vector y has only one component, for instance, the 

positive overpressure of the reflected blast wave. 

The typical approach to dealing with epistemic 

uncertainties in fragility functions is establishing confi-

dence bounds around the point estimates of fragility curve 

or median fragilities (e.g., [31]). Most authors consider the 

confidence bounds the final result of analysis. However, a 

further propagation of the epistemic uncertainty quantified 

by  is necessary to estimate the failure probability Pf. In 

case where the explosion demand y is represented by the 

small-size sample y, the estimation of Pf can be expressed 

as an estimation of a mean of fragility function values with 

uncertain (fuzzy) data )( jfP y
~

 (j = 1, 2, … , n). Such data 

can be used for updating a Bayesian prior distribution ex-

pressing epistemic uncertainty in Pf [12]. However, if a 

development of a prior for Pf is problematic or there is no 

interest in the Bayesian estimation of Pf, the failure proba-

bility can be estimated by a Fisherian confidence interval 

computed by means of a simulation-based procedure ex-

plained in the remainder of the present section. 
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Fig. 4 The flowchart of estimating the failure probability of 

the sacrificial cladding, Pf 

 

An estimate of Pf can be obtained by computing 

estimates of the fragility function values )|( kjfP y  for all 

n elements jy  of the sample y and the values k of the 

parameter vector  generated from () or ( | data) 

(k = 1, 2, … , N). This will require to estimate the fragility 

function n  N times. The k-th loop of the estimation of Pf 

should start from sampling the value k (Fig. 4, block 1). 

For each k, the estimates jkp̂  of )|(f kjP y  should be 

computed for all elements of y and grouped into the sample 

} , ... 2, 1,   ,{ njp jkk  ˆp̂  (Fig. 4, block 2). An illustration 

of three elements of kp̂  is given in Fig. 2. The sample kp̂  

can be used to calculate a one-sided bootstrap confidence 

interval []0, kp  for Pf (Fig. 4, blocks 3 and 4, see also 

[11]). A repetition of this process N times will yield a sam-

ple consisting of N upper limits of the confidence interval, 

namely, { kp , k = 1, 2, … , N} (Fig. 4, block 5). This sam-

ple will express the epistemic uncertainty related to the 

upper limit of this interval (see the abscissa axis in Fig. 2). 

A conservative percentile of this sample, say, ([ 0.9] 1)Np    

can be used as the final result of the conservative estima-

tion of the failure probability Pf (Fig. 4, block 6). 

In the case of the uncertain data expressed by the 

densities fj(y), the procedure of the estimation of Pf can be 

applied in a similar way, with the difference that some 

number Nl of the samples yl = {y1l, y2l, … , yjl, … , ynl} will 
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have to be sampled from the distributions fj(y) 

(j = 1, 2, … , n). A one-dimensional illustration of the 

sample element yjl is given in Fig. 3. The procedure shown 

in Fig. 4 should be applied to each yl. A repetition of this 

process Nl times will yield a sample of confidence interval 

limits, { kp , k = 1, 2, … , N  Nl}. A percentile of this 

sample, say, 1)0.9]([  lNNp  may serve as a conservative 

estimate of Pf. Clearly, the estimates 1)0.9]([  lNNp  will 

tend to be more conservative than 1)0.9]([ Np , because the 

variability of the limits kp  will be larger in the former 

case than in the latter. 

 

5. Case study 

 

The estimation of the SC failure probability Pf 

will be illustrated for a blast wall intended to protect 

against a railway tank car explosion known as boiling-

liquid expanding vapour explosion BLEVE [36, 37]. The 

tank car is used for a transportation of liquefied propane. 

Mechanical effects of BLEVE occur as blast and projec-

tiles [2]. The present case study will consider the blast 

loading only whereas the protection against projectiles will 

be addressed in brief at the end of this section. 

The object to be protected by the blast wall is a 

diesel fuel tank (”target”) located 63 m form external rail-

way tracks (Figs. 5 and 6). The worst case scenario will be 

considered, according to which the angle of incidence of 

the blast wave will be equal to 90(Fig. 7). The fuel tank is 

surrounded by a protective embankment used to stabilise 

the blast wall. The wall is to be built from non-sacrificial 

posts and SC consisting of profiled steel sections (Fig. 8). 

 

 

Fig. 5 The areal view on the diesel fuel tanks exposed to 

the danger of a potential BLEVE on rail (authors’ 

photo) 

 

48.5

63

14.518

1
3

10.6

Target

Explosion centreA-A
see Fig. 7

-2.4
±0.0

Blast wall

The range of unsafe projectile trajectories

 

Fig. 6 The elevation of the accident situation (see Fig. 7) 

 

The elements yj = (y1j, y2j) of the sample y will 

consist of overpressure y1j and positive phase duration y2j 

of the reflected blast wave, respectively. Experiments 

which could yield y are very expensive. Therefore, y was 

obtained by calculation and not by a direct recording yj. 

The real-world statistical sample used in this case study 

was compiled from 30 data pairs (x1j, x2j), where x1j and x2j 

is weight and pressure of liquefied propane in the tank car 

j, respectively (Table 1, Cols. 2 and 3). The pairs (x1j, x2j) 

were used to calculate the mass of trinitrotoluene (TNT) 

which could cause an explosion with an energy equivalent 

to the energy of BLEVE (Table 1, Col. 4) [2]. The TNT 

mass and the explosion stand-off equal to 48.5 m were 

used to calculate y1j and y2j by applying a standard empiri-

cal model developed for TNT [38] (Table 1, Cols. 5 and 6). 
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Fig. 7 The plan of the potential accident site 
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Fig. 8 Details of the blast wall: (a) vertical section; (b) pro-

filed steel section; (c) view from the back showing a 

safety net; (d) plan 
 

Two random damage events D1 and D2 related to 

the maximum dynamic response of profiled sections and 

backed by the respective safety margins m1 and m2 ex-

pressed by Eqs. (3) will be considered. The fragility func-

tion Pf(y) will have the form )|( 21 yDDP  . The safety 

margins expressed as functions of random variables pre-

sent in the mechanical model of profiled sections have the 

form: 

11 )|()|,( ypm R  ΘZΘyZ ; (9a) 

)|,()|,()|,( ,,2 ΘyZΘyZΘyZ max dynplpl uum  ,(9b) 

where )  , , ,( 4321 ZZZZZ  and )  , ... , ,( 521 ΘΘΘΘ  are 

the vectors used to model aleatory and epistemic uncertain-

ties, respectively (Table 2); )(Rp , upl,max(·) and upl,dyn(·) 

are deterministic functions used to compute quantities giv-

en in Eqs. (3). 

Probability distributions of the components of Z 

and Θ were chosen partly on the basis of information on 

natural variability of the quantities used in the analysis and 

partly on the basis of subjective reasoning. Cross-sectional 

dimensions of profiled sections are considered to be fixed 

(deterministic) quantities (Fig. 8, b). 
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Table 1 

Characteristics of the reflected blast wave, y1j and y2j 
 

j x1j, kg x2j,kPa TNT, kg y1j, kPa y2j, ms 

1 2 3 4 5 6 

1 60939 2575 83.29 13.51 35.45 

2 57566 2462 90.30 14.04 35.69 

3 57419 2395 77.14 13.04 35.22 

4 59472 2602 99.41 14.69 35.97 

5 54108 2453 73.21 12.72 35.07 

6 56751 2312 66.63 12.18 34.80 

7 61307 2615 71.69 12.60 35.01 

8 59950 2264 89.97 14.01 35.67 

9 55176 2572 74.78 12.85 35.13 

10 58094 2531 73.30 12.73 35.07 

11 57839 2446 83.50 13.53 35.45 

12 58116 2270 52.10 13.42 35.40 

13 57777 2424 83.45 13.52 35.45 

14 60724 2457 79.33 13.21 35.30 

15 56333 2411 77.83 13.09 35.25 

16 55878 2193 71.71 12.60 35.01 

17 59339 1922 64.05 11.96 34.69 

18 52549 2301 64.18 11.97 34.70 

19 59697 2364 82.32 13.44 35.41 

20 59215 2406 74.52 12.83 35.12 

21 60088 2492 86.58 13.76 35.56 

22 55379 2581 78.12 13.11 35.26 

23 58567 2502 71.68 12.60 35.01 

24 53204 2613 73.93 12.78 35.10 

25 57594 2204 81.13 13.35 35.37 

26 58586 2355 70.36 12.49 34.95 

27 53499 2461 78.41 13.14 35.27 

28 51802 2508 79.44 13.22 35.31 

29 57106 2351 68.00 12.30 34.86 

30 55286 2471 83.16 13.50 35.44 

 

The probability distributions of the aleatory ran-

dom variables Z1 to Z3 can be easily specified from infor-

mation on random properties of steel structures (e.g., [39]). 

The natural period of elastic vibration, Z4, is considered to 

be an aleatory quantity because it can be measured experi-

mentally. We assumed the nominal value of this period, 

3.4 ms, given by Louca et al. [16] to be a mean value of a 

normal distribution of Z4. The probability distributions of 

the epistemic variables grouped into the vector Θ were 

used to express uncertainty related to parameters of the 

models pR(·), upl,max(·) and upl,dyn(·). These distributions 

quantify the doubts expressed by Louca et al. [16] and 

Juocevičius and Vaidogas [40] about quantities represented 

by Θ. 

The functions on the right-hand side of Eqs. (9) 

are based on a mechanical model of profiled sections pro-

posed by Louca et al. [16]. The dynamic pressure capacity 

is given by: 
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where lE(·) is the effective span; wel is the deterministic 

elastic section modulus depending on the cross-sectional 

dimensions; l is the cross-sectional width (Fig. 8, b). 

The maximum plastic dynamic deflection capaci-

ty is given by: 
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where μ(·) is the function used to compute the ductility 

ratio and given by: 
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where φ(·,·) is the function fitted to the graphs developed 

by in the book [27] and used for retrieving values of μ(·). 

The dynamic plastic deflection due to the blast 

load is computed using the following expression: 
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where δ(y2) is the dynamic loading factor computed by: 
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In the present case study, the ranges of the sample 

components y1j and y2j are [11.6 kPa, 14.4 kPa] and 

[23.0 ms, 25.8 ms], respectively. An illustration of the fra-

gility function )|( kfP y  estimated for one realisation k  

of  is shown in Fig. 9. 

Fig. 10 shows a histogram of the sample 

00}5 , ... 2, 1,   ,{ kpk  obtained by generating 500 values k 

and applying the procedure shown in Fig. 4 (N = 500). 

Exceeding the maximum dynamic plastic deflection (the 

event D2) was a dominating failure mode and this failure 

determined the confidence limits kp . The 90-th percentile 

of the above sample, 1)0.9]([ Np , is equal to 0.263. This 

value is a conservative estimate of the SC failure probabil-

ity Pf. It means that less than 26.3% of profiled sections 

will be destroyed (“sacrificied”) in case of an explosion. 

This percentage can be changed as needed by redesigning 

SC, say, choosing a different profiled section. 

A BLEVE produces high-energy projectiles generated by a 

rupture of tank car vessel [2]. It is highly probable that the 

blast wall under study will have to sustain an impact by 

some of them. Therefore, the height of the wall will be 

governed by unsafe trajectories of potential projectiles 

(Fig. 6). The profiled sections will not be able to stop larg-

er projectiles and, in our opinion, a safety net should be 

added behind the cladding (Fig. 8, c and d). The net can be 

designed to sustain not only primary projectiles from ves-

sel rupture but also profiled sections which will fail under 

blast loading and/or projectile impact. The space between 

cladding and safety net, δnet, should allow to reach the 

maximum dynamic plastic deflection of the profiled sec-

tions, upl,max (Fig. 8, d). As this deflection is a random 

quantity, the value of δnet can be chosen by reducing the 

probability ))|,(( , maxpluP ΘyZmax  to some small and 

tolerable value. 



64 

Table 2 

Aleatory and epistemic random variables used in the analysis of the blast wall shown in Fig. 8 
 

Description and notation 

(notation used this study  notation from the original text by Louca et al. [16]) 

Mean/coeff. 

of variation 
Probability distribution 

Aleatory random quantities (components of Z) 

Span (spacing of posts) Z1  L (m) (see Fig. 8d) 2.0/0.005* Lognormal 

Static yield strength of profiled section steel, Z2  py (MPa) 554/0.11* Lognormal 

Modulus of elasticity of profiled section steel, Z3  E (GPa) 200/0.06* Normal 

Natural period of elastic vibration of profiled sections, Z4  T (ms) 3.4/0.05 Normal 

Epistemic random quantities (components of ) 

Enhancement factor for steel strength, 1  ; the uncertainty in 1 was modelled by the ex-

pression 1 + Δ** (Δ = 0.12) 
1.012/0.011 Beta,  ~ Be(1, 9) 

The factor of uncertainty related to the model of ductility ratio μ, 2 1/0.04 Normal N(1, 0.04) 

Reduction factor for stiffness of profiled sheet, 3  fK; the uncertainty in 3 was modelled by 

the expression 1 – Δ*** (Δ = 0.3); the mode of 3 is equal to 0.85 
0.85/0.05 Beta,  ~ Be(6, 6) 

Reduction factor for transverse stress effect, 4   fC 0.99/0.085 Beta Be(70, 1) 

Reduction factor for flattering of cross-section, 5  fF; the uncertainty in 5 was modelled by 

the expression 1 – Δ*** (Δ = 0.2); the mode of 5 is equal to 0.952 
0.933/0.0382 Beta,  ~ Be(2, 4) 

* Spaethe [39]; ** This linear transformation is used to obtain a Beta distribution defined on the interval ]1, 1.12[ which covers potential 

values of the strength enhancement factor [40]; *** This linear transformation is used to obtain a Beta distribution defined on the inter-

val [Δ, 1] 
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Fig. 10 Histogram of the sample 00}5 , ... 2, 1,   ,{ kpk  

 

The horizontal cables of the net can span over 

several posts. Cable ends can be anchored in rigid towers 

distributed along the barrier (Fig. 7). Additional anchors 

can be added where the cables cross the posts (Fig. 8, d). 

This will add extra stability to the posts and so the clad-

ding. However, a detailed design of safety net, posts, and 

towers was beyond the scope of this case study. 

 

5. Conclusions 

 

The design of SC for blast walls deployed as pro-

tection against accidental explosions has been considered. 

Such a design may face considerable uncertainties related 

to potential blast loading. The behaviour of SC compo-

nents subjected to blast loading may also be uncertain to a 

large degree. A consistent quantification and propagation 

of these uncertainties is possible by combining methods of 

structural reliability analysis and quantitative risk assess-

ment. An application of these methods to an analysis of SC 

components can yield an estimate of probability of their 

failure under blast loading. This probability can be used as 

a measure of explosive damage to SC provided that the SC 

consists of nominally identical components. A component 

failure probability will be proportional to the relative num-

ber of the components which may fail (be “sacrificed”) in 

case of an explosion. 

An estimation of the SC failure probability will 

require to specify a probabilistic model of blast wave char-

acteristics. Such model can be difficult to obtain as post-

mortem data on accidental explosions are rarely available 

in the amount allowing to compile a statistical sample for 

fitting the model. However, the SC failure probability can 

be estimated without such model. A sample of blast load-

ing characteristics recorded in experiment or estimated by 

explosion simulation can be directly applied to the proba-

bility estimation. The size of this sample can be small from 

the standpoint of the classical statistics. Such estimation 

can be carried out by a simulation-based propagation of 

stochastic and epistemic uncertainties through a fragility 

function developed for an SC component. The estimate 

will have the form of a one-sided confidence interval of the 

failure probability. The upper limit of this interval can be 

used for making decisions concerning the degree of the 

damage to SC which may be caused by an explosion. 
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L. Linkutė, V. Juocevičius, E. R. Vaidogas 

 

SUNAIKINAMOJO SPROGIMO BARJERO APDARO 

PROJEKTAVIMAS NAUDOJANT RIBOTĄ 

STATISTINĘ INFORMACIJĄ APIE SPROGIMO 

APKROVĄ 

 

R e z i u m ė 

 

Nagrinėjamas sunaikinamojo apdaro, kuris yra 

sprogimo barjero dalis, projektavimas. Apdarui projektuoti 

naudojami konstrukcijų patikimumo teorijos ir kiekybinio 

rizikos vertinimo metodai. Pagrindinė šio projektavimo 

idėja – apdaro pažeidimo laipsnį išreikšti jo elementų atsa-

ko tikimybe. Ja gali būti vertinama sprogimo sunaikintų 

apdaro elementų dalis. Apdaro elementų atsako tikimybė 

yra vertinama kiekybiškai išreiškiant ir transformuojant 

neapibrėžtumus, susijusius su mechaniniu apdaro elementų 

modeliu ir statistinės sprogimo apkrovos charakteristikų 

imties elementais. Parodyta, kaip vertinti apdaro elementų 

atsako tikimybę, kai tos imties dydis klasikinės statistikos 

požiūriu yra mažas. Siūloma apdaro elementų atsako tiki-

mybės vertinimo procedūra iliustruojama pavyzdžiu, kaip 

projektuoti sprogimo barjero, skirto kuro talpyklai apsau-

goti nuo avarinio geležinkelio cisternos sprogimo, sunaiki-

namąjį apdarą. 

 

 

L. Linkutė, V. Juocevičius, E. R. Vaidogas 

 

A PROBABILISTIC DESIGN OF SACRIFICIAL 

CLADDING FOR A BLAST WALL USING LIMITED 

STATISTICAL INFORMATION ON BLAST LOADING 

 

S u m m a r y 

 

A design of sacrificial cladding for a blast wall is 

considered. Methods of structural reliability analysis and 

quantitative risk assessment are applied to the design. The 

basic idea of this design is to apply a probability of failure 

of cladding components as a criterion of damage to the 

cladding. This probability is used as an estimate of the 

proportion of cladding components destroyed by an explo-

sion. The cladding failure probability is estimated by quan-

tifying and propagating uncertainties related to a mechani-

cal model of cladding and elements of the statistical sam-

ple containing records of blast loading. It is demonstrated 

how to estimate the cladding failure probability when the 

size of this sample is small from the standpoint of classical 

statistics. The proposed procedure of the cladding failure 

probability estimation is illustrated by means of a case 

study. The case study considers a design of cladding for a 

blast wall to be deployed for a protection of a fuel tank 

against an explosion of a railroad tank car. 

 

Keywords: blast wall, explosion, blast loading, sacrificial 

cladding, small-size sample. 
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