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1. Introduction

Among different computational subjects, compu-
tational mechanics has probably the longest history of suc-
cessful development, with its methods having the greatest
number of applications. Traditionally, efforts were mainly
directed towards macroscopic simulations of various con-
tinua and engineering structures.

The progress in computational technologies
shifted the efforts towards considering the inside of the
material structure on smaller scales. The development of
an appropriate numerical research tools for predicting the
constitutive behaviour of microstructure is one of the ma-
jor problems of computational mechanics today. In gen-
eral, the macroscopic behaviour of continuum is prede-
fined by the structure of grains of various size and shape,
or even by individual molecules or atoms. According to the
current state of the art, the Discrete Element Method
(DEM) is an attractive technique to be applied to model-
ling of materials at the microscopic level. Here, the term
discrete element is considered as synonymous to material
particle.

The numerical analysis of any system is per-
formed in the restricted space and is affected by interaction
with neighbouring systems. Therefore, the setting up of
boundary conditions (BC) is a very important component
of mathematical model. The most common types of
boundary conditions applied in the framework of DEM
simulations are stationary rigid or deformable boundaries.
Specification of particular BC concerns various technical
details of describing particle-boundary interaction.

Since the appearance of the pioneering work of
Cundal and Strack [1] the developments in DEM have
been focused on computation models and procedures, basi-
cally for modelling and validation of inter-particle contact
dynamics, while, investigation of the boundary contacts
have received rather limited attention. The earlier study of
boundary condition as an interface of granular liquid is
given by Allen and Tildesly [2]. The brief reviews of the
DEM boundary conditions are also presented by Dziugys
and Peters [3] and by Kremmer and Favier [4, 5].

The earliest development, associated with normal
linear and nonlinear contacts is given by Allen and Tilde-
sly [2], Briliantov at al. [6] and Dziugys [3], while a recent
review of normal contact is given by Kruggel-Emden at al.
[7]. Impact behaviour of elastic and elastoplastic spheres
has been considered by Wu at al. [8], and inter-particle
contact of cohesive powders was studied by Tykhoniuk at
al.[9].

The paper addresses the influence of deform-
ability of boundary defined by the variable of particle ra-
dius and elasticity modulus. It is organized as follows. The

problem of normal particle-boundary contact problem is
described in section 2. Equations of motion are presented
in section 3. Analytical solution of the linear model is
given in section 4, while numerical integration is presented
in section 5. Numerical results of the investigation of the
Hertz model are presented in section 5, while the conclu-
sions are given in section 6.

2. Particle-boundary contact

The normal noncohesive contact of the elastic
spherical particle with the deformable boundary is treated
in the conventional manner explored in the DEM. The
elastic boundary is also considered as a rigidly fixed
spherical particle of variable radius and elasticity modulus.

The normal contact behaviour of a particle with
the deformable boundary is investigated by considering a
mobile particle bouncing on a horizontal boundary under
the influence of gravity. The mobile particle is denoted
hereafter by subscript m, while the rigidly fixed boundary
particle is denoted by subscript b. Geometry of the moving
particle is defined by constant radius R,, = const, while
geometry of the boundary particle is defined by variable
radius.

Hereafter, the boundary properties are mapped
into one-dimensional space of the boundary particle radius
measured by relative radius of contacting particles
r=R,/R, (0.5<r<). Here, the lower bound is simply

restricted by the value r=0.5, while the upper bound
r=oo presents the half-space in the limit.

The material properties of the particles are as-
sumed to be elastic and defined by Young‘s modulus £ and
Poisson’s ratio v, while density is p. Referring to the above
notations, the particles are characterised by E, and E,,

respectively. Assuming E,, =const, the variation of the

boundary elasticity properties is characterised by the di-
mensionless parameter ¢ =E,/E, , where (1<¢ <o).

The limit case ¢ = o presents a rigid boundary.

In order to characterize the influence of boundary
properties, a series of time histories of the particle bounc-
ing on a deformable boundary will be considered. The
study is conducted as follows. The mobile particle is ini-
tially located above the boundary with the height H,. It is
subjected to gravitational acceleration g pointing in the
negative direction x and the initial velocity v, , if required.

The geometric illustration of the above approach
is given in Fig. 1, a, while particular models of the bound-
ary particle are presented in Figs. 1, b-f. Here, the focus is
on illustrating the typical boundary models characterized
by 0.5<r<l1,r=1 and r>1 (Fig. 1,b-d), and limit
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Fig. 1 Illustration of modelling concept (a) and particular
boundary models (b-f)
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Fig. 2 Characteristic positions of the particles during elas-
tic contact: a - initial state at ¢ =¢,, b - initial state

of collision at r=¢,,

overlap 4,,) at t= byp s d-rebound ¢=¢.,

c - state of rest (maximum
e - state

of maximal rebound height =1,

cases of elastic and rigid half-space (Fig. 1, e-f).

The illustration of the positions of bouncing parti-
cle in time is presented in Fig. 2. When neglecting dissipa-
tion, the particle will bounce forever with a constant
bouncing period 7.

The initial location H, indicates the distance of
the free path between the surfaces of contacting particles.
In the case of zero initial velocity v, =0 and initial accel-

eration a,= -g, the initial point corresponds to the highest

position of the mobile particle. Let us restrict ourselves to
considering of the single bouncing period 7. A schematic
illustration of time histories is given in Fig. 3.

Starting from the initial configuration defined at
time instance ¢ =¢, (Fig. 2, a), the particle with constant

negative acceleration g =9.81m/s” freely moves towards

the boundary. At time instance ¢ =¢,., the particle having

the velocity U(lc)= v, collides with the boundary (Fig. 2,

b). Due to the accumulated energy, the particle penetrates
the boundary. It is a conventional assumption that the ac-
tual deformation of the colliding particles is replaced by
their overlap 4.

During the contact, the negative velocity of parti-
cle reaches the maximum, while the acceleration vector
changes direction.
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Fig. 3 Schematic time histories of a bouncing particle:
a - positions, b - velocities, ¢ - accelerations;
1 - elastic contact; 2 - hard contact

At certain time instance ¢,,, the mobile particle

reaches the state of rest characterized by zero velocity
U(tmp):O and the maximum overlap h(tm) h,,. and

maximum acceleration a(tmp)=amm. After reaching the

maximal overlap, the mobile particle starts to move up. At
certain time instance ¢ =¢, (Fig. 2, d), the overlap is di-

minished to zero A(¢,) = 0 and, because of the missing of
cohesive forces, the particles begins to separate with re-
bound the velocity U(tr):Ur' Finally, at time instance

t=1

,»» the bounced particle reaches the initial position

with velocity U(l‘tp)= 0.

Thus, the free path of the mobile particle before
contact is characterized by the time period 7, =1, —1t,,

while the elastic contact lasts for the time period



T. =t —t, . Finally, by taking into account the equality of
falling and rising periods 7, =T, the total period of
bouncing is 7 =27, +7T, .

For the sake of comparison the behaviour of the
particle in the limit case of rigid boundary is also illus-
trated by two dashed lines in Fig. 3. Here, the duration of
contact reduces to zero T, =0, thus ¢, =¢,, while the total
bouncing period is 7' =27, . The above simplification used
in the event-driven DEM approach yields discontinuous
velocity defined as o(r,) and undefined value of accelera-
tional(t, ).

The details of the time history are clearly depicted
in Fig. 3, while comprehensive discussion on the normal

inter-particle contact model may be found in the book of
Poschel and Schwager [10].

3. Equation of the mobile particle

One-dimensional motion of the bouncing particle
b defined by position x(¢) is described by a classical equa-

tion of the second Newton’s law. Denoting acceleration as
a(t) = jé(t), it reads

m,i(t)=F,(t) (1)
where particle mass is

- zgﬂpze; b))

The particle load F,, comprises the gravity force
and the elastic contact force. After introducing Boolean
variable . = f3,(t), where B, =0 for free particle path
and S, =1 for the particle-boundary contact, the loading
time history may be presented as follows

Elz (t) = _mmg - ﬂcF;n,cam‘ (t) (3)

The generalised elastic contact force may be writ-
ten in terms of the overlap 4

Fm,cont (t) = Eeﬁ"Rszl‘;uhu (t) (4)

where power parameter o« =1.0 describes the linear con-
tact model, while a =1.5 is used for the nonlinear Hertz
contact model. The effective inter-particle radius and elas-
ticity modulus are as follows

R,R,

m

R . =
7R +R,

)

s 4 E,E,
T3 E,1-v2 )+ E(1-v?)

(6)

Taking into account the dimensionless notations » and ¢
the effective parameters may be expressed in terms of pa-
rameters of the mobile particle. The effective radius is

- 2, ™

r+1

eff

Assuming equal Poisson’s ratios v=v,=v,, the

effective elasticity modulus may be expressed as

CE

E (1+¢) 1m— V2

4
=3 (3)

eff

By substituting (3)-(8), the equation of particle
motion (1) may be rewritten as follows

o)+ Bp*x* =g 9

here, the parameter is

/E R:“

off ~telf

p= L
m

After simple rearrangement of Eq. (10), we get

(10)

p=pcR, (11)
where
c= |En (12)
P

is the material constant. The non-dimensional parameter is

]_7: lg(’?);a (13)
T {l—-v
where
- r = ¢
r_r+l’§_§'+l (14)

The contact equation contains the parameters of
contacting particles. The initial conditions defined at the
initial time # =0 contain initial position H, and velocity

Y
x|x:o =H,
x|z=o =0,
Since Eq. (9) contains a discontinuous term, the

additional continuity conditions have to be imposed on the
velocities at contact and rebound instances ¢, and ¢, re-

(15)

spectively

(16)




In the case of the instantaneous rigid contact, oc-
curring at time instance z, = ¢,, the discontinuity condition
reads as

.+
X =

= —x| (17)

e

The above defined relationships (15)-(16) yield
some additional conditions required for proper tracking of
the particle motion.

4. Solution technique

4.1. Numerical time integration scheme

The dynamic state of the mobile particle is deter-
mined by numerical integration of Eq. (9) with initial and
continuity conditions (15)-(16). Generally, in the presence
of the nonlinear terms, the problem must be solved nu-
merically. Reviews and comprehensive discussions on in-
tegration methods applied in DEM simulations may be
found in the works [2, 3, 11]. In order to find a reasonable
compromise between accuracy and computational effi-
ciency, explicit one-step or predictor—corrector integration
schemes prevail. Generally, it was observed that higher
order schemes exhibited higher accuracy. In the latest in-
vestigations Roughier [11] revealed, however, a tendency
of higher-order schemes to be more sensitive to instabili-
ties, though not necessarily computationally efficient. On
the basis of numerical experience, the 5th — order Gear
predictor-corrector scheme [2] was employed in n numeri-
cal simulations.

This predictor-corrector scheme represents a two-
step procedure. Let us denote the time-dependent variables,
positions  x(f), velocities v(t) =dx/dt, accelerations

a(t) = d’x/df* as well as the higher-order time derivatives
bs(t) = d’x/dt’, by(t) = d'x/df* and bs(f) = d°x/df’ of the par-
ticle by vector y = {Jc,\),cz,b3,194,195 }T. The new value vari-

ables at time increment t+4¢ are predicted by a simple se-
ries expansion up to a desired order of accuracy

y (e + At) = y(e)+ ay”( A) (18)

Here, the incremental vector Ay”( At) presents

the required terms of the expansion series. Then, according
to the new positions and velocities, the particle forces and
accelerations are corrected and acceleration increment Aa
is updated. Finally, the vector of particle variables is cor-
rected as follows

ye(e+At)=y2 (e + A)+ Ay"(cj,At, Aa) (19)

Here, the correction vector Ay” is calculated by

using the given integration constants c;.
A detailed description of DEM technique applied
may also be found in Balevicius at al. [12].

4.2. Validation test

The performance of the explicit integration
scheme (18)-(19) and the choice of the time increment At

have to be validated. The most common way to validate
numerical tool is to compare integration results with ana-
Iytical solution. In the considered problem, defined by
Eq. (9), only the free particle path, when . =0, and a
linear case of contact model when S.=1.0 and a= 1.0,
may be solved analytically, respectively.

Generally, a path of the bouncing particle presents
a periodic function with the period T, applied by the inte-
ger number n (n =1, 2, 3,...) of periods, or simply of con-
tacts. Logically, the particle motion may be characterized
by its time intervals ¢ ¥, ¢**  ¢***,

The first time interval of the free-falling particle
t* is defined by a half of the free-path period

0<t < O.ST ;- The time interval of the elastic contact

PE* may be defined as
(n—=0.5)T, +(n—1)1, <t**<(n—0.5)T, +nT,, while time
interval between contacts ¢*** is defined as
(n—=0.5)T, +nT, <t***<(n+0.5)T, +nT, .

Tracing of bouncing particle comprises time-
histories of positions x(t), velocities x(f) and accelera-

tions x(t) The explicit solution of the Eq. (9) for the free

path of the particle [3, 12-14] and for linear contact model
[3, 12-14] may be defined as follows. It reads for positions
as

x(¢*)=H, - 0.5g¢> (a)
x(e**)= p~* (v psin(pt)+ glcos(pt)-1)) (b) (20)
x(e**%) = —v.r —0.5g1> (©)

for velocities as

x(t*)=—gt (a)
(e **) = v, cos(pt) - gsin(pt) (b) (21)
p
(e % %)= v, — gt ()
and for accelerations as
ie*)=-g (@)
M(r*¥)=—g - (ﬁzcsz*l*" )x(t) (b) (22)
i(e***)=—g (©)

A detailed description of the particle motion may
be made in explicably in terms of characteristic parame-
ters, which may be exposed in tests.

On the basis of the free motion solutions (20, a-
21, a), the free motion period is

T, =2H,g" (23)

while collision velocity is expressed as

v, =—\2H,g (24)

On the basis of the contact motion solutions (20-



22,b) the main contact parameters 7., A
are extended. When x(tmu): h

max >

v, and a,,,

the following maximum
acceleration from (22, b)

Qe = NP’ — 8 (25)

By considering maximum overlap conditions
x(t,,)=0, the contact period may be obtained from

mo

(21,b) as

T.=2p 'arctan (z’) (26)
where
r=l|pg”

It should be noted, that, under appropriate condi-

tions,  when r>1.0, ¢>1.0 and Hy>R,,

arctan(t)= 7 /2 .

A formula for the contact period can also be
found in Dziugys at al. [3]. For practical purposes explicit
expressions are given in terms of stiffness and mass. In this
case the formula (26) for the above contact period is closed
to a popular simplified expression, see [3]

I=m" 27)

In time ¢, , the penetration is maximum. By sub-

stituting (26) in to (20, b) maximum overlap value can be
calculated as follows

22 2
Jo. pt g+
h NO P 78 TE (28)

max 2

p

A formula for maximum overlap can also be
found in Dziugys at al. [3]

Py =P (29)
Following the existing practice, the time integra-
tion step has to be a fraction of the contact period

At =nT, , where scaling factor # varies usually in the range

of 1/10 and 1/50. It is well known that the investigation of
hard particles requires the application of a smaller integra-
tion step. Therefore, relatively hard boundary particles
defined by » = 100 and by {= 100 were employed for vali-

dation. The mobile particle with ¢*=1-10" and v=0.3
was chosen. Other data were chosen as follows:
R,=05mm, H,=5R,, v,=0. The collision velocity

obtained according to (21) is p, = -0.313 m/s. The contact

parameters A, a,, and v, as well as the rebound time

t., were considered as quality indicators after the second
contact.

Two values of #; and #, were examined in order
to validate the numerical integration scheme by tracking
the complete particle path up to the second (n=2) re-
bound. For the linear model, the contact period obtained by
expressions (26) yield 7,; =848.3ns. Thus, assuming

7 =1/10 and 5, =1/50 we get the values of integration
steps 4t; = 85ns and 4t, = 1.7 ns.

The numerical results obtained for the linear
model based on different time At and A4¢, steps along

with analytical solution and percentage differences 0, and
0, are presented in Table 1.

For the nonlinear model, the contact period is de-
scribed, by these expressions (Brilliantov at. al.) [6]

2/5
m_, _
T :2.94(%j (0) " (30)
where
2
K= 42 Ry A:M (31, a)
534 E,(E, +6E,)
E
E=tn . p =2 (31,b)
1+v 1+v

The contact period obtained by (30) yields
T,y =429ps. Thus, assuming the same fractions
7y =1/10 and 7, = 1/50, we get two values of integration
steps At; = 0.429 ps and Az, = 85 ns. The numerical results
for the non-linear Hertz model and percentage difference
are presented in Table 2.

Table 1
The results of validation test for linear model
t, hmaxa [ v,
ms nm nm/ms> m/s
At 96.59 -86.4 118.6 0.319
At 96.0 -85.0 116.6 0.315
Analyt. 95.8 -84.6 116 0.313
o % 0.825 2.1 2.24 1.84
0, % 0.209 0.473 0.517 0.562
Table 2
The results of validation test for Hertz model
t, hmax: Ao s L.,
ms nm nm/ms’ m/s
At 96.45 -532 239 0.316
At 95.8 -524 234 0.313
o % 0.678 1.53 214 0.958

The numbers given in Table 1 show that minimal
time step 4¢, leading up to 2% errors may be insufficient

for long particle path. The numbers in Table 2 obtained by
nonlinear model illustrate the same tendency. Finally, con-
tact time step fraction 7, = 1/50 will be further applied in
numerical solutions.

5. Simulation results

The above-mentioned bouncing particle model
(9)-(14) was explored for the simulation of normal parti-
cle-boundary contact in order to determine the influence of
the boundary properties. Analytical expressions (20)-(29)



were used for the solution of the linear model, while the
numerical 5th — order Gear predictor-corrector time inte-
gration scheme (18)-(19) was used for the solution of
nonlinear Hertz contact model.

The simulation of contact was performed by using
previously defined data, while the relative radius » and
elasticity modulus ¢ are retained as modelling variables.

Simulation results in the form of time histories of
overlap / are plotted in Fig. 4. The overlap displacements
are normalised and presented by dimensionless variables as
h * (t): h/hNLimax :

The value scaling parameters Ay, ,,,, =0.521 pm
and 7, ,, =4.896 us respond to the stiffest case of Hertz

contact, yielding 7,*=1.0 and A*(¢)=1.0. This case is

manifested as numerically achievable limit indicating rigid
boundary.

H(1)
4./2,/
o7

Fig. 4 Time histories of overlap displacement: a - r, =1.0;
b-r=10;c- =100

Here, Fig. 4 present the results for different values
of relation radii defined by  =1.0, », =10 and » =100
respectively. Each figure contains the results of linear as
well as nonlinear models, while each of the four curves 1,
2, 3 and 4 represents the results for various elasticity
modulus of boundary particle, ie. ¢, =1.0, ¢,=10,

¢, =100 and ¢, =1000 respectively.

It would be of interest to note that the limit over-
lap displacement #,, indicates 0.104% overlap for

_max

mobile particle and 0.104-10°% overlap for boundary par-
ticle, which really proves the assumption of the rigid
boundary.

Convergence of inter-particle contact behaviour to
particle-plane, or half-space behaviour may be better ex-
plained by considering variation of the relative maximum
overlap h, *=h, / hy ... and scaled by the previously

defined parameter h,, . Variation of h,, *(r) against the

relative inter-particle radius r is plotted in Fig. 5. Here,
each of the four curves 1, 2, 3 and 4 represents the results
for various relative elasticity module of boundary particle,
ie. §,=10, &,=10, £;=100 and &, =1000 respec-
tively.

Variation of 4, * (cf ) against the relative elastic-
ity modulus is plotted in Fig. 6. Here, each of the four
curves 1, 2, 3 and 4 represents the results for various rela-
tive radii of boundary particle, i.e. =05, r=1.0,

r, =10, r, =100 and r; =1000 respectively.
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Fig. 5 Variation of overlap displacement against inter- par-
ticle radius: a - linear model, b - Hertz model

It was clearly observed that stiffening of the
boundary by increasing both radii or elasticity modulus of
the boundary particle has stabilisation tendency for overlap
displacement. This tendency is also held for other contact
parameters, including contact period 7., maximum accel-
eration a,, and rebound velocity v, . Variation of contact

period T,*=T, / T. yp > duration against the particle elastic-

ity modulus for the case of linear model is presented in
Fig. 7 as an illustration by Hertz model.

From the above graphs it can be easily observed
when increasing » and ¢, the relative value diminishes
and approaches a negligibly small value in the limit. This
may be explained as the convergence of the value to a rigid
boundary. Convergence rate would be better illustrated
quantitavely by introducing new relative variables, playing
the role of the error indicators.



1.0 20 40 60 80 < 100
1.0 . ! ‘ . )

] 1 ™2 ™3
-1.14
121 4
-1.3 3
-1.44

7 ES
-1.5- hmax(‘g)

a

1.0 20 40 60 80 ¢ 100

—O.IJ I I 1 I

1 2 3

e

i

-0.35/
b

Fig. 6 Variation of overlap displacement against the parti-
cle elasticity modulus: a - linear model, b - Hertz
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Fig. 7 Variation of contact period displacement against the
particle: a - elasticity modulus and b - radius in
Hertz model

Variations of the inter-particle displacement
curves depicted in Fig. 6 against elasticity modulus are
checked by indicator (32, a), while the results of this rate
transformation are plotted in Fig. 8, a. Variation of theo-
retical indicator (33, a) is also presented for the sake of

comparison. The results show that all curves independently
of both linear and Hertz contact models are transformed to
a single curve. The curve illustrates that the variation of
indicator in the range from 10 to 100 yields the difference
4.829% in linear model and 3.845% in Hertz model, while
the variation of indicator in the range from 100 to 1000
decreases only up to the difference of 0.4485% (linear) and
0.359% (Hertz). On the base of the above indication it is
easy to conclude that relative elasticity modulus of the
boundary ¢ = 100 may be considered as a limit value ap-

plicable for practical DEM simulation purposes. Conver-
gence of the linear as well as Hertz contact models with

respect to increased elasticity modulus of the boundary is
1/2

of the type '~

3.04
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Fig. 8 Variation of contact period indicator against the par-
ticle: a - elasticity modulus and b - radius. / - Hertz
numerical; 2 - Hertz theoretical; 3 - linear numeri-
cal; 4 - linear theoretical

Extending simulation range to r,, =1000 and
¢ e =1000, the rate indicators are defined as

AY,,,(&)=100(h(&) = H(E )/ 1 ) (32, )

A T"Hm (r) = loo(h (r) - h(rm(lx ))/ h(rth\’ ) (327 b)

Additionally, two theoretical indicators in nonlin-
ear model are expressed in the following way

4 SUth (é/) = looétmaxl/z (E e - _max_l/2 )

(a-2)/2 ) (33, b)

(33, a)

max

4, (”) = 100}7max(2_”’)/2 (,7(0!—2)/2 _5
are introduced. Where

47 é/max . T nax
max

ax ’ Fmar_
Come +1 r..+1

max




Variations of all curves depicted in Fig. 5 against
particle radius are checked by indicator (32, b), while the
results of this rate transformation are plotted in Fig. 8, b in
the above manner. Variations of theoretical indicator
(33,b) 4¥, (r) and 4¥, (rz'“) responding to two differ-
ent values of o are also added. The results show that all
curves of linear and Hertz contact models are transformed
to two curves. The curve of Hertz model illustrates that the
variation of indicator in the range from 10 to 100 yields
1.904% difference, while the variation of indicator in the
range from 100 to 1000 decreases only up to 0.179% dif-
ference.

The indicator of the linear model is actually the
same as in previous case. On the basis of the above indica-
tion, it can be concluded that, in spite of the slight differ-
ence observed in contact model, relative radius of the
boundary particle » =100 may be considered as a limit
value. Convergence of contact models with respect to the
increased radius is of the type 7“2 .
6. Conclusions

The performed investigation of boundary particles
may be generalised in the following manner. It was found,
that basic particle contact parameters, such as contact dura-
tion, maximum overlap, maximum acceleration and re-
bound velocity, converges to the appropriate limits with
respect to the increased elasticity modulus and particle
radius of the boundary. Convergence of all parameters with
respect to the increased relative elasticity modulus ¢ of

(¢ +1)/¢ , while conver-

gence with respect to the relative boundary radius  of the
particle is predefined by model dependent power factor a

((7+1)/7)~* . For practical DEM

simulation purposes, the above limits may be defined by
the values ¢ =100 and » =100. The recommendations

the boundary is of the type

and is of the type

provided could be useful for the simulation of the bound-
ary particles applied in the DEM simulations.
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R. JaseviCius, R. Kacianauskas

DEFORMUOJAMO KONTURO MODELIAVIMAS
SFERINE DALELE, ESANT NORMALINIAM
KONTAKTUI

Reziumé

Straipsnyje diskreciyjuy elementy metodu (DEM)
nagrinéjamas tamprios sferinés dalelés normalinis kontak-
tas su deformuojamu pagrindu. Nustatyto spindulio dalelé
juda veikiama sunkio jégos. Deformuojamas kontiiras nag-
rinéjamas kaip itvirtinta kintamo tamprumo modulio ir
kintamo spindulio sferiné dalelé. Ribinis atvejis — kai pa-
grindo spindulys artéja | begalybg ir atspindi tampryji pu-
serdvi, o didinant tamprumo moduli pagrindas atitinka
kietaja dalele. Tiesinis modelis ir netiesinis Herco kontakto
modelis, taikant diskretiniy elementy metoda, tiriami skai-
tiskai, naudojantis 5-osios tikslumo eilés prediktoriaus-
korektoriaus Giro integravimo schema. Skaitinio modelio
tiesinis atvejis testuojamas lyginant su analitiniu sprendi-
niu. Nagrinéjama dalelés padétis, greitis ir pagreitis. Re-
miantis modeliavimo rezultatais nustatytos pagrindo dale-
1és ribinés reik§més ir pateiktos rekomendacijos dél defor-
muojamojo kontiiro rodikliy pasirinkimo modeliuojant
DEM.
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MODELING DEFORMABLE BOUNDARY BY
SPHERICAL PARTICLE FOR NORMAL CONTACT

Summary

The normal contact of the elastic spherical parti-
cle with deformable boundary is investigated in terms of
the Discrete Element Method (DEM). The particle of the
prescribed radius is moving under gravity and the initial
velocity. The deformable boundary is treated as rigidly
fixed spherical particle with variable elasticity modulus
and variable radius. The limit case, approaching the infi-
nite radius presents an elastic half-space, while increasing
of the elasticity modulus presents the rigid boundary, re-
spectively.

The linear model and the nonlinear Hertz contact
model used in the discrete element method are investigated
numerically by applying the 5th-order Gear’s predictor-
corrector integration scheme. The numerical model is
tested by comparing it with analytical solution. The time
variations of the particle positions, velocities and accelera-
tions are presented. On the basis of simulation results the
limit values of the boundary particle parameters are evalu-
ated and recommendations for the boundary particle pa-
rameters required in DEM simulation are drown.
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MOJEJINPOBAHUME I[E@OPMHPYEMOﬁ I'PAHUIIBI
COEPNYMCKOU YACTULEU ITPU HOPMAJIBHOM
KOHTAKTE

Pes3omMme

B pamkax MeToma IUCKPETHBIX JJIEMEHTOB B
(MD) paccmarpuBaeTcsi ynpyruii HOpMalbHBIH KOHTaKT
ceprueckoii yactTuus! ¢ geopmupyeMoii rpanumen. Yac-
THUIIa TIPEANHCAHHOTO Paguyca MepeMeIaeTcs Mo AeicT-
BHEM TPaBUTAIMOHHOW cHibl. [ledopmupytomias rpaHuIia
paccMaTpuBaeTcsl Kak cTalMoHapHas cepryecKas 4acTH-
I[a C HEPEeMEHHbIM MOJYJEM YNPYrOCTH U MEPEMEHHBIM
paguycom. [Ipubmmkenue paguyca yacTHIBI K O€CKOHEU-
HOCTH IPECTaBISIET NpeAeNbHbIN Cllydail yIpyroro mnoiy-
MIPOCTPAHCTBA, a MPUOIMKEHUE MOAYJISl YIPYToCTH K Oec-
KOHEUHOCTH — JKECTKYIO TpaHully. JIuHelHast U HelTuHen-
Has Mmogens I'epma, mcnonssyemas MJID, npumensercs
JUIsL MOJETUPOBAHUSI HOPMAIBHOIO KOHTAKTa. 3ajada KOH-
TaKTa peIIeHa YUCIEHHO, IPUMEHSS U1 UHTErPUPOBAHUS
YpaBHEHMH IBMKEHUS cxemy S5-ro psna I'mpa. YucneHHo
WCCIIEOBAHbI MOJ0KEHUS CKOPOCTH W YCKOPEHHS YacTH-
sl Ha ocHOBe pe3ynpTaToB MOZIEIMPOBAHUS HCCIEIOBA-
HBI TIpe/ieNIbHBIE NTapaMeTPhbl IPaHUIBI U MIPEJIOAKEHBI pe-
KOMEH/IAIlU!1 110 BBIOOPY pallMOHAIBHBIX I1apaMeTpoB Ipa-
HUYHOM YaCTHUIIBI [UTsI MoenupoBanust M/ID.
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