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1. Introduction 
 

Among different computational subjects, compu-
tational mechanics has probably the longest history of suc-
cessful development, with its methods having the greatest 
number of applications. Traditionally, efforts were mainly 
directed towards macroscopic simulations of various con-
tinua and engineering structures.  

The progress in computational technologies 
shifted the efforts towards considering the inside of the 
material structure on smaller scales. The development of 
an appropriate numerical research tools for predicting the 
constitutive behaviour of microstructure is one of the ma-
jor problems of computational mechanics today. In gen-
eral, the macroscopic behaviour of continuum is prede-
fined by the structure of grains of various size and shape, 
or even by individual molecules or atoms. According to the 
current state of the art, the Discrete Element Method 
(DEM) is an attractive technique to be applied to model-
ling of materials at the microscopic level. Here, the term 
discrete element is considered as synonymous to material 
particle. 

The numerical analysis of any system is per-
formed in the restricted space and is affected by interaction 
with neighbouring systems. Therefore, the setting up of 
boundary conditions (BC) is a very important component 
of mathematical model. The most common types of 
boundary conditions applied in the framework of DEM 
simulations are stationary rigid or deformable boundaries. 
Specification of particular BC concerns various technical 
details of describing particle-boundary interaction. 

Since the appearance of the pioneering work of 
Cundal and Strack [1] the developments in DEM have 
been focused on computation models and procedures, basi-
cally for modelling and validation of inter-particle contact 
dynamics, while, investigation of the boundary contacts 
have received rather limited attention. The earlier study of 
boundary condition as an interface of granular liquid is 
given by Allen and Tildesly [2]. The brief reviews of the 
DEM boundary conditions are also presented by Džiugys 
and Peters [3] and by Kremmer and Favier [4, 5].  

The earliest development, associated with normal 
linear and nonlinear contacts is given by Allen and Tilde-
sly [2], Briliantov at al. [6] and Džiugys [3], while a recent 
review of normal contact is given by Kruggel-Emden at al. 
[7]. Impact behaviour of elastic and elastoplastic spheres 
has been considered by Wu at al. [8], and inter-particle 
contact of cohesive powders was studied by Tykhoniuk at 
al.[9].  

The paper addresses the influence of deform-
ability of boundary defined by the variable of particle ra-
dius and elasticity modulus. It is organized as follows. The 

problem of normal particle-boundary contact problem is 
described in section 2. Equations of motion are presented 
in section 3. Analytical solution of the linear model is 
given in section 4, while numerical integration is presented 
in section 5. Numerical results of the investigation of the 
Hertz model are presented in section 5, while the conclu-
sions are given in section 6. 
 
2. Particle-boundary contact 

 
The normal noncohesive contact of the elastic 

spherical particle with the deformable boundary is treated 
in the conventional manner explored in the DEM. The 
elastic boundary is also considered as a rigidly fixed 
spherical particle of variable radius and elasticity modulus.  

The normal contact behaviour of a particle with 
the deformable boundary is investigated by considering a 
mobile particle bouncing on a horizontal boundary under 
the influence of gravity. The mobile particle is denoted 
hereafter by subscript m, while the rigidly fixed boundary 
particle is denoted by subscript b. Geometry of the moving 
particle is defined by constant radius Rm = const, while 
geometry of the boundary particle is defined by variable 
radius.  

Hereafter, the boundary properties are mapped 
into one-dimensional space of the boundary particle radius 
measured by relative radius of contacting particles 

)r.RRr mb ∞≤≤= 50(  . Here, the lower bound is simply 
restricted by the value 0.5=r , while the upper bound 

∞=r  presents the half-space in the limit.  
The material properties of the particles are as-

sumed to be elastic and defined by Young‘s modulus E and 
Poisson’s ratio ν, while density is ρ. Referring to the above 
notations, the particles are characterised by mE  and bE , 
respectively. Assuming constEm = , the variation of the 
boundary elasticity properties is characterised by the di-
mensionless parameter mb E/E=ζ , where ( )∞≤≤ ζ1 . 
The limit case ∞=ζ  presents a rigid boundary. 

In order to characterize the influence of boundary 
properties, a series of time histories of the particle bounc-
ing on a deformable boundary will be considered. The 
study is conducted as follows. The mobile particle is ini-
tially located above the boundary with the height H0. It is 
subjected to gravitational acceleration g pointing in the 
negative direction x and the initial velocity 0υ , if required.  

The geometric illustration of the above approach 
is given in Fig. 1, a, while particular models of the bound-
ary particle are presented in Figs. 1, b-f. Here, the focus is 
on illustrating the typical boundary models characterized 
by   150 <≤ r. , 1=r    and   1>r   (Fig. 1, b-d), and limit  
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Fig. 1 Illustration of modelling concept (a) and particular 
boundary models (b-f) 

 
 

 
 

Fig. 2 Characteristic positions of the particles during elas-
tic contact: a - initial state at 0tt = , b - initial state 
of collision at ctt = , c - state of rest (maximum 
overlap hmax) at mptt = , d - rebound rtt = , e - state 
of maximal rebound height tptt =  

 
cases of elastic and rigid half-space (Fig. 1, e-f). 

The illustration of the positions of bouncing parti-
cle in time is presented in Fig. 2. When neglecting dissipa-
tion, the particle will bounce forever with a constant 
bouncing period T.  

The initial location H0 indicates the distance of 
the free path between the surfaces of contacting particles. 
In the case of zero initial velocity 00 =υ  and initial accel-
eration 0a = -g, the initial point corresponds to the highest 
position of the mobile particle. Let us restrict ourselves to 
considering of the single bouncing period T. A schematic 
illustration of time histories is given in Fig. 3.  

Starting from the initial configuration defined at 
time instance 0tt =  (Fig. 2, a), the particle with constant 
negative acceleration 819.g = m/s2 freely moves towards 
the boundary. At time instance ctt = , the particle having 
the velocity ( ) cct υυ =  collides with the boundary (Fig. 2, 
b). Due to the accumulated energy, the particle penetrates 
the boundary. It is a conventional assumption that the ac-
tual deformation of the colliding particles is replaced by 
their overlap h. 

During the contact, the negative velocity of parti-
cle reaches the maximum, while the acceleration vector 
changes direction. 

 

 
Fig. 3 Schematic time histories of a bouncing particle:  

a - positions, b - velocities, c - accelerations;  
1 - elastic contact; 2 - hard contact 

 
At certain time instance mpt , the mobile particle 

reaches the state of rest characterized by zero velocity 
( ) 0=mptυ  and the maximum overlap ( ) maxmp hth = and 

maximum acceleration ( ) maxmp ata = . After reaching the 
maximal overlap, the mobile particle starts to move up. At 
certain time instance rtt =  (Fig. 2, d), the overlap is di-
minished to zero h(tr) = 0 and, because of the missing of 
cohesive forces, the particles begins to separate with re-
bound the velocity ( ) rrt υυ = . Finally, at time instance 

tptt = , the bounced particle reaches the initial position 
with velocity ( ) 0=tptυ .  

Thus, the free path of the mobile particle before 
contact is characterized by the time period 0ttT cf −= , 
while the elastic contact lasts for the time period 

H0 

t0 

0 

H0 

H
0 

t0

0

0
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crc ttT −= . Finally, by taking into account the equality of 
falling and rising periods fr TT = , the total period of 
bouncing is cf TTT += 2 . 

For the sake of comparison the behaviour of the 
particle in the limit case of rigid boundary is also illus-
trated by two dashed lines in Fig. 3. Here, the duration of 
contact reduces to zero 0=cT , thus rc tt = , while the total 
bouncing period is fTT 2= . The above simplification used 
in the event-driven DEM approach yields discontinuous 
velocity defined as ( )rtυ and undefined value of accelera-
tion ( )rta . 

The details of the time history are clearly depicted 
in Fig. 3, while comprehensive discussion on the normal 
inter-particle contact model may be found in the book of 
Pöschel and Schwager [10]. 
 
3. Equation of the mobile particle 
 

One-dimensional motion of the bouncing particle 
b defined by position ( )tx  is described by a classical equa-
tion of the second Newton’s law. Denoting acceleration as 
( ) ( )txta = , it reads 

 
( ) ( )tFtxm mm =   (1) 

 
where particle mass is  
 

3

3
4

mm Rm πρ=   (2) 

 
The particle load mF  comprises the gravity force 

and the elastic contact force. After introducing Boolean 
variable ( )c c tβ β≡ , where 0cβ =  for free particle path 
and 1cβ =  for the particle-boundary contact, the loading 
time history may be presented as follows 
 

( ) ( )tFgmtF cont,mcmm β−−=  (3) 
 

The generalised elastic contact force may be writ-
ten in terms of the overlap h 
 

( ) ( )thREtF effeffcontm
αα−= 2

,   (4) 
 

where power parameter 01.=α  describes the linear con-
tact model, while 51.=α  is used for the nonlinear Hertz 
contact model. The effective inter-particle radius and elas-
ticity modulus are as follows 
 

bm

bm
eff RR

RRR
+

=   (5) 

 

( ) ( )22 113
4

jbim

bm
eff EE

EEE
νν −+−

=    (6) 

 
Taking into account the dimensionless notations r and ζ, 
the effective parameters may be expressed in terms of pa-
rameters of the mobile particle. The effective radius is 

1+
=

r
rRR m

eff     (7) 

 
Assuming equal Poisson’s ratios ji ννν == , the 

effective elasticity modulus may be expressed as 
 

( )( )2113
4

νζ
ζ

−+
= m

eff
EE     (8) 

 
By substituting (3)-(8), the equation of particle 

motion (1) may be rewritten as follows 
 

( ) gxptx c −=+ αβ 2   (9) 
 

here, the parameter is  
 

m

effeff

m
RE

p
α−

=
2

 (10) 

 
After simple rearrangement of Eq. (10), we get 

 
( ) 21 /

mcRpp α−−=  (11) 
 

where 
 

mE
c

ρ
=  (12) 

 
is the material constant. The non-dimensional parameter is 
 

( )
( )2

2

1
1

ν
ζ

π

α

−
=

−rp   (13) 

 
where 
 

1+
=

r
rr ; 

1+
=
ζ
ζζ   (14) 

 
The contact equation contains the parameters of 

contacting particles. The initial conditions defined at the 
initial time t0 = 0 contain initial position H0 and velocity 

0υ  
 

⎪⎩

⎪
⎨
⎧

=

=

=

=

00

00

υt

t

x

Hx
  (15) 

 
Since Eq. (9) contains a discontinuous term, the 

additional continuity conditions have to be imposed on the 
velocities at contact and rebound instances ct  and rt , re-
spectively  
 

⎪⎩

⎪
⎨
⎧

=

=

=
+

=
−

=
+

=
−

tptp

cc

tttt

tttt

xx

xx
 (16) 
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In the case of the instantaneous rigid contact, oc-
curring at time instance tc = tr, the discontinuity condition 
reads as 

 

cc tttt xx =
−

=
+ −=    (17) 

 
The above defined relationships (15)-(16) yield 

some additional conditions required for proper tracking of 
the particle motion. 
 
4. Solution technique 
 

4.1. Numerical time integration scheme 
 

The dynamic state of the mobile particle is deter-
mined by numerical integration of Eq. (9) with initial and 
continuity conditions (15)-(16). Generally, in the presence 
of the nonlinear terms, the problem must be solved nu-
merically. Reviews and comprehensive discussions on in-
tegration methods applied in DEM simulations may be 
found in the works [2, 3, 11]. In order to find a reasonable 
compromise between accuracy and computational effi-
ciency, explicit one-step or predictor–corrector integration 
schemes prevail. Generally, it was observed that higher 
order schemes exhibited higher accuracy. In the latest in-
vestigations Roughier [11] revealed, however, a tendency 
of higher-order schemes to be more sensitive to instabili-
ties, though not necessarily computationally efficient. On 
the basis of numerical experience, the 5th – order Gear 
predictor-corrector scheme [2] was employed in n numeri-
cal simulations.  

This predictor-corrector scheme represents a two-
step procedure. Let us denote the time-dependent variables, 
positions x(t), velocities ( )tυ  = dx/dt, accelerations 
a(t) = d2x/dt2 as well as the higher-order time derivatives 
b3(t) = d3x/dt3, b4(t) = d4x/dt4 and b5(t) = d5x/dt5 of the par-
ticle by vector { }T,b,bx,v,a,b 543=y . The new value vari-
ables at time increment t+Δt are predicted by a simple se-
ries expansion up to a desired order of accuracy 

 
( ) ( ) ( )tttt pp ΔΔΔ  yyy +=+   (18) 

 
Here, the incremental vector ( )tp ΔΔ  y  presents 

the required terms of the expansion series. Then, according 
to the new positions and velocities, the particle forces and 
accelerations are corrected and acceleration increment Δa 
is updated. Finally, the vector of particle variables is cor-
rected as follows 

 
( ) ( ) ( )atctttt j

cpc ΔΔΔΔΔ  , ,yyy ++=+   (19) 
 

Here, the correction vector pyΔ  is calculated by 
using the given integration constants cj.  

A detailed description of DEM technique applied 
may also be found in Balevičius at al. [12]. 
 
4.2. Validation test  
 

The performance of the explicit integration 
scheme (18)-(19) and the choice of the time increment Δt 

have to be validated. The most common way to validate 
numerical tool is to compare integration results with ana-
lytical solution. In the considered problem, defined by 
Eq. (9), only the free particle path, when 0=cβ , and a 
linear case of contact model when 01.c =β  and α = 1.0, 
may be solved analytically, respectively. 

Generally, a path of the bouncing particle presents 
a periodic function with the period T, applied by the inte-
ger number n (n = 1, 2, 3,…) of periods, or simply of con-
tacts. Logically, the particle motion may be characterized 
by its time intervals *t , **t , ***t .  

The first time interval of the free-falling particle 
*t  is defined by a half of the free-path period 

f
* T.t 500 << . The time interval of the elastic contact 

**t  may be defined as 
( ) ( ) ( ) cfcf nTT.n**tTnT.n +−<<−+− 50150 , while time 
interval between contacts ***t  is defined as 
( ) ( ) cfcf nTT.n***tnTT.n ++<<+− 5050 . 

Tracing of bouncing particle comprises time-
histories of positions ( )tx , velocities ( )tx  and accelera-
tions ( )tx . The explicit solution of the Eq. (9) for the free 
path of the particle [3, 12-14] and for linear contact model 
[3, 12-14] may be defined as follows. It reads for positions 
as 
 

( )
( ) ( ) ( )( )( )
( )⎪

⎪
⎩

⎪⎪
⎨

⎧

−−=

−+=

−=
−

(c)                                50

(b)    1

(a)                                      50

2

2

2
0

gt.t***tx

ptcosgptsinpp**tx

gt.H*tx

c

c

υ

υ   (20) 

 
for velocities as 
 

( )

( ) ( ) ( )

( )⎪
⎪
⎩

⎪
⎪
⎨

⎧

−−=

−=

−=

(c)                                       

(b)                    

(a)                                                   

gt***tx

ptsin
p
gptcos**tx

gt*tx

c

c

υ

υ   (21) 

 
and for accelerations as  

  
( )
( ) ( ) ( )
( )⎪

⎩

⎪
⎨

⎧

−=
−−=

−=
−−

(c)                                               
(b)                    

(a)                                                    
122

g***tx
txRcpg**tx

g*tx

m
α   (22) 

 
A detailed description of the particle motion may 

be made in explicably in terms of characteristic parame-
ters, which may be exposed in tests.  

On the basis of the free motion solutions (20, a-
21, a), the free motion period is 
 

1
02 −= gHTf   (23) 

 
while collision velocity is expressed as 

 
gHc 02−=υ   (24) 

 
On the basis of the contact motion solutions (20-
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22, b) the main contact parameters cT , maxh , cυ  and maxa  
are extended. When ( ) maxmo htx = , the following maximum 
acceleration from (22, b) 

 
gpha maxmax −−= 2   (25) 

 
By considering maximum overlap conditions 
0)( =motx , the contact period may be obtained from 

(21, b) as 
( )12cT p arctan τ−=   (26) 

 
where 
 

1−= pgcυτ  
 

It should be noted, that, under appropriate condi-
tions, when 01.r ≥ , 01.≥ζ  and H0 ≥ Rm, 

( ) 2/arctan πτ ≈ . 
A formula for the contact period can also be 

found in Džiugys at al. [3]. For practical purposes explicit 
expressions are given in terms of stiffness and mass. In this 
case the formula (26) for the above contact period is closed 
to a popular simplified expression, see [3] 
 

1−= pTc π   (27) 
  

In time mot , the penetration is maximum. By sub-
stituting (26) in to (20, b) maximum overlap value can be 
calculated as follows  
 

2

222

p
ggp

h c
max

+−
−=

υ
  (28) 

 
A formula for maximum overlap can also be 

found in Džiugys at al. [3] 
 

1−= ph cmax υ   (29) 
 

 Following the existing practice, the time integra-
tion step has to be a fraction of the contact period 

cTt ηΔ = , where scaling factor η varies usually in the range 
of 1/10 and 1/50. It is well known that the investigation of 
hard particles requires the application of a smaller integra-
tion step. Therefore, relatively hard boundary particles 
defined by r = 100 and by ζ = 100 were employed for vali-
dation. The mobile particle with 72 101⋅=c  and 30.=ν  
was chosen. Other data were chosen as follows: 

50.Rm = mm, mRH 50 = , 00 =υ . The collision velocity 
obtained according to (21) is 

cυ  = -0.313 m/s. The contact 
parameters hmax, maxa  and cυ , as well as the rebound time 
tr, were considered as quality indicators after the second 
contact.  

Two values of η1 and η2 were examined in order 
to validate the numerical integration scheme by tracking 
the complete particle path up to the second (n = 2) re-
bound. For the linear model, the contact period obtained by 
expressions (26) yield =cLT 848.3ns. Thus, assuming 

η1 = 1/10 and η2 = 1/50 we get the values of integration 
steps Δt1 = 85 ns and Δt2 = 71. ns.  

The numerical results obtained for the linear 
model based on different time 1Δt  and 2Δt  steps along 
with analytical solution and percentage differences δ1 and 
δ2 are presented in Table 1.  

For the nonlinear model, the contact period is de-
scribed, by these expressions (Brilliantov at. al.) [6] 
 

( )
2 5

1 52 94
/

/eff
c c

m
T .

k
υ −⎛ ⎞

= ⎜ ⎟
⎝ ⎠

  (30) 

 
where 
 

2
2 4 2

5 3 effk R
Λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

; ( )211

21

6
32

EEE
EEΛ

+
+

=   (31, a) 

 

ν+
=

11
mEE ; 

ν+
=

11
mnEE   (31, b) 

 
The contact period obtained by (30) yields 

=cNT 294. μs. Thus, assuming the same fractions 
η1 = 1/10 and η2 = 1/50, we get two values of integration 
steps Δt1 = 4290. μs and Δt2 = 85 ns. The numerical results 
for the non-linear Hertz model and percentage difference δ 
are presented in Table 2.  

 

Table 1 
The results of validation test for linear model 

 tr , 
ms 

hmax,  
nm  

maxa , 
nm/ms2 

rυ ,  
m/s 

1Δt  96.59 -86.4  118.6 0.319 

2Δt  96.0 -85.0 116.6 0.315 
Analyt. 95.8  -84.6 116 0.313 

1δ  % 8250.   2.1 2.24 1.84 

2δ  % 0.209 0.473 0.517 0.562 
  

Table 2 
The results of validation test for Hertz model 

 tr, 
ms 

hmax, 
nm 

maxa , 
nm/ms2 

rυ , 
m/s 

1Δt  96.45 -532 239 0.316 

1Δt  95.8 -524 234 0.313 
δ  % 0.678 1.53 214 0.958 

 
The numbers given in Table 1 show that minimal 

time step 1Δt  leading up to 2% errors may be insufficient 
for long particle path. The numbers in Table 2 obtained by 
nonlinear model illustrate the same tendency. Finally, con-
tact time step fraction η2 = 1/50 will be further applied in 
numerical solutions.  
 
5. Simulation results 
 

The above-mentioned bouncing particle model 
(9)-(14) was explored for the simulation of normal parti-
cle-boundary contact in order to determine the influence of 
the boundary properties. Analytical expressions (20)-(29) 
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were used for the solution of the linear model, while the 
numerical 5th – order Gear predictor-corrector time inte-
gration scheme (18)-(19) was used for the solution of 
nonlinear Hertz contact model.  

The simulation of contact was performed by using 
previously defined data, while the relative radius r and 
elasticity modulus ζ  are retained as modelling variables.  

Simulation results in the form of time histories of 
overlap h are plotted in Fig. 4. The overlap displacements 
are normalised and presented by dimensionless variables as 

( ) max_NLhht*h = .  
The value scaling parameters 5210.h max_NL = μm 

and 4.896=NL_cT μs respond to the stiffest case of Hertz 
contact, yielding 0.1=*Tc  and ( ) 0.1=t*h . This case is 
manifested as numerically achievable limit indicating rigid 
boundary.  
 

 
a 

 
b 

 
c 
 

Fig. 4 Time histories of overlap displacement: a - 011 .r = ; 
b - 102 =r ; c - 1003 =r  

 
Here, Fig. 4 present the results for different values 

of relation radii defined by 011 .r = , 102 =r  and 1003 =r  
respectively. Each figure contains the results of linear as 
well as nonlinear models, while each of the four curves 1, 
2, 3 and 4 represents the results for various elasticity 
modulus of boundary particle, i.e. 011 .=ζ , 102 =ζ , 

1003 =ζ  and 10004 =ζ respectively. 
It would be of interest to note that the limit over-

lap displacement max_NLh
 

indicates 0.104% overlap for 

mobile particle and 0.104·10-3% overlap for boundary par-
ticle, which really proves the assumption of the rigid 
boundary. 

Convergence of inter-particle contact behaviour to 
particle-plane, or half-space behaviour may be better ex-
plained by considering variation of the relative maximum 
overlap max_NLmaxmax hh*h =  and scaled by the previously 
defined parameter NLh . Variation of ( )r*hmax  against the 
relative inter-particle radius r is plotted in Fig. 5. Here, 
each of the four curves 1, 2, 3 and 4 represents the results 
for various relative elasticity module of boundary particle, 
i.e. 011 .=ζ , 102 =ζ , 1003 =ζ  and 10004 =ζ  respec-
tively. 

Variation of ( )ζ*hmax  against the relative elastic-
ity modulus is plotted in Fig. 6. Here, each of the four 
curves 1, 2, 3 and 4 represents the results for various rela-
tive radii of boundary particle, i.e. 501 .r = , 012 .r = , 

103 =r , 1004 =r  and 10005 =r  respectively. 
 

 
a 

 
b 

 

Fig. 5 Variation of overlap displacement against inter- par-
ticle radius: a - linear model, b - Hertz model  

 
It was clearly observed that stiffening of the 

boundary by increasing both radii or elasticity modulus of 
the boundary particle has stabilisation tendency for overlap 
displacement. This tendency is also held for other contact 
parameters, including contact period Tc, maximum accel-
eration maxa  and rebound velocity rυ . Variation of contact 
period NL_ccc TT*T = , duration against the particle elastic-
ity modulus for the case of linear model is presented in 
Fig. 7 as an illustration by Hertz model. 

From the above graphs it can be easily observed 
when increasing r  and ζ , the relative value diminishes 
and approaches a negligibly small value in the limit. This 
may be explained as the convergence of the value to a rigid 
boundary. Convergence rate would be better illustrated 
quantitavely by introducing new relative variables, playing 
the role of the error indicators.  
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a 
 

 
b 

 

Fig. 6 Variation of overlap displacement against the parti-
cle elasticity modulus: a - linear model, b - Hertz 
model  

 

 
a 

 
b 

 

Fig. 7 Variation of contact period displacement against the 
particle: a - elasticity modulus and b - radius in 
Hertz model 

 
Variations of the inter-particle displacement 

curves depicted in Fig. 6 against elasticity modulus are 
checked by indicator (32, a), while the results of this rate 
transformation are plotted in Fig. 8, a. Variation of theo-
retical indicator (33, a) is also presented for the sake of 

comparison. The results show that all curves independently 
of both linear and Hertz contact models are transformed to 
a single curve. The curve illustrates that the variation of 
indicator in the range from 10 to 100 yields the difference 
4.829% in linear model and 3.845% in Hertz model, while 
the variation of indicator in the range from 100 to 1000 
decreases only up to the difference of 0.4485% (linear) and 
0.359% (Hertz). On the base of the above indication it is 
easy to conclude that relative elasticity modulus of the 
boundary ζ  = 100 may be considered as a limit value ap-
plicable for practical DEM simulation purposes. Conver-
gence of the linear as well as Hertz contact models with 
respect to increased elasticity modulus of the boundary is 
of the type 21 /−ζ . 

 

 
 

a 
 

 
 

b 
 

Fig. 8 Variation of contact period indicator against the par-
ticle: a - elasticity modulus and b - radius. 1 - Hertz  
numerical; 2 - Hertz theoretical; 3 - linear numeri-
cal; 4 - linear theoretical  

 
Extending simulation range to 1000=maxr  and 

1000=maxζ , the rate indicators are defined as 
 

( ) ( ) ( )( ) ( )maxmaxnum h/hhΔΨ ζζζζ −= 100   (32, a) 
 

( ) ( ) ( )( ) ( )maxmaxnum rh/rhrhrΔΨ −= 100   (32, b)  
 

Additionally, two theoretical indicators in nonlin-
ear model are expressed in the following way 

 
( ) ( )21

ma
2121

ma100 /
x

//
xthΔΨ −− −= ζζζζ   (33, a) 

 

( ) ( ) ( ) ( )( )22
ma

2222
ma100 /

x
//

xth rrrrΔΨ −−− −= ααα   (33, b) 
 
are introduced. Where 
 

1ma

ma
ma +

=
x

x
x ζ

ζζ ; 
1ma

ma
ma +

=
x

x
x r

rr  
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Variations of all curves depicted in Fig. 5 against 
particle radius are checked by indicator (32, b), while the 
results of this rate transformation are plotted in Fig. 8, b in 
the above manner. Variations of theoretical indicator 
(33, b) ( )rΔΨ L  and ( )α−2rΔΨ H  responding to two differ-
ent values of α are also added. The results show that all 
curves of linear and Hertz contact models are transformed 
to two curves. The curve of Hertz model illustrates that the 
variation of indicator in the range from 10 to 100 yields 
1.904% difference, while the variation of indicator in the 
range from 100 to 1000 decreases only up to 0.179% dif-
ference.  

The indicator of the linear model is actually the 
same as in previous case. On the basis of the above indica-
tion, it can be concluded that, in spite of the slight differ-
ence observed in contact model, relative radius of the 
boundary particle r = 100 may be considered as a limit 
value. Convergence of contact models with respect to the 
increased radius is of the type ( )2 2r α − . 
 
6. Conclusions 

 
The performed investigation of boundary particles 

may be generalised in the following manner. It was found, 
that basic particle contact parameters, such as contact dura-
tion, maximum overlap, maximum acceleration and re-
bound velocity, converges to the appropriate limits with 
respect to the increased elasticity modulus and particle 
radius of the boundary. Convergence of all parameters with 
respect to the increased relative elasticity modulus ζ  of 

the boundary is of the type ( ) ζζ /1+ , while conver-
gence with respect to the relative boundary radius r of the 
particle is predefined by model dependent power factor α 

and is of the type ( )( ) α−+ 21 r/r . For practical DEM 
simulation purposes, the above limits may be defined by 
the values ζ  = 100 and r  = 100. The recommendations 
provided could be useful for the simulation of the bound-
ary particles applied in the DEM simulations.  
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R. Jasevičius, R. Kačianauskas 

DEFORMUOJAMO KONTŪRO MODELIAVIMAS 
SFERINE DALELE, ESANT NORMALINIAM 
KONTAKTUI 

R e z i u m ė 

Straipsnyje diskrečiųjų elementų metodu (DEM) 
nagrinėjamas tamprios sferinės dalelės normalinis kontak-
tas su deformuojamu pagrindu. Nustatyto spindulio dalelė 
juda veikiama sunkio jėgos. Deformuojamas kontūras nag-
rinėjamas kaip įtvirtinta kintamo tamprumo modulio ir 
kintamo spindulio sferinė dalelė. Ribinis atvejis – kai pa-
grindo spindulys artėja į begalybę ir atspindi tamprųjį pu-
serdvį, o didinant tamprumo modulį pagrindas atitinka 
kietąją dalelę. Tiesinis modelis ir netiesinis Herco kontakto 
modelis, taikant diskretinių elementų metodą, tiriami skai-
tiškai, naudojantis 5-osios tikslumo eilės prediktoriaus-
korektoriaus Giro integravimo schema. Skaitinio modelio 
tiesinis atvejis testuojamas lyginant su analitiniu sprendi-
niu. Nagrinėjama dalelės padėtis, greitis ir pagreitis. Re-
miantis modeliavimo rezultatais nustatytos pagrindo dale-
lės ribinės reikšmės ir pateiktos rekomendacijos dėl defor-
muojamojo kontūro rodiklių pasirinkimo modeliuojant 
DEM.  
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R. Jasevičius, R. Kačianauskas 

MODELING DEFORMABLE BOUNDARY BY 
SPHERICAL PARTICLE FOR NORMAL CONTACT 

S u m m a r y 

The normal contact of the elastic spherical parti-
cle with deformable boundary is investigated in terms of 
the Discrete Element Method (DEM). The particle of the 
prescribed radius is moving under gravity and the initial 
velocity. The deformable boundary is treated as rigidly 
fixed spherical particle with variable elasticity modulus 
and variable radius. The limit case, approaching the infi-
nite radius presents an elastic half-space, while increasing 
of the elasticity modulus presents the rigid boundary, re-
spectively. 

The linear model and the nonlinear Hertz contact 
model used in the discrete element method are investigated 
numerically by applying the 5th-order Gear’s predictor-
corrector integration scheme. The numerical model is 
tested by comparing it with analytical solution. The time 
variations of the particle positions, velocities and accelera-
tions are presented. On the basis of simulation results the 
limit values of the boundary particle parameters are evalu-
ated and recommendations for the boundary particle pa-
rameters required in DEM simulation are drown.  

P. Яcявичюс, P. Kaчянaускac 

МОДЕЛИРОВАНИЕ ДЕФОРМИРУЕМОЙ ГРАНИЦЫ 
СФЕРИЧИСКОЙ ЧАСТИЦЕЙ ПРИ НОРМАЛЬНОМ 
КОНТАКТЕ  

Р е з ю м е 

В рамках метода дискретных элементов в 
(МДЭ) рассматривается упругий нормальный контакт 
сферической частицы с деформируемой границей. Час-
тица предписанного радиуса перемещается под дейст-
вием гравитационной силы. Деформирующая граница 
рассматривается как стационарная сферическая части-
ца с переменным модулем упругости и переменным 
радиусом. Приближение радиуса частицы к бесконеч-
ности представляет предельный случай упругого полу-
пространства, а приближение модуля упругости к бес-
конечности – жесткую границу. Линейная и нелиней-
ная модель Герца, используемая МДЭ, применяется 
для моделирования нормального контакта. Задача кон-
такта решена численно, применяя для интегрирования 
уравнений движения схему 5-го ряда Гира. Численно 
исследованы положения скорости и ускорения части-
цы. На основе результатов моделирования исследова-
ны предельные параметры границы и предложены ре-
комендации по выбору рациональных параметров гра-
ничной частицы для моделирования МДЭ. 
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