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1. Introduction 

Multilayer structural elements (MSE) (including 
multilayer beams (MB)) have been recently used ever 
more widely in various industrial fields since they enable 
us to acquire structures with the necessary properties [1-5]. 
Strength, stiffness, and other characteristics of MB depend 
on mechanical characteristics of the material used and their 
arrangement in a structure as well as on geometrical pa-
rameters of components of the structural element [4-7]. In 
works [4, 5] the influence of various factors, such as elas-
ticity modulus of material, number of layers and their ar-
rangement in structural elements, symmetry with respect to 
one axis, on stiffness and strength of multilayer rods and 
beams has been considered. In [6, 7], some issues on geo-
metric and stiffness centers, on variation of neutral layer 
directions and stiffness under bending have been discussed 
when the structure is asymmetric both in the sense of ge-
ometry and stiffness. In all these works multilayer beams 
are affected by pure bending. However, in real situations 
the cases of skew bending are rather frequent, and one of 
the main parameters for calculating such beams is their 
strength. 

The target of this work is to present the methods 
for calculating stress of multilayer beams under skew 
bending within the limits of elasticity, to define stress val-
ues at the points typical of two-layer asymmetric beams 
and to consider the regularities of their variation dependent 
on the shape of beam cross-section, trajectory of its forma-
tion and on the values of elasticity modulus of materials 
that compose layers. 

2. Mathematical model of a multilayer structural  
element 

Assume MSE to be composed of n layers, elastic-
ity modulus of the layers are 1 2, ,..., nE E E , and the cross-
sections occupy the simply connected domains iK  such 
that  
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Then coordinates of stiffness center of MSE, direc-
tions of neutral layers and the values of extreme stiffness 
under bending can be expressed by inertia tensor, its char-
acteristic directions and values. Axial stiffness density of 
MSE in this case can be defined by the function  
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of the set. 
Let us assume 1 2( , ,..., )nE E E=E , then, with re-

spect to (2) 
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pq
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by which we express the normal stress appearing in the 
cross-section of MB. The formulas for calculating the co-
ordinates of stiffness center as well that of axial and flex-
ural stiffness have been obtained in [7]. 

If MB cross-section is affected by the bending 
moment M  noncollinear to the main inertia tensor direc-
tions (skew bending) and the trace of its action plane 
crosses the stiffness center, then the normal stress at each 
MB cross-section point ( , )P x y K∈  is 

( )( , ) ( , ) , ( , )x y E x y r x yσ = M                     (4) 

here x  and y  are the coordinates of point P  in the global 
coordinate system (GCS), 

csxM  and 
csyM are the compo-

nents of the bending moment vector ( )cs csx yM M=M  in 

the central principal coordinate system (CPCS), 

( )02 20( , ) ( ) ( )cp cpr x y x m y m= E E  

where cpx  and cpy  are coordinates of the point ( , )x y  in 
CPCS, 1 20 ( )J m= E  and 2 02 ( )J m= E  are modulus 
weighted inertia moments (3) with respect to the axes of 
CPCS. 

Expression (4) completely describes the scalar 
field of normal stress ( , ), ( , )x y x y Kσ ∈  and allows us to 
define its structure. Let α  be an angle between GCS and 
CPCS axes, and θ  be an angle between the axis x of CPCS 
and the bending moment vector M (Fig.1). Then, taking 
into consideration that the gradient of the scalar field of 
normal stress is constant in each domain iK  and is equal 
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We conclude that the level lines of the scalar field of nor-
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mal stress are straight lines in each domain iK  (i.e., within 
the limits of each layer), and the function ( , )x yσ  is 
piecewise linear in the domain K  (only finite discontinui-
ties in the contours of domains iK  are possible). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Geometry of a structural element: a - global { , }x y  
and principal stiffness coordinate systems. 1 5P P−  
vertexes of the convex hull of cross section K;  
b - NA is neutral position axis and MT is the trace of 
bending moment acting plane; scx  and scy  are co-
ordinates of stiffnes center 

3. Object of study 

The MSE subjected to bending are often formed 
of rectangular shape cross-section layers, the dimensions 
generally are not uniform and the cross-section of MSE 
does not possess a single inverse axis of symmetry. More-
over, for formation of the layers the materials of different 
elasticity modulus iE  are employed, therefore the structure 
can be asymmetric not only in geometric sense but also in  

 

 

 

 

 

 

 
 

 

 

Fig. 2 Normal stress at convex hull points. Curve number 
corresponds to vertex number of the cross section 
convex hull. The ratio of elasticity modulus 
E2/E1=0.5 

the  sense of stiffness,   and  the  stiffness  center  generally 
can not coincide with the geometric one. Such a structure 
is a two layer ( 1 2E E≠ ) composite formed from two rec-
tangles with a mutual share of the contour (Fig. 1, a, seg-
ment P P′ ). In [8] the dynamics of values variations of a 
two-layer beam geometric and stiffness centers and that of 
neutral layers directions and variations of extreme stiffness 
values at bending when the structural element was formed 
by moving point P along diagonal of the square (Fig. 1, a) 
was investigated. In this study, the investigation results 
obtained at structural element formation at point P moving 
along curves laying in a unit square 1 1×  m (Fig. 1, a), are 
defined by function ( )f t . Thus, the object under study – a 
two-layer structure satisfies the condition (1) and 

1

2

2, [0,1] [0, ( )]
[0, ] [ ( ),1], [0,1]

n K f t
K t f t t
= = ×
= × ∈

1 2 3

4 5

(0,0), (1,0), (1, ( )), ( , ( ))
( ,1), ( ,1), (0, ( ))

P P P f t P t f t
P t P t P f t
= = =

′= = =
 

here 1 2 3 4 5, , , , ,P P P P P P  are vertexes of MSE cross section 
K1 and 1 2 3 4 5, , , ,P P P P P  are vertexes of the convex hull of 
cross section K2, ( )f t  is a continuous function satisfying 
condition 0 ( ) 1, [0, 1]f t t≤ ≤ ∈ . The shape of MSE cross-
section depends on ( )f t  therefore ( )f t  further is called as 
form function and t is called a shape factor. A part of the 
investigation was performed at ( ) , 1, 2, 0.5mf t t m= = . 
The angles , , ,α β λ θ  are defined in Fig, 1, b. 

4. Investigation results 

This work presents the results of stress investiga-
tion when the structural elements is formed with the point 
P moving along the curves ( ) mf t t= , index m of the cross-
section shape being equal to 1, 2 and 0.5. In all cases, the 
bending moment vector M crosses the stiffness center and 
is perpendicular to the axis y of the global coordinates sys-
tem (θ α= − ). With geometry the variation of cross-
section  layers,  the stiffness center coordinates ,sc scx y  and  
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Fig. 3 Dependencies of maximal normal stresses on form 
function: a - f(t)=t, b - f(t)=t2, c - f(t)=t0.5. The ratio 
of modulus E2/E1: 1 - (curve 1); 5 - (curve 2);  
10 - (curve 3); 30 - (curve 4); 55 - (curve 5) 

the angle α  between GCS and SPCS axes were calculated 
in each case.In the case θ α= −  under consideration, the 
trace of bending moment action plane (Fig. 1, b, straight 
line MT) is perpendicular to the axis x. In case of skew 
bending, the angle between neutral axis (Fig. 1, b, straight 
line NA) and that of x is denoted as β , while the angle 
between neutral axis and the trace of moment action plane 
is denoted as γ . 

The first parameters (stiffness center, position of 
the principal inertia moment axes) have been calculated 
using the mathematical model [6]. The ratios of elasticity 
modulus of the layer materials are analogous [6, 7], 

2 1 0.5, 1.0, 5.0, 10, 30, 50E E = , where 1 3000 MPaE =  
(this corresponds polycarbonate elasticity modulus, and 
under maximal ratio of the modulus, we obtain the 
modulus close to that of steel elasticity modulus). Stress 
field was calculated using the mathematical model pro-
posed (4), the bending moment vector modulus being 

43 10 NmM = ⋅ . 
Fig. 2 presents stress variation at the edge points 

of the beam cross-section convex hull (since only at them 
the maximum of the absolute stress value can be reached), 
where the ratio of elasticity modulus of materials that com-
pose the layers is 2 1 0.5E E = , and the beam shape varies 
along the diagonal of unit square, i. e., index of the form 
function ( ) mf t t=  is m=1. We have found that with an 
increase of the form shape factor t, stress decrease at all 
edge points of the beam cross-section convex hull along 
the curves close to exponent, because the cross-section 
area and the beam stiffness increase. The beam stiffness 
increases if the ratio of elasticity modulus of the layers 
considered is ( 2 1 0.5E E = ) [6, 7]. The highest stress val-
ues have been obtained at point 1P  (Fig. 2, curve 1) that 
belongs to the layer whose elasticity modulus is higher. 
The stress at point 4P , whose distance to the neutral axis is 
the greatest, is 20% lower than at point 1P . Note that under 
the action of a bending moment with θ α= −  up to the 
value 0.23t = , the compressing stress is acting only at one 
point (Fig. 1, point 1P ). This is due to the position of stiff-
ness centre (it is shifted downwards and to the left) as well 
as to leaning angle β of the neutral axis leading via the 
stiffness center. The angle β is varying (with 2 1 0.5E E =  
and m=1) from 27− °  as up to 22− ° degrees as 0.23t = , 
and as 1.0t =  is decreasing to zero. With an increase of 
parameter t values, the value of angle β is decreasing from 
maximal negative value, which is fluctuating from 37− ° up 
to -4° degrees depending on the cross-section form index 
m, to zero. The lowest value of angle β has been obtained 
as m=0.5. With such a cross-section form index, the value 
of angel β increases up to zero (as 1.0t = ). 

When increasing the elasticity modulus of the 
second layer material, the stress at cross-section point 4P  
(Fig. 1, a), with a lower elasticity modulus in the layer are 
decreasing and approach zero, since the influence of the 
first layer on the beam stiffness is decreasing. The highest 
stress values are obtained at the second layer point 4P  the 
distance of which to the neutral axis is the largest. At 
cross-section point 4P  (Fig. 1, a), in which stress values 
are the highest, the variation of these values on the ratio of 
elasticity modulus and the trajectory of cross-section for-
mation are presented in Fig. 3. By comparing the obtained 
dependences of stress variation, we can see that their na-
ture depends on the cross-section formation trajectory, i.e., 
on the index m cross-section form. That is natural because 
under a same abscissa of point P, geometric parameters 
dependent on the shape factor of the layers, composing 
cross-section, are different and stiffness of the structural 
element is also different thereby. It is noteworthy that with 
an increase in the ratio of elasticity modulus, say 10 times, 
as 0.4t = , the maximal stress (at point 4P ) increases 1.5-
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2.2 times (Fig. 3, a, curves 1, 3, 2 and 5), i. e., as ( )f t t= , 

and 2.7-2.9 times as ( )f t t=  (Fig. 3, c, curves 1, 3, 2 
and 5). Meanwhile, as 2( )f t t= , the value of the parame-
ter t being the same, there are no differences between stress 
values (Fig. 3, b). 

It has been established that absolute stress values 
also differ considerably, if the index m values of the beam 
cross-section shape are different, for instance, if 

1.0, 0.4m t= = , 2 1 50E E =  stress at the beam cross-
section point 4P  are equal to 1.2 MPa (Fig. 3, a, curve 5), 
and if 2m = , stress are twofold lower: 0.63 MPa 
(Fig. 3, b, curve 5), and if 0.5m = , stress are equal to 2.1 
MPa (Fig. 3, c, curve 5).  

When forming beam cross-section according to 
( )f t t= , the amount of material with higher stiffness is 

smaller than that of the material of lower stiffness. There-
fore, in this case, beam stiffness is considerably lower than 
that when the beam cross-section is formed according to 

2( )f t t= . 

Fig. 4 Dependencies of maximal normal stresses on form 
function: f(t)=t, (curve 1); f(t)=t2, (curve 2); f(t)=t0.5, 
(curve 3). The ratio of modulus E2/E1=0.877 

 Note that with an increase of the ratio between 
elasticity modulus of materials that compose the layers, the 
nature of dependences of stress variation on the parameter t 
changes. In the case of a homogeneous beam, with an in-
crease on the parameter t, we obtain exponentially decreas-
ing stress values (Fig. 3, a, b, c, curve 1).  

Meanwhile, in the case of a two-layer beam under 
skew bending, one can notice a stress decrease in the val-
ues of the parameter t up to 0.8 0.9÷  and an increase in 
higher t values (Fig. 3, a, b, c, curves 2-5). The intensity of 
stress decrease is higher with a lower ratio of elasticity 
modulus. When formation of the beam cross-section is 
going on according to 2( )f t t=  and the ratio of layer elas-
ticity modulus is equal to 50, we can distinguish three 
stress variation intervals in the stress decreasing stage (Fig. 
3, a), if t is varying from 0.05 up to 0.3, we have a rapid 
stress decrease, if 0.3 0.7t = − , stress is actually constant 
at the considered point 4P , and if 0.7 0.85t = − , stress is 
intensively decreasing again. This kind of stress variation 
can partly be explained by a complicated variation of stress 
under bending about the main axes. In [7], it has been de-
fined that in the case of a beam considered with the ratio 
50 of elasticity modulus, Dmax (maximal bending stiffness) 

has two explicitly expressed maxima with the minimal 
Dmax value, if 0.5t = . At this value of the parameter t, 
Dmax acquires maximum that is about 35% lower than the 
minimal Dmax value [7]. Thus, we can state that stress 
variation dependences are not inversely proportional to 
bending stiffness variation under bending. 

When considering stress variations in a two-layer 
asymmetric, with respect to both axes, beam under skew 
bending we have noticed that not always the maximal 
stress is attained in the layer with the highest stiffness. 
Fig. 4 illustrates the curves of maximal stress variation 
where the ratio of elasticity modulus of materials that com-
pose the layers is lower than a unit ( 2 1 0.877E E = ). A 
jump of stress denotes the moment when the maximal 
stress jumps from one point of a convex hull of the beam 
cross-section to another. For instance, if formation of the 
beam cross-section is going on along the straight line 

( )f t t= , for 0.5t < , the highest absolute stress is at point 

4P  the most distant from neutral axis, and for 0.5t ≥  the 
maximal absolute stress is attained in the material of 
greater stiffness (Fig. 4, curve 1). It is of interest that a 
stress jump occurs only under certain ratios between elas-
ticity modulus of the materials that compose layers. Limit 
values of elasticity modulus ratios, when maximal stress 
transition is observed from one point of cross-section to 
another, depend on the trajectory of cross-section forma-
tion. If formation of the beam cross-section is going on 
along the straight line ( )f t t= , a stress jump is observed 
as the ratio E2/E1  of elasticity modulus is varying form 
0.526 to 0.995, 0.05t =  and 0.995t = . If the cross-
section formation is going on along the curve 2( )f t t= , 
then maximal stress changes its place even twice 
(Fig. 4, curve 2). Limit values of the ratio between elastic-
ity modulus are from 0.867 to 0.995. If the ratio of elastic-
ity modulus is lower than 0.867, then maximal stress in the 
whole interval of the parameter t variation is obtained at 
point 1P , and if the values are a little higher than the lower 
limit value, then the loop width is low (Fig. 4, curve 2) and 
it increases until the maximal stress is reached only at 
point 4P  with E2/E1>0.995. And finally, if the beam cross-

section formation takes place along the curve ( )f t t= , 
then the stress jump occurs as the ratio E2/E1 is varying in 
a very wide interval of the parameter t variation (from 0.1 
to 0.995) (Fig. 4, curve 3). 

Thus, we have established that maximal stress can 
arise not only in the material with higher elasticity 
modulus, and that the rise of maximal stress in the material 
of another layer depends not only on elasticity modulus 
ratios, but also on the cross-section shape index m, i. e., on 
the cross-section shape function. 

5. Conclusions 

1. A mathematical model of multilayer beams 
subjected to skew bending as well as the methods for cal-
culating stress that are very convenient to calculate beam 
stress of any cross-section configuration has been pro-
posed. 

2. It was established that by changing the layer 
geometry of two-layer beam cross-section, stress at all the 
cross-section vertex point is varying nonuniformly. At a 
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part of points stress decreases along the curve close to the 
cubic parabola, while at the points most distant from neu-
tral layer, stress variation is of a complicated nature, i. e., it 
has one or even two stress minima. 

3. In many cases, if the ratios between elasticity 
modulus of materials that compose the layers exceed a 
unit, the maximal stress is attained at the point of a higher 
rigidity layer that is the most distant from the neutral layer. 

4. It was defined that if the ratios between elastic-
ity modulus of materials that compose the layers are lower 
than a unit, maximal stress can be obtained either in one or 
another material and this change can occur once or twice, 
dependent on the layer geometry. Thus means that it can 
not be know beforehand in which layer of the structure 
maximal stress is, what can lead to the loss of beam 
strength. 

5. The limits for the parameter t variation under 
which the transition of maximal stress to another layer 
takes place as have been determined well as the fact that 
they depend on the trajectory of cross-section formation. 
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J. Bareišis, A. Daniškevišiūtė, V. Kleiza 

ĮTEMPIŲ PASIKIRSTYMAS ĮSTRIŽAI LENKIAMAME 
DAUGIASLUOKSNIAME KONSTRUKCINIAME 
ELEMENTE  

R e z i u m ė 

Pateikti įstrižai lenkiamų daugiasluoksnių sijų, tu-
rinčių geometrinę ir/ar standuminę asimetriją, stiprumo ir 
standumo tyrimų rezultatai. Pasiūlytas normalinių įtempių 
(stiprumo) ir standumo lenkiant bet kuriame daugiasluoks-
nės sijos skerspjūvio taške skaičiavimo matematinis modu-
lis. Ištirta standumo lenkiant ir stiprumo kitimo priklauso-

mybių kinetika, kintant skerspjūvio geometriniams para-
metrams ir sijos sluoksnių tamprumo modulių santykiams. 
Nustatyta, kad įstrižai lenkiamos daugiasluoksnės sijos 
stiprumas, pagrindinai, priklauso nuo standumo centro 
padėties ir neutraliosios plokštumos padėties.  

J. Bareišis, A. Daniškevičiūtė, V. Kleiza 

STRESS DISTRIBUTION IN MULTILAYER 
STRUCTURAL ELEMENT SUBJECTED TO SKEW 
BENDING  

S u m m a r y 

Results of researches on strength and stiffness of 
diagonally bending sandwich girders having geometric 
and/or stiffness asymmetry have been given. A mathemati-
cal module for calculation of normal strain (strength) and 
stiffness on bending at any cross-section point of sandwich 
girder has been proposed. The kinetics of stiffness on 
bending and strength variation dependences when geomet-
ric parameters of a cross-section and tension modulus ra-
tios of girder layers are changing have been examined. It 
has been established that the strength of a diagonally bend-
ing sandwich girder on the whole depends on the position 
of the centre of stiffness and the position of the neutral 
plane. 

 
 

Й. Барейшис, А. Данишкевичюте, В. Клейза 

РАСПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙ В КОНСТРУК-
ТИВНОМ ЭЛЕМЕНТЕ ПРИ КОСОМ ИЗГИБЕ 

Р е з ю м е 

Представлены результаты исследования проч-
ности и жесткости многослойных балок, имеющих 
геометрическую и (или) жесткостную асимметрию, 
при косом изгибе. Предложена математическая модель 
для расчета изгибной жесткости и нормальных напря-
жений (прочности) в любой точке поперечного сечения 
многослойной балки. Изученa кинетика изгибной же-
сткости и прочности в зависимости от изменения гео-
метрических параметров сечения, а также отношения 
модулей упругости слоев. Установлено, что прочность 
многослойных балок при косом изгибе во многом за-
висит от положений центра жесткости и нейтральной 
плоскости.  
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