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1. Introduction

Multilayer structural elements (MSE) (including
multilayer beams (MB)) have been recently used ever
more widely in various industrial fields since they enable
us to acquire structures with the necessary properties [1-5].
Strength, stiffness, and other characteristics of MB depend
on mechanical characteristics of the material used and their
arrangement in a structure as well as on geometrical pa-
rameters of components of the structural element [4-7]. In
works [4, 5] the influence of various factors, such as elas-
ticity modulus of material, number of layers and their ar-
rangement in structural elements, symmetry with respect to
one axis, on stiffness and strength of multilayer rods and
beams has been considered. In [6, 7], some issues on geo-
metric and stiffness centers, on variation of neutral layer
directions and stiffness under bending have been discussed
when the structure is asymmetric both in the sense of ge-
ometry and stiffness. In all these works multilayer beams
are affected by pure bending. However, in real situations
the cases of skew bending are rather frequent, and one of
the main parameters for calculating such beams is their
strength.

The target of this work is to present the methods
for calculating stress of multilayer beams under skew
bending within the limits of elasticity, to define stress val-
ues at the points typical of two-layer asymmetric beams
and to consider the regularities of their variation dependent
on the shape of beam cross-section, trajectory of its forma-
tion and on the values of elasticity modulus of materials
that compose layers.

2. Mathematical model of a multilayer structural
element

Assume MSE to be composed of n layers, elastic-
ity modulus of the layers are £, E,,..., E,, and the cross-

n?o

sections occupy the simply connected domains K, such
that

KK, =[0,1x[0,1], K =| JK,, K,NK, =D, i#j.(1)

i=1

Then coordinates of stiffness center of MSE, direc-
tions of neutral layers and the values of extreme stiffness
under bending can be expressed by inertia tensor, its char-
acteristic directions and values. Axial stiffness density of
MSE in this case can be defined by the function

E(x,y)= iE,.Ind,. (x,») 2)

i=1

0, (x,y) ¢K,

1, (x,y) ek,

where Ind, (x, y)—{ is the indicator function

of the set.
Let us assume E = (£, E,

spect to (2)

,....E), then, with re-

m,, (E) = [[x"y" ECx, y)drdy 3)

by which we express the normal stress appearing in the
cross-section of MB. The formulas for calculating the co-
ordinates of stiffness center as well that of axial and flex-
ural stiffness have been obtained in [7].

If MB cross-section is affected by the bending
moment M noncollinear to the main inertia tensor direc-
tions (skew bending) and the trace of its action plane
crosses the stiffness center, then the normal stress at each
MB cross-section point P(x,y) € K is

o(x,3)=E(x,y)(M, r(x,y)) (4)

here x and y are the coordinates of point P in the global

coordinate system (GCS), M, and M are the compo-

nents of the bending moment vector M = (Mx_ M, ) in

the central principal coordinate system (CPCS),
r(x,y)= (xq;/moz(E) ycp/mzo(E))

wherex,, and y,, are coordinates of the point (x,y) in
CPCS, J,=my(E) and J,=my,(E)
weighted inertia moments (3) with respect to the axes of
CPCS.

Expression (4) completely describes the scalar
field of normal stress o(x,y), (x,y) € K and allows us to

are modulus

define its structure. Let « be an angle between GCS and
CPCS axes, and € be an angle between the axis x of CPCS
and the bending moment vector M (Fig.1). Then, taking
into consideration that the gradient of the scalar field of
normal stress is constant in each domain K, and is equal

cosOtana

grad, o(x,y)=ME, { sinBcota ]i

Jl+tan*a  J\1+cot’a

—cos@ N sin@ i
Jl+tan’a  J1+cot’a

+ME, {

We conclude that the level lines of the scalar field of nor-



mal stress are straight lines in each domain K, (i.e., within
the limits of each layer), and the function o(x,y) is

piecewise linear in the domain K (only finite discontinui-
ties in the contours of domains X, are possible).
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Fig. 1 Geometry of a structural element: a - global {x, y}
and principal stiffness coordinate systems. £ —PF,
vertexes of the convex hull of cross section K

b - NA is neutral position axis and M7 is the trace of
bending moment acting plane; x,, and y_ are co-

ordinates of stiffnes center
3. Object of study

The MSE subjected to bending are often formed
of rectangular shape cross-section layers, the dimensions
generally are not uniform and the cross-section of MSE
does not possess a single inverse axis of symmetry. More-
over, for formation of the layers the materials of different
elasticity modulus E, are employed, therefore the structure

can be asymmetric not only in geometric sense but also in
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Fig. 2 Normal stress at convex hull points. Curve number
corresponds to vertex number of the cross section
convex hull. The ratio of -elasticity modulus
Ey/E=0.5

the sense of stiffness, and the stiffness center generally
can not coincide with the geometric one. Such a structure
is a two layer (E, # E,) composite formed from two rec-

tangles with a mutual share of the contour (Fig. 1, a, seg-
ment P'P). In [8] the dynamics of values variations of a
two-layer beam geometric and stiffness centers and that of
neutral layers directions and variations of extreme stiffness
values at bending when the structural element was formed
by moving point P along diagonal of the square (Fig. 1, a)
was investigated. In this study, the investigation results
obtained at structural element formation at point P moving
along curves laying in a unit square 1x1 m (Fig. 1, a), are
defined by function f(¢) . Thus, the object under study — a

two-layer structure satisfies the condition (1) and

n=2, K, =[0,1]x[0, f (1]

K, =[0,¢]x[f(¢),1], t €[0,1]

B =(0,0), £, =(1,0), A =(1, 1), Pt f(2)
F, =), B =(11), P'=(0, f (1))

here B,P,,P,,P,P,, P, are vertexes of MSE cross section
K;and P.P,P,.P,
cross section K, f(¢) is a continuous function satisfying
condition 0< f(¢) <1, ¢t €[0, 1]. The shape of MSE cross-
section depends on f(¢) therefore f(¢) further is called as
form function and ¢ is called a shape factor. A part of the
investigation was performed at f(¢#)=¢",m=1,2,0.5.
The angles «, f, 4,0 are defined in Fig, 1, b.

P, are vertexes of the convex hull of

4. Investigation results

This work presents the results of stress investiga-
tion when the structural elements is formed with the point
P moving along the curves f(¢) =¢", index m of the cross-
section shape being equal to 1, 2 and 0.5. In all cases, the
bending moment vector M crosses the stiffness center and
is perpendicular to the axis y of the global coordinates sys-
tem (0=-«a). With geometry the variation of cross-
section layers, the stiffness center coordinates x_,y . and
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Fig. 3 Dependencies of maximal normal stresses on form
function: a - An)=t, b - AH)=r, ¢ - A1)=". The ratio
of modulus E,/Ey: 1-(curve I); 5-(curve 2);
10 - (curve 3); 30 - (curve 4); 55 - (curve 3)

the angle o between GCS and SPCS axes were calculated
in each case.In the case 6 =—a under consideration, the
trace of bending moment action plane (Fig. 1, b, straight
line MT) is perpendicular to the axis x. In case of skew
bending, the angle between neutral axis (Fig. 1, b, straight
line NA) and that of x is denoted as S, while the angle

between neutral axis and the trace of moment action plane
is denoted as .

The first parameters (stiffness center, position of
the principal inertia moment axes) have been calculated
using the mathematical model [6]. The ratios of elasticity
modulus of the layer materials are analogous [6, 7],
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E,/E =0.5,1.0,5.0,10, 30,50, where E, =3000 MPa
(this corresponds polycarbonate elasticity modulus, and
under maximal ratio of the modulus, we obtain the
modulus close to that of steel elasticity modulus). Stress
field was calculated using the mathematical model pro-
posed (4), the bending moment vector modulus being
|M|=3-10" Nm.

Fig. 2 presents stress variation at the edge points
of the beam cross-section convex hull (since only at them
the maximum of the absolute stress value can be reached),
where the ratio of elasticity modulus of materials that com-
pose the layers is E, /E, =0.5, and the beam shape varies
along the diagonal of unit square, i. e., index of the form
function f(¢)=¢" is m=1. We have found that with an
increase of the form shape factor ¢, stress decrease at all
edge points of the beam cross-section convex hull along
the curves close to exponent, because the cross-section
area and the beam stiffness increase. The beam stiffness
increases if the ratio of elasticity modulus of the layers
considered is ( E,/E, =0.5) [6, 7]. The highest stress val-

ues have been obtained at point £ (Fig. 2, curve /) that

belongs to the layer whose elasticity modulus is higher.
The stress at point P, , whose distance to the neutral axis is

the greatest, is 20% lower than at point £, . Note that under
the action of a bending moment with 6 =—«a up to the
value ¢ =0.23, the compressing stress is acting only at one
point (Fig. 1, point £ ). This is due to the position of stiff-

ness centre (it is shifted downwards and to the left) as well
as to leaning angle £ of the neutral axis leading via the
stiffness center. The angle f is varying (with E,/E, =0.5

and m=1) from —27° as up to —22°degrees as =0.23,
and as t=1.0 is decreasing to zero. With an increase of
parameter ¢ values, the value of angle f is decreasing from
maximal negative value, which is fluctuating from —37°up
to -4° degrees depending on the cross-section form index
m, to zero. The lowest value of angle § has been obtained
as m=0.5. With such a cross-section form index, the value
of angel f increases up to zero (as  =1.0).

When increasing the elasticity modulus of the
second layer material, the stress at cross-section point P,

(Fig. 1, a), with a lower elasticity modulus in the layer are
decreasing and approach zero, since the influence of the
first layer on the beam stiffness is decreasing. The highest
stress values are obtained at the second layer point P, the

distance of which to the neutral axis is the largest. At
cross-section point P, (Fig. 1, a), in which stress values

are the highest, the variation of these values on the ratio of
elasticity modulus and the trajectory of cross-section for-
mation are presented in Fig. 3. By comparing the obtained
dependences of stress variation, we can see that their na-
ture depends on the cross-section formation trajectory, i.e.,
on the index m cross-section form. That is natural because
under a same abscissa of point P, geometric parameters
dependent on the shape factor of the layers, composing
cross-section, are different and stiffness of the structural
element is also different thereby. It is noteworthy that with
an increase in the ratio of elasticity modulus, say 10 times,
as t=0.4, the maximal stress (at point P,) increases 1.5-



2.2 times (Fig. 3, a, curves /, 3, 2 and 5),i.e.,as f(t)=¢,
and 2.7-2.9 times as f(¢) =t (Fig. 3, c, curves /, 3, 2

and 5). Meanwhile, as f(¢) =¢*, the value of the parame-

ter ¢ being the same, there are no differences between stress
values (Fig. 3, b).

It has been established that absolute stress values
also differ considerably, if the index m values of the beam
cross-section shape are different, for instance, if
m=1.0,1=04, E,/E =50 stress at the beam cross-
section point P, are equal to 1.2 MPa (Fig. 3, a, curve 5),
and if m=2, stress are twofold lower: 0.63 MPa
(Fig. 3, b, curve 5), and if m =0.5, stress are equal to 2.1
MPa (Fig. 3, c, curve 5).

When forming beam cross-section according to
f@= Jt , the amount of material with higher stiffness is

smaller than that of the material of lower stiffness. There-
fore, in this case, beam stiffness is considerably lower than
that when the beam cross-section is formed according to

fy=¢t.

3x10°

3x10° \§\
8 2x10° \
5 20
© 1xa0° !
2 . /\\<
g sa0 3 =—
~ 0 — |r j
<
g a0 =
g ao 2
g 2a0
X -2x10°
= -3x10° /
-3x10° i

0.0 0.1 0.2 0.3 0.4

Shape factor z, m

0.5 0.6 0.7 0.8 0.9 1.0

Fig. 4 Dependencies of maximal normal stresses on form
function: A1)=t, (curve 1); fiH)=F, (curve 2); f1)=t",
(curve 3). The ratio of modulus F,/E;=0.877

Note that with an increase of the ratio between
elasticity modulus of materials that compose the layers, the
nature of dependences of stress variation on the parameter ¢
changes. In the case of a homogeneous beam, with an in-
crease on the parameter ¢, we obtain exponentially decreas-
ing stress values (Fig. 3, a, b, ¢, curve /).

Meanwhile, in the case of a two-layer beam under
skew bending, one can notice a stress decrease in the val-
ues of the parameter # up to 0.8+0.9 and an increase in
higher ¢ values (Fig. 3, a, b, ¢, curves 2-5). The intensity of
stress decrease is higher with a lower ratio of elasticity
modulus. When formation of the beam cross-section is
going on according to f(f) =¢> and the ratio of layer elas-

ticity modulus is equal to 50, we can distinguish three
stress variation intervals in the stress decreasing stage (Fig.
3, a), if ¢ is varying from 0.05 up to 0.3, we have a rapid
stress decrease, if t=0.3-0.7, stress is actually constant
at the considered point P,, and if #=0.7-0.85, stress is

intensively decreasing again. This kind of stress variation
can partly be explained by a complicated variation of stress
under bending about the main axes. In [7], it has been de-
fined that in the case of a beam considered with the ratio
50 of elasticity modulus, D,,,, (maximal bending stiffness)
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has two explicitly expressed maxima with the minimal
D, value, if t=0.5. At this value of the parameter ¢,
D, acquires maximum that is about 35% lower than the
minimal D, value [7]. Thus, we can state that stress
variation dependences are not inversely proportional to
bending stiffness variation under bending.

When considering stress variations in a two-layer
asymmetric, with respect to both axes, beam under skew
bending we have noticed that not always the maximal
stress is attained in the layer with the highest stiffness.
Fig. 4 illustrates the curves of maximal stress variation
where the ratio of elasticity modulus of materials that com-
pose the layers is lower than a unit (E,/E, =0.877). A

jump of stress denotes the moment when the maximal
stress jumps from one point of a convex hull of the beam
cross-section to another. For instance, if formation of the
beam cross-section is going on along the straight line
f(@)=t, for t<0.5, the highest absolute stress is at point

P, the most distant from neutral axis, and for > 0.5 the

maximal absolute stress is attained in the material of
greater stiffness (Fig. 4, curve 7). It is of interest that a
stress jump occurs only under certain ratios between elas-
ticity modulus of the materials that compose layers. Limit
values of elasticity modulus ratios, when maximal stress
transition is observed from one point of cross-section to
another, depend on the trajectory of cross-section forma-
tion. If formation of the beam cross-section is going on
along the straight line f(f)=¢, a stress jump is observed

as the ratio E,/E; of elasticity modulus is varying form
0.526 to 0995, t=0.05 and ¢=0.995. If the cross-

section formation is going on along the curve f(f)=1¢>,

then maximal stress changes its place even twice
(Fig. 4, curve 2). Limit values of the ratio between elastic-
ity modulus are from 0.867 to 0.995. If the ratio of elastic-
ity modulus is lower than 0.867, then maximal stress in the
whole interval of the parameter ¢ variation is obtained at
point B, and if the values are a little higher than the lower

limit value, then the loop width is low (Fig. 4, curve 2) and
it increases until the maximal stress is reached only at
point P, with E,/E;>0.995. And finally, if the beam cross-

section formation takes place along the curve f(¢)= Ji ,

then the stress jump occurs as the ratio £,/E; is varying in
a very wide interval of the parameter ¢ variation (from 0.1
to 0.995) (Fig. 4, curve 3).

Thus, we have established that maximal stress can
arise not only in the material with higher -elasticity
modulus, and that the rise of maximal stress in the material
of another layer depends not only on elasticity modulus
ratios, but also on the cross-section shape index m, i. e., on
the cross-section shape function.

5. Conclusions

1. A mathematical model of multilayer beams
subjected to skew bending as well as the methods for cal-
culating stress that are very convenient to calculate beam
stress of any cross-section configuration has been pro-
posed.

2.1t was established that by changing the layer
geometry of two-layer beam cross-section, stress at all the
cross-section vertex point is varying nonuniformly. At a



part of points stress decreases along the curve close to the
cubic parabola, while at the points most distant from neu-
tral layer, stress variation is of a complicated nature, i. e., it
has one or even two stress minima.

3. In many cases, if the ratios between elasticity
modulus of materials that compose the layers exceed a
unit, the maximal stress is attained at the point of a higher
rigidity layer that is the most distant from the neutral layer.

4. It was defined that if the ratios between elastic-
ity modulus of materials that compose the layers are lower
than a unit, maximal stress can be obtained either in one or
another material and this change can occur once or twice,
dependent on the layer geometry. Thus means that it can
not be know beforehand in which layer of the structure
maximal stress is, what can lead to the loss of beam
strength.

5. The limits for the parameter ¢ variation under
which the transition of maximal stress to another layer
takes place as have been determined well as the fact that
they depend on the trajectory of cross-section formation.
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ITEMPIU PASIKIRSTYMAS [STRIZAI LENKIAMAME
DAUGIASLUOKSNIAME KONSTRUKCINIAME
ELEMENTE

Reziumé

Pateikti istrizai lenkiamy daugiasluoksniy sijy, tu-
rinéiy geometring ir/ar standuming asimetrija, stiprumo ir
standumo tyrimy rezultatai. Pasitilytas normaliniy jtempiy
(stiprumo) ir standumo lenkiant bet kuriame daugiasluoks-
nés sijos skerspjtvio taske skai¢iavimo matematinis modu-
lis. Istirta standumo lenkiant ir stiprumo kitimo priklauso-
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mybiy kinetika, kintant skerspjiivio geometriniams para-
metrams ir sijos sluoksniy tamprumo moduliy santykiams.
Nustatyta, kad istrizai lenkiamos daugiasluoksnés sijos
stiprumas, pagrindinai, priklauso nuo standumo centro
padéties ir neutraliosios plok$tumos padéties.
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STRESS DISTRIBUTION IN MULTILAYER
STRUCTURAL ELEMENT SUBJECTED TO SKEW
BENDING

Summary

Results of researches on strength and stiffness of
diagonally bending sandwich girders having geometric
and/or stiffness asymmetry have been given. A mathemati-
cal module for calculation of normal strain (strength) and
stiffness on bending at any cross-section point of sandwich
girder has been proposed. The kinetics of stiffness on
bending and strength variation dependences when geomet-
ric parameters of a cross-section and tension modulus ra-
tios of girder layers are changing have been examined. It
has been established that the strength of a diagonally bend-
ing sandwich girder on the whole depends on the position
of the centre of stiffness and the position of the neutral
plane.

U. Bapeiimuc, A. laaumkesudtore, B. Kieitza

PACIIPEJIEJIEHUE HAITPSDKEHUI B KOHCTPYK-
THUBHOM 3JIEMEHTE ITPU KOCOM U3I'MBE

Pes3omMme

[TpencTaBneHbl pe3ysbTaThl UCCIEIOBAHUS TPOY-
HOCTH W JKECTKOCTH MHOTOCJIOWHBIX OalloK, WMEIOIINX
TEOMETPUYECKYI0 M (WJIM) >KECTKOCTHYIO acCHMMETpHIO,
npu kocoM marubde. [Ipeayoxena MareMaTHyeckas MoJIeib
JUIsl pacdeTa M3THOHOM JKECTKOCTH U HOPMaJIbHBIX Hamps-
JKeHUH (TIPOYHOCTH) B JIFOOOH TOUKE MOTIEPEIHOTO CECUCHUS
MHOTOCJIONHOHN Oanku. V3ydeHa KMHETHKA M3TUOHOW Ke-
CTKOCTH ¥ TIPOYHOCTH B 3aBHCHMOCTH OT M3MEHEHUS Teo-
METPUYECKUX TapaMEeTPOB CEUEHHs, a TAKKE OTHOIICHHS
MOAYJIEW YNPYTOCTH CJIOEB. Y CTAHOBJIEHO, YTO IPOYHOCTh
MHOTOCJIOMHBIX OaloK NMpH KOCOM M3rHOe BO MHOTOM 3a-
BUCHT OT IOJIOXKEHHH LIEHTPA JKECTKOCTH M HEeUTpaIbHOM
IUIOCKOCTH.
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