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1. Introduction 

In addition to parabola-rectangular, bilinear and 
rectangular concrete stress-strain diagrams for the analysis 
of reinforced concrete flexural members according to STR 
2.05.05:2005 [1] and EC2 [2] parabola stress-strain dia-
gram with descending branch can be used as well. It is 
well-known that parabola stress-strain diagram with de-
scending branch provides the most precise description of 
stress-strain behaviour of the concrete in comparison with 
the others. Direct application of such nonlinear diagrams 
for engineering analysis of cross-sections of flexural and 
eccentrically compressed reinforced concrete members is 
inconvenient. Therefore in analysis of rectangular cross-
section the rectangular stress block (RSB) is substituted for 
nonlinear stress diagram (NSD). The said substitution 
should be equivalent which means that the carrying capac-
ity of reinforced concrete member determined using NSD 
should be equal to that determined using RSB. This 
equivalence is provided by coefficients which depend not 
only on deformative properties of the concrete, i.e. stress-
strain character of the diagram, but on the method of dia-
grams replacement also. The coefficients, obtained accord-
ing to various methods are different for identical replaced 
diagrams [3-6]. However the said substitution should be 
equivalent. In literature we found only few methods deal-
ing with substitution of RSB for NSD [7-9] in analysis of 
cross-sections of flexural members. Therefore in present 
publication the principles of substitution of rectangular 
stress block for nonlinear stress diagram has been ana-
lysed. 

On the other hand, methods of analysis according 
to EC2 [2] that we came across in publications, for exam-
ple [3, 4, 6], are based only on substitution of RSB for pa-
rabola-rectangular and bilinear diagrams or on direct appli-
cation of RSB without any explanation [1, 2]. In publica-
tions we were not able to find any simple and convenient 
engineering method of analysis according to EC2 [2] based 
on substitution of equivalent RSB for parabola diagram 
with descending branch. Therefore in this article a method 
for equivalent substitution of rectangular stress block for 
nonlinear stress diagram with descending branch is devel-
oped when the stress-strain relationship for the concrete in 
compression is described according to EC2 [2]. Analytical 
relationships, in explicit form, for area, the first moment of 
area and coordinate of centroid of the nonlinear stress dia-
gram with descending branch was obtained. An explicit 
analytical relationship for the ratio between the depth of 
the rectangular stress block and that of the equivalent 
nonlinear stress diagram with descending branch in respect 
to the concrete strength was obtained. A linear approxima-
tion of the ratio between the depths of these diagrams in 

relation to the concrete strength was proposed as well. Co-
efficients suitable for substitution of equivalent rectangular 
stress block for parabola stress diagram with descending 
branch given in EC2 and STR 2.05.05:2005 are presented. 
Qualitative and quantitative analysis of the coefficient for 
substitution of diagrams given in various codes is per-
formed as well. 
 
2. An existing methods for replacement of diagrams 

According to [7] the substitution of RSB to NSD 
is accomplished by multiplying the area of NSD by coeffi-
cient α  
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where xw is the depth of a nonlinear diagram, fc and σc(x) 
are concrete strength and concrete stress function in rela-
tion to the depth of the cross-section respectively. This 
substitution is not equivalent because it does not provide 
equal coordinates for centroids of nonlinear diagram and 
RSB. This substitution gives only equal areas of mentioned 
diagrams. Methods allowing determination of a coefficient 
for substitution of RSB for parabola-rectangle diagram are 
presented in [3, 8]. Other method for substitution of dia-
grams is given in [9] 
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This method provides equivalent substitution of 
diagrams, since both areas and coordinates of centroids for 
the diagrams involved are obtained equal. Partial analysis 
of the substitution of the diagrams is performed in 
[6,10,11]. In [6] analysis of the substitution of rectangular 
stress block for rectangular-parabola diagram is given and 
[10,11] deals with the analysis of substitution of RSB for 
nonlinear stress diagram with descending branch. It is 
shown in these investigations that calculation methods for 
cross-sections of flexural reinforced concrete members 
according to EC2 [2], STR 2.05.05:2005 [1] and SNiP [12] 
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are incompatible with nonlinear stress diagram with de-
scending branch defined in EC2 [2] and STR 2.05.05:2005 
[1]. 

 
3. The main relationships  

Let us assume that a nonlinear stress-strain rela-
tionship of the concrete in compression is described by a 
function  

 ( )c cfσ ε=  (6) 

where εс is strain of the concrete in compression. If the 
hypothesis of plane sections is valid then failure of a bend-
ing member occurs when the strain in concrete under the 
highest compression, in the compression zone, achieves its 
ultimate value. Then strain in the concrete under compres-
sion may be described by the following linear function 
(Fig. 1, a) 
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where εсu and xw are ultimate compressive strain in the 
concrete and the depth of concrete compression zone re-
spectively. Putting Eq. (7) in to Eq. (6) it is obtained the 
general relationship between the stress in compression 
zone of a flexural member and coordinate x (see Fig. 1, b) 

 ( ) cu
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As it was mentioned above, for simplification of 
the calculations the equivalent RSB is substituted for NSD 
of the concrete in compression zone (Fig. 1, b)). 

 

Fig. 1 Ultimate stress-strain state for a flexural member:  
a - distribution of strains along the compression 
zone depth; b - 1 and 2 are rectangular stress block 
and nonlinear stress diagrams respectively, xeff and 
xw are depths of rectangular stress block and of 
nonlinear diagram respectively, xrec and xcrv are co-
ordinates of centroids for rectangular stress block 
and for nonlinear diagram respectively 

Diagrams are equivalent if the areas and coordi-
nates of their centroids are equal respectively, i.e. when the 
following conditions are satisfied  

 rec crvA A=  (9) 
 crv recx x=  (10) 

where Arec and Acrv are the areas of the RSB and NSD, 
while xrec and xcrv are the coordinates of their centroids, 
respectively (Fig. 1).  

According to EC2 [2] and STR [1] the parabolic 
relationship between stress ( )c cσ ε  and strain cε  for the 
concrete in compression are as follows 
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where 11.1 cm c cmk E fε= and εс1 is the concrete strain at the 
maximum stress, i.e. when σc = fcm [1,2]  

 ( ) 0,31 3
1 = 0.7 10c cm cmf fε −− ⋅  (12) 

where fcm=fck+8 and Ecm (in MPa) are mean value of con-
crete cylinder strength in compression and secant elasticity 
modulus of the concrete, respectively, while εc is the con-
crete strain in compression which varies within the limits 
of 0≤εc≤εсu1. Ultimate strain defined by the descending 
branch of the stress-strain diagram for the concrete in 
compression in EC2 [2] and STR 2.05.05:2005 [1] is de-
noted by εcu1 
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where fck is concrete characteristic cylinder strength in 
compression. 

Putting of (7) in too (11), taking εcu = εcu1 accord-
ing to notations used in EC2[2] and STR 2.05.05:2005 [1] 
and collecting of terms the following relationship between 
the stress and the coordinate x of the cross-section depth is 
obtained [10] 
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or 
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where 
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For the modification of relationship (14) relative 
parameters, namely, the maximum relative strain  

 1 1 1cu c cuω ε ε=  (17) 

and the relative coordinate for the layer of concrete com-
pression zone 
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 x wx xω =  (18) 

are introduced. 
Then the relationship (14) can be modified in the 

following form 
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Using notation 

 ( ) ( ) ( )( )
( )( )( )

1

1 1

1 1
1 2
x cu x

x
cu x cu

kk
k

ω ω ωω
ω ω ω

− − −
=

− − +
 (20) 

the function of stress for the concrete compression zone is 
finally expressed in the following way 

 ( ) ( )c x cm xf kσ ω ω=  (21) 

The area and the first moment of area of the 
nonlinear diagram can be calculated using the well-known 
relationships 
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Putting x wx xω= in the above integrals and taking 
into account condition (21) the following forms for rela-
tionships (22) and (23) are obtained  
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In the case when the stress diagram is described 
by the relationship (14) then integration of integrals (26) 
and (27) gives 
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where 1 2cuY k ω= + − . 
Coordinate xcrv of the centroid for NSD area Acrv 

is determined from relationships (24) and (25)  
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and then the relative coordinate ωcrv of the centroid for 
NSD area Acrv can be expressed by equation 
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Values of ωcrv are presented in Table 1 in relation to the 
characteristic strength of the concrete and they are plotted 
in Fig. 2 as well.  

 

Fig. 2 Relation between relative coordinate of the centroid 
ωcrv and characteristic strength of the concrete  

It can be seen see that ωcrv decreases and conse-
quently the centroid of NSD moves upwards with the in-
crease in concrete strength. Since condition (10) is valid 
and the depth of equivalent RSB is equal to 2ωcrv then the 
depth of RSB decreases with the increase in concrete 
strength.  
 
4. Analysis of equality of areas of nonlinear stress  

diagram and rectangular stress block  

Replacement of NSD by the equivalent RSB 
should meet condition (10). In such case the depth xeff and 
the area Arec of the RSB should be determined as follows  

 2 2eff crv crv wx x xω= =  (32) 
 2rec eff cm cm crv wA x f f xω= =  (33) 

Then taking into consideration Eq. (31) the ratio 
between the areas of RSB and NSD can be expressed by  
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In STR 2.05.05:2005 [1] replacement of NSD 
with RSB is performed by multiplication of the concrete 
strength by coefficient α<1. From Eqs. (21) and (22) it is 
obvious that in fact the area Arec of RSB is decreased by 
the coefficient α. In STR 2.05.05:2005 [1] coefficient α is 
determined by  

 0.9,when 50MPackfα = ≤  (35) 

 580.9 ,when 50MPa
200

cm
ck

f fα −
= − >  (36) 

According to EC2 [2] for replacement of NSD by 
RSB two coefficients η and λ are used. Physical meaning 
of the coefficient η is the same as that of α in STR [1]. It is 
expressed by the following formulae 

 1,when 50MPackfη= ≤  (37) 
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Further the influence of coefficients η and α on 
the ratio between the areas of diagrams expressed by 
Eq. (34) will take place. In addition this ratio will be inves-
tigated using coefficient 0.9. It will be shown that when 
coefficients η, α and 0.9 are used, the ratio expressed by 

Eq. (34) equals to: rec crvA Aη , rec crvA Aα , 0.9 rec crvA A . 
Let us assume that ,cm cmf fθ θ= , where { , ,0.9,1}θ α η∈ . 
Then the area of RSB in calculation of the ratio according 
to Eq. (34) should be taken with the coefficient θ. Using 
Eq. (34) it can be written  
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Values of θArec/Acrv ratio, ωcrv and Ak,crv deter-
mined according to Eqs. (34), (31) and (27) respectively 
are presented in Table 1 and Fig. 3. It is indicated here that 
the variation of θArec/Acrv and 0.9 rec crvA A ratios with char-
acteristic strength of the concrete is not uniform. For all 
concrete classes the ratio θArec/Acrv>1 with exception of 
C55/67 and C60/75 classes for which the ratio 
0.9Arec/Acrv<1 shall be taken. Therefore in general it can be 
concluded that the substitution of RSB for NSD, when 
condition (10) is valid, requires that rec crvA A> . Declination 
from 1 of the ratio θArec/Acrv grows with the increase in 
concrete strength starting at the class of С60/75. Thereby 
the quality of equivalence for substitution of the diagrams 
decreases.  

 
Table 1 

Values of θArec/Acrv, Acrv and ωcrv 
 

Concrete class rec crvA A  0.9 rec crvA A  rec crvA Aα  rec crvA Aη  ,k crvA  crvω  1 ( )rec crvA A
 

C8/10 1.173 1.056 1.056 1.173 0.796 0.467 0.852 
C12/15 1.201 1.081 1.081 1.201 0.769 0.462 0.832 
C16/20 1.185 1.067 1.067 1.185 0.765 0.453 0.844 
C20/25 1.166 1.049 1.049 1.166 0.762 0.444 0.858 
C25/30 1.158 1.042 1.042 1.158 0.753 0.436 0.863 
C30/37 1.143 1.029 1.029 1.143 0.748 0.427 0.875 
C35/45 1.151 1.036 1.036 1.151 0.736 0.424 0.869 
C40/50 1.157 1.041 1.041 1.157 0.725 0.420 0.864 
C45/55 1.136 1.022 1.022 1.136 0.723 0.411 0.880 
C50/60 1.138 1.024 1.024 1.138 0.714 0.406 0.878 
C55/67 1.103 0.993 0.875 0.975 0.700 0.386 0.907 
C60/75 1.105 0.995 0.850 0.950 0.675 0.373 0.905 
C70/85 1.149 1.034 0.800 0.900 0.626 0.360 0.870 
C80/95 1.176 1.059 0.750 0.850 0.603 0.355 0.850 

C90/105 1.193 1.073 0.700 0.800 0.587 0.350 0.839 
 
As it was mentioned above the substitution of the 

diagrams is of higher equivalency when θArec/Acrv ratio is 
closer to 1. If the ratio θArec/Acrv is an approximation of 1 
then error for the said ratio may be:  
the maximum error 

 1(1; ) max|1 |rec crv rec crvd A A A Aθ θ= −  (40) 

and the mean square error  

 2
2 (1; ) (1 ) ,

b

rec crv rec crv cm
a

d A A A A df a bθ θ= − <∫  (41) 

where θ∈{α,η,0.9,1}. Values of d1(1;θArec/Acrv) determined 
for various values of θ and intervals of [a,b] are given in 
Table 2. It should be noted that the integral in Eq. (41) is 
solved taking values of εс1 and εсu1 according to Eqs. (12) 
and (13) but not these from Tables given in [1,2].  
 It can be seen from Table 2 that value RSB area is 
the closest to that of NSD when coefficients 0.9 and α are 
taken according to STR [1] in the case of 
(8 ≤ fck ≤ 50) MPa. In this case the minimum values of er-
rors d1(1;θArec/Acrv) and d2(1;θArec/Acrv), i.e. 
min(d1(1;θArec/Acrv)) = 0.081 and min(d2(1;θArec/Acrv)) = 
=0.07735  when θ = 0.9  are  obtained.   The  worst  quality  
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Fig. 3 Variation of ratios between the areas of rectangular 

stress block and nonlinear stress diagram with con-
crete characteristic strength  

Table 2 
 

Values of errors d1(1;βArec/Acrv) and d2(1;βArec/Acrv) 
 

θ d1(1;θArec/Acrv) fck
* d2(1;θArec/Acrv) 

 8 MPa ≤ fck ≤ 90 MPa   
1 0.201 12 1.8213 

0.9 0.073 90 0.13856 
α 0.300 90 0.47155 
η 0.201 12 1.08118 
 8 MPa ≤ fck

 ≤ 50 MPa   
1 0.201 12 1.00254 

0.9 0.081 12 0.07735 
α 0.081 12 0.07735 
η 0.201 12 1.00254 
 50 MPa ≤ fck ≤ 90 MPa   
1 0.193 90 0.81874 

0.9 0.073 90 0.06121 
α 0.300 90 0.3942 
η 0.200 90 0.07864 

*Note: in this table fck is concrete characteristic strength at which 
the maximum value of error d1 is obtained 
 
substitution  of diagrams  is obtained by direct replacement 
of nonlinear diagram with RSB without application of any 
coefficient i.e. θ=η=1 according to EC2 [2]. For this case 
the values of the said errors are equal to 0.201 and 
1.00254, and when fck=12 MPa the ratio of 
θArec/Acrv=1.201. If (50 ≤ fck ≤90) MPa then the area of 
RSB is closest to that of NSD when coefficient 0.9 is con-
sidered as well. For this case min(d1(1;θArec/Acrv)) = 0.073 
and min(d2(1;θArec/Acrv)) = 0.06121 when θ=0.9. The suit-
ability of other coefficients for the substitution of diagrams 
cannot be unambiguously defined. In assessment according 
to d1(1;θArec/Acrv) the coefficient 1 is in the second place, 
i.e. θ=1, η is in the third, and α in the fourth places respec-
tively. In assessment according to d2(1;θArec/Acrv) the coef-
ficient η is in the second, α in the third and 1 in the fourth 
places respectively. 

Investigations in the ratio θArec/Acrv give an oppor-
tunity to state for the interval of (8 ≤ fck ≤ 90) MPa that the 
most equivalent substitution of the diagrams is obtained 
when coefficient 0.9 is taken. It is clearly shown in Table 2 
and Fig. 4. Coefficient 0.9 is the closest to the ratio 
1/(Arec/Acrv). The maximum value of 0.9Arec/Acrv does not 
reach 1.08 (see Table 1). Therefore it can be stated that for 
practical use the RSB can be equivalently substituted for 
the NSD taking coefficient 0.9. One can see in Fig. 4 that 
the ratio 1/(Arec/Acrv) decreases with on increase in concrete 
characteristic strength starting from 50 MPa. Tendency of 

changes in the values of coefficients α and η remains the 
same but the gradient of decrease is much greater. Values 
of 1/(Arec/Acrv) given in Table 1 can be used for equivalent 
substitution of RSB for NSD. Then conditions (9) and (10) 
will be satisfied. When intermediate concrete strength val-
ues between concrete strength classes given in codes are 
considered then the ratio 1/(Arec/Acrv) can be obtained by 
interpolation between the nearest values of the said ratio.  

 

Fig. 4 Variation of 1 ( )rec crvA A  ratio and coefficients α 
and η with characteristic concrete strength  

It was mentioned above that in the case of validity 
of conditions (9) and (10) the ratio βArec/Acrv shall be equal 
to 1, i.e. βArec/Acrv=1. It means that βArec/Acrv is an ap-
proximation of 1. This coefficient can be calculated by 
means of minimizing the mean square error Eq. (41). Let 
us assume that β is a constant and βArec/Acrv approaches 1, 
the measure of error for which is Eq. (41). Then coefficient 
β can be calculated by means of minimization of the mean 
square error of the ratio βArec/Acrv 

 2
2 (1; ) (1 )

b

rec crv rec crv cm
a

d A A A A dfβ β= −∫  (42) 

Minimum value of the coefficient β will be ob-
tained by differentiation of Eq. (42) in respect to β and by 
equating the obtained relationship to 0 
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Taking into account Eq. (34) 
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Values of coefficient β calculated numerically for 
various intervals [a,b] are given in Table 3. Values of the 
maximum error d1(1;βArec/Acrv) and of the mean-square 
error d2(1;βArec/Acrv) are given in this Table as well. 

Table 3 shows that the difference between the val-
ues of β calculated for various intervals is not great. Com-
parison of d1(1;θArec/Acrv) with d1(1;βArec/Acrv) and 
d2(1;βArec/Acrv) with d2(1;θArec/Acrv) points out that  

 1 1(1; ) (1; )rec crv rec crvd A A d A Aβ θ<  (45) 
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 2 2(1; ) (1; )rec crv rec crvd A A d A Aβ θ<  (46) 

where θ∈{α,η,0.9,1}. 
 

Table 3 
 

Values of β, d1(1; βArec/Acrv) and d2(1; βArec/Acrv) 
 

Interval MPa β d1(1;βArec/Acrv) d2(1;βArec/Acrv) 
8 ≤ fck ≤ 50 0.867 0.041 0.05633 

50 ≤ fck ≤ 90 0.877 0.046 0.03395 
8 ≤ fck ≤ 90 0.872 0.051 0.09028 

 
It means that the new values of β allow perform-

ing more equivalent substitution of RSB for NSD. When 
the coefficient β is used, the maximum values of the ratio 
β(Arec/Acrv) = 1.041 and β(Arec/Acrv) = 1.046 are obtained 
when fck = 12 MPa and fck = 90 MPa respectively. The cal-
culated values of coefficient β are close to 0.85 the value 
of the coefficient being used for substitution of the dia-
grams in ACI [13] and SNB [14,15]. According to DIN 
[16] coefficients used for substitution of RSB for parabola-
rectangle σc-εс diagram depend on concrete characteristic 
strength. When fck ≤ 50 MPa then the value of coefficient 
for diagram substitution is equal to 0.95, when fck>50 then 
the value of this coefficient equals to 1.05-fck/500 [7].  

More accurate description of the coefficient β is 
possible taking linear variation of this coefficient with the 
concrete strength. However, obtained accuracy for practi-
cal application is quite sufficient. Obviously the most accu-
rate value of coefficient β is  

 1 crv

rec crv rec

A
A A A

β = =  (47) 

These values are given in Table 1. 
In [10] the correctness of mathematical problem 

formulation for the substitution of RSB for nonlinear stress 
diagram with descending branch and the possibility of 
equivalent replacement of these diagrams in cross-section 
carrying capacity calculations was investigated. It was de-
termined that in case of satisfied Eq. (9) the condition (10) 
is not satisfied. The relative difference (ratio (xcrv-
xrec)/xrec)) in coordinates of centroids for the said diagrams 
varies from 12% to 21%. If the area of RSB is determined 
using coefficient 0.9 then the relative difference does not 
exceed 9%.  

 
5. Analysis of ratio between depths of nonlinear stress 

diagram and rectangular stress blocks  

Below, the ratio between the depths of nonlinear 
stress diagram with descending branch according to EC2 
[2] and STR [1] and of the equivalent RSB (see (48)) is 
investigated 

 eff wx x  (48) 

This ratio is compared with xeff/xw ratio used in 
various codes. In general the ratios xeff/xw used in various 
codes differ.  

In STR [1] the ratio xeff/xw is noted by symbol ω 

 0.008STR cda fω = −  (49) 

where a is a coefficient depending on concrete type: for 
normal weight concrete a=0.85, for fine grain concrete of 
A group a=0.80 and for that of B group a=0.75 respec-
tively; for lightweight concrete a=0.80, fcd is design 
strength of the concrete in MPa.  

In EC2 [2] the ratio xeff/xw is noted by λ. The 
physical meaning of this coefficient is the same as that of 
ω in STR [1] and in SNiP [12].  
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In SNiP [12] the ratio xeff/xw also is noted by ω 

 ,0.008SNiP cd prisa fω = −  (51) 

where fcd,pris is design value of concrete prism strength ac-
cording to SNiP [12], coefficient a is the same as in 
Eq. (49). In mentioned above codes coefficient ω is the 
ratio between the depth of RSB and that of the real NSD 
[17]. Since in the code SNiP [12] NSD is not presented 
then it is possible to say that the ratio between the depths 
of RSB and NSD, which is not described by a function, is 
expressed by the Eq. (51).  

If condition (10) is satisfied then for each con-
crete strength class the ratio between the depths of the RSB 
and NSD is 

 2 2eff crv
crv

w w

x x
x x

ω ω= = =  (52) 

Coefficient ωcrv values determined by Eq. (31) are given in 
Table 1. As it was shown above Eq. (9) is valid when the 
area of RSB is multiplied by coefficient Θ 

 ,eff cm cm w k crvx f f x AΘ =  (53) 

Then from Eq. (53) the ratio of ω is obtained 

 ,
1eff

k crv
w

x
A

x
ω Θ

Θ
= =  (54) 

If it is assumed that Θ=1/(Arec/Acrv) then putting 
this expression into Eq. (54) and taking into account 
Eq. (34) the following is obtained 

  , 2crv
k crv crv

rec

A A
A

ω ω= =  (55) 

On the basis of the Eqs. (52) and (55) an impor-
tant conclusion can be made that for determination of the 
ratio between depths of the equivalent RSB and NSD, i.e 
when conditions (9) and (10) are valid, calculation accord-
ing to the relationship (55) is sufficient. For determination 
of ω ratio coefficient Θ is not required. On the basis of 
Eq. (55) it can be concluded too that ω directly does not 
depend on the concrete strength. Thus the value of 2ωcrv 
and consequently that of ω for the same concrete strength 
class but of different design strength is the same. For ex-
ample, according to EC2 [2] and STR [1] the design 
strengths for the same strength class concrete are different 
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but the ratio ω=xeff/xw will be the same.  
Eqs. (52), (54) and (55) indicate that coefficient ω 

can be considered not only as deformability characteristic 
of concrete in compression [17] or as ratio between the 
depths of RSB and NSD but as the depth of RSB in nor-
malized coordinates as well. From Eq. (52) it is obtained 
that ω=2ωcrv=2xrec/xw=2xeff/xw. Coefficient ω can be con-
sidered as the area of nonlinear diagram described in nor-
malized coordinates divided by the concrete compression 
strength (see Eq. (54)). This relationship also shows that 
deformability characteristic ω of concrete compression 
zone is described by location of resultant of stresses of that 
zone and evaluates relative position of gravity centre for 
the actual stress diagram in concrete compression zone in 
respect with the concrete layer in the greatest compression. 
The values of coefficient ω determined according to 
Eqs. (52), (54) and (55) are given in Table 4 and Fig. 5. 
The values of ω=Ak,crv/β in this table are determined using 
values of β from Table 3 when fck varies within the limits 
of 8 ≤ fck≤ 50 and of 50 ≤ fck ≤ 90.  

 
Table 4 

 

Ratio (ω=xeff/xw) between the depth of rectangular stress 
block and that of nonlinear stress diagram according to 

Eqs. (52), (54) and (55) 
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C8/10 0.934 0.796 0.884 0.884 0.796 0.918 
C12/15 0.924 0.769 0.855 0.855 0.769 0.887 
C16/20 0.907 0.765 0.850 0.850 0.765 0.882 
C20/25 0.889 0.762 0.847 0.847 0.762 0.879 
C25/30 0.872 0.753 0.837 0.837 0.753 0.868 
C30/37 0.855 0.748 0.831 0.831 0.748 0.862 
C35/45 0.847 0.736 0.818 0.818 0.736 0.849 
C40/50 0.839 0.725 0.806 0.806 0.725 0.837 
C45/55 0.821 0.723 0.803 0.803 0.723 0.834 
C50/60 0.813 0.714 0.793 0.793 0.714 0.824 
C55/67 0.773 0.700 0.778 0.800 0.718 0.799 
C60/75 0.746 0.675 0.750 0.794 0.711 0.770 
C70/85 0.719 0.626 0.696 0.782 0.696 0.714 
C80/95 0.709 0.603 0.670 0.804 0.709 0.688 

C90/105 0.700 0.587 0.652 0.839 0.734 0.669 
 

 
Fig. 5 Depth of rectangular stress block to that of nonlinear 

stress diagram ratio in relation to the concrete char-
acteristic strength  

It can be seen from the Fig. 5 and the Table 4 
given above that variation of the ratio ω=xeff/xw with con-
crete class is almost linear. This figure also points out that 

agreement of the value of ω=Ak,crv/β with the exact value 
of the ratio of 2ωcrv is the best of all. If the exact value of 
the ratio xeff/xw according to (55) is 2ωcrv and Ak,crv/Θ is an 
approximation of 2ωcrv then as the measure of error for 
Ak,crv/Θ can serve the following functions  
the maximum absolute error  

 1 , ,(2 ; ) |2 |crv k crv crv k crvd A max Aω Θ ω Θ= −  (56) 

and the mean square error  

 2
2 ,(2 ; 2 ) (2 ) ,

b

crv crv crv k crv cm
a

d A df a bω Θ ω ω Θ= − <∫  (57) 

where Θ∈{α,η,0.9,1,β}. 
Table 5 shows that for the total concrete strength 

range the values of ω=Ak,crv/Θ are the nearest to ratio 2ωcrv 
or to the xeff/xw when Θ=β since d1(2ωcrv;Ak,crv/β) 
<d1(2ωcrv;Ak,crv/θ) and d2(2ωcrv;Ak,crv/β)<d2(2ωcrv;Ak,crv/θ), 
where θ∈{1,0.9,α,β}. In the interval of (8 ≤ fck ≤ 50) MPa 
according to proximity of ω=Ak,crv/Θ to the ratio of xeff/xw, 
coefficients α and 0.9 are in the second place, 1 and η - in 
the third place. When (50≤fck≤90) MPa according to d1 and 
d2 the coefficients 0.9 and η are in the second and the third 
place respectively. In the forth place is coefficient 1, i.e. 
Θ=1.  

 

Table 5 
 

Values of errors d1(2ωcrv; Ak,crv/Θ) and d2(2ωcvr;Ak,crv/Θ)  

 

Θ d1(2ωcrv; Ak,crv/Θ) fck
* d2(2ωcvr;Ak,crv/Θ) 

 8 MPa ≤ fck≤ 50 MPa   
1 0.155 12 0.5772 

0.9 0.069 12 0.0566 
α 0.069 12 0.0566 
η 0.155 12 0.5772 
β 0.037 12 0.0131 
 50 MPa ≤ fck ≤ 90 MPa   
1 0.113 90 0.3250 

0.9 0.048 90 0.0278 
α 0.139 90 0.2620 
η 0.054 55 0.0410 
β 0.031 90 0.0184 
 8 MPa ≤ fck ≤ 90 MPa   
1 0.155 12 0.9020 

0.9 0.069 12 0.0840 
α 0.139 90 0.3190 
η 0.155 12 0.6180 
β 0.037 12 0.0315 

*Note: fck is the value of concrete characteristic strength at which 
the maximum error d1 is obtained 

 
Now approximations of the ratio xeff/xw obtained 

by different methods applied in codes STR [1] (49), EC2 
[2] Eq. (50) and SNiP [12] Eq. (51) will be compared be-
tween themselves and with exact values of the ratio xeff/xw 
according to Eq. (55). Eqs. (49), (50) and (51) point out 
that ωSTR, ωSNiP and λ depend on different arguments: fck, 
fcd, and fcd,pris. Therefore for comparison of the said quanti-
ties their mathematical expressions are transformed in such 
a way that argument in all these functions is the same. In 
SNiP [12] the relation between design compressive 
strength of concrete prism and characteristic compressive 
cube strength fck,cube is given. In STR [1] Eq. (49) and in 
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EC2 [2] Eq. (50) relations between design cylinder 
strength fcd, characteristic cylinder strength fck and charac-
teristic cube strength fck,cube are given. Therefore Eqs. (49), 
(50) and (51) are transformed in such a way that in all of 
them there is only one argument fck,cube. Moreover, values 
of ωSTR, ωSNiP and λ obtained by transformed relationships 
in respect of fck,cube should be equal to the values obtained 
by not transformed relationships in respect of the original 
variable.  

In STR [1] fcd and fck,cube are related by the follow-
ing relationships  
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where γc is safety factor for concrete strength given in [1], 
0.8 is equal to the ratio of fck/fck,cube≈0.8, fck,cube is character-
istic cube strength used in [1], a is a coefficient defined by 
Eqs.  (35) and (36). Putting Eq. (58) into Eq. (49) one gets  

 ,0.008 0.8STR ck cube
c

a fαω
γ

= − ⋅ ⋅  (59) 

Putting Eqs. (35) or (36) and (58) into Eq. (59) 
the following relationship is obtained  
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In EC2 [2] fck and fck,cube are related by  

 ,0.8ck ck cubef f=  (61) 

Putting Eq. (61) into Eq. (50) results  
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The relation between prism and cube characteris-
tic concrete strengths in SNiP [12] defined by [17] is pre-
sented below 
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Expression ,(0.77 0.00125 )ck cubf−  in [17] is re-
ferred to as coefficient of the prism strength and it is indi-
cated that the value of its coefficient of variation can reach 
(10-15)%. Putting Eq. (63) into Eq. (51) and collecting of 
terms gives  
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The Eqs. (60), (62) and (64) show that in general 
the ωSTR and ωSNiP depend on concrete characteristic cube 
strength in different way. These relationships, when 
a=0.85, are shown in Fig. 6 and Table 6. In this table val-
ues of ωSNiP are given for concrete strength class up to 
C50/60 since in SNiP [12] characteristic cube strength for 
the concrete is considered just up to 60 Mpa.  

 

Table 6 
 

Values of coefficient ω by relationships Eqs. (60), (62) and 
(64) in respect to fck,cube when a=0.85 

 

Concrete 
class 

fcd 
by (58) 

fcd,priz 
by (63) 

ωSTR  
by (60) 

λ 
by (62)

ωSNiP 
by (64) 

C8/10 4.800 5.827 0.812 0.800 0.803 
C12/15 7.200 8.668 0.792 0.800 0.781 
C16/20 9.600 11.462 0.773 0.800 0.758 
C20/25 12.000 14.207 0.754 0.800 0.736 
C25/30 15.000 16.904 0.735 0.800 0.715 
C30/37 18.000 20.599 0.708 0.800 0.685 
C35/45 21.000 24.923 0.677 0.800 0.651 
C40/50 24.000 27.692 0.658 0.800 0.629 
C45/55 27.000 30.462 0.639 0.800 0.606 
C50/60 30.000 33.231 0.620 0.800 0.584 
C55/67 33.000 37.108 0.600 0.788 - 
C60/75 36.000 41.539 0.583 0.775 - 
C70/85 42.000 47.077 0.567 0.750 - 
C80/95 48.000 52.615 0.554 0.725 - 
C90/105 54.000 58.154 0.545 0.700 - 

 
Fig. 6 shows that λ > ωSTR > ωSNiP when 

(15 ≤ fck,cube ≤ 105) MPa. In the interval of 
(10 ≤ fck,cube ≤ 105) MPa ωSTR > ωSNiP. It may be caused by 
the fact that the value of fcd, according to STR [1] and EC2 
[2] is less than that of fcd,priz by SNiP [12] as it is shown in 
Table 6. However as it was mentioned earlier the factor in 
Eqs. (49) and (51) is of the same value - 0.08. Therefore 
actual difference between ωSNiP and ωSTR is due to different 
safety factors for materials applied in SNiP [12] and in 
STR [1] (γc,SNiP=1.3, γc=1.5) and due to factor a according 
to Eqs. (35) and (36). When (10 ≤ fck,cube ≤61) MPa 
ω = 2ωcrv > λ, and when (62 ≤ fck,cube ≤ 105) MPa then 
ω = 2ωcrv < λ. Fig. 6 points out that in the interval of 
(15 ≤ fck,cube ≤ 105) MPa coefficient λ in its value is the 
nearest to the ratio of ω = 2ωcrv = xeff/xw.  

 
Fig. 6 Variation of coefficients λ, ωSTR, ωSNiP and ω deter-

mined by Eqs. (62), (60), (64) and (55) in respect to 
charactersitic cube strength fck,cube  

The values of ωSTR determined by Eq. (49) ex-
pressed via fcd coincide with these values determined by 
Eq. (60) expressed via fck,cube. The values of λ calculated by 
Eq. (50) expressed via fcd coincide with these values de-
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termined by Eq. (62) expressed via fck,cube as well. Similarly 
the values of ωSNiP calculated by Eqs. (51) and (64) ex-
pressed via fcd,priz and fck,cube respectively coincide as well. 
Thus Table 6 may be used for the comparison of relation-
ships Eqs. (60), (62) and (64) as well.  

Now the values of λ, ωSTR, ωSNiP and ω deter-
mined using relationships Eqs. (62), (60), (64) and (55) 
will be compared in respect to the mean concrete cube 
strength fcm,cube. Therefore is necessary to change in formu-
lae Eqs. (49), (50) and (51) the concrete design strength 
with the mean cube compression concrete strength fcm,cube. 
As it was showed earlier in the development of Eqs. (60), 
(62) and (64), relationships between design strength fcd,priz 
or fcd and characteristic strength fck,cube of concrete accord-
ing to STR [1], EC2 [2] and SNiP [12] can be found with-
out difficulty. In publications many relationships between 
the cube and the prism strengths of concrete are given. In 
[18] 
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where fc,pris and fc,cube are prism and cube compressive 
strengths of the concrete. On average for the low strength 
concrete it is possible to take that , ,0.83c pris c cubef f=  and for 
the high strength concrete - , ,0.78c pris c cubef f=  [17].  

Relationships between the cylinder and the cube 
strength expressed by Eqs.(65) to (68) are plotted in Fig. 7. 
Fig. 7 shows that the difference between the cube and the 
prism compressive strengths increases with compressive 
strength of the concrete.  

 

Fig. 7 Relationship between the prism and the cube com-
pressive strengths: 1 - by Eq. (65), 2 - by Eq. (67),  
3 - by Eq. (66), 4 - by Eq. (68), 5 - by Eq. (69)  

In publications data about relation between the 
cube and the cylinder strengths of concrete are given as 

well.  
In [19] 
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In [20] , ,1.2c cube c cylf f= . 
In [21] 
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However in publications it was not possible to 
find how in STR [1] and EC2 [2] the cylinder and the 
mean cube compression strengths are related.  

Let us investigate the ratio between concrete 
characteristic strengths, fck and fck,cube, and between corre-
sponding their mean strengths, fcm and fcm,cube, presented in 
STR [1] and EC2 [2]. The ratio between the cube fck,cube 
and the cylinder fck characteristic strengths of concrete can 
be obtained from the Tables given in the codes  

 , 0.8ck ck cubef f ≈  (72) 

In these codes the mean cylinder compression strength is 
determined by  

 8MPacm ckf f= +  (73) 

This relationship can be obtained assuming the 
standard deviation of concrete compressive strength equal 
to 5 MPa, i.e. σ=5 MPa [22]. Then  

 
1.645 5 8.225MPa 8MPacm ck ck ckf f f f= + ⋅ = + ≈ +   

 
If the standard deviations for cylinder and cube 

strengths of the same value are taken, i.e. equal to 5 MPa, 
then  

 , , ,1.645 5 8MPacm cube ck cube ck cubef f f= + ⋅ ≈ +  (74) 

From Eqs. (73) and (74) it is obtained  
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From Eq. (72) it is found that 

 , 1 0.8 1.25ck cube ck ckf f f= =  (76) 

Then putting Eq. (76) into Eq. (75) gives  

 
,

8
1.25 8

cm ck

cm cube ck

f f M
f f

+
= =

+
 (77) 

From here it is found that  
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The values of coefficient M in respect to concrete 
strength class are presented in Table 7. The Table shows 
that the coefficient M decreases from 0.89 to 0.81 with 
increasing in concrete strength class.  

 

Table 7 
 

Variation of M in respect to the concrete strength class 
Concrete class 
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Table 8 
 

Values of coefficients ωSTR and ωSNiP determined by for-
mulae Eq. (79) to Eq. (81) when α=0.85 

 

Concrete 
class fcm fcm,cube 

by (78) 
ωSTR 

by (79) 
λ 

by (80) 
ωSNiP 

by (81) 
C8/10 16 17.978 0.799 0.800 0.785 
C12/15 20 22.989 0.775 0.800 0.768 
C16/20 24 27.907 0.753 0.800 0.751 
C20/25 28 32.941 0.731 0.800 0.734 
C25/30 33 39.286 0.707 0.800 0.712 
C30/37 38 45.238 0.684 0.800 0.693 
C35/45 43 51.807 0.663 0.800 0.671 
C40/50 48 57.831 0.643 0.800 0.651 
C45/55 53 64.634 0.626 0.800 0.627 
C50/60 58 70.732 0.610 0.800 0.606 
C55/67 63 76.829 0.596 0.788 0.585 
C60/75 68 82.927 0.583 0.775 - 
C70/85 78 95.122 0.563 0.750 - 
C80/95 88 108.642 0.549 0.725 - 

C90/105 98 120.988 0.541 0.700 - 
 
Using Eqs. (60), (61) and (62) the values of coef-

ficients ωSTR and λ can be determined with respect to fcm. 
Putting , 1 0.8ck cube ckf f= = 1 0.8( 8MPa)cmf −  in Eqs. (60) 
and (62) results 
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Coefficient ωSNiP in respect to fcm can be deter-
mined by Eq. (64). Putting in this relationship 
fck,cube = fcm,cube(1-1.645⋅0.135) = 0.778fcm,cube and Eq. (78), 
the following relationship between ωSNiP and fcm is obtained 
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The values of ωSTR, λ and ωSNiP determined by 
Eqs. (79) to (81) are given in Table 8 and plotted in Fig. 7.  

 

Fig. 8 Variation of coefficients ωSTR, ωSNiP, λ and ω accord-
ing to Eqs. (79), (80), (81) and (55) with the mean 
cylinder compressive strength fcm  

The data presented in Tables 6, 8 and in Figs. 6 
and 8 indicate as well that the values of λ are nearer to ω 
than to ωSNiP or ωSNiP. Also ωSTR > ωSNiP. The performed 
analysis shows that description of the ratio xeff/xw between 
the depths of RSB and NSD by coefficients ωSNiP and ωSTR 
is very poor. Description of this ratio by the coefficient λ in 
the interval of (8 ≤ fck ≤ 50) MPa is poor as well. Therefore 
in this article below a function for the ratio xeff/xw will be 
fitted. 

 
6. Linear approximation of the ratio between the 

depths of the diagrams  

The ratio xeff/xw between the depths of RSB and 
NSD of concrete compression zone is approximated by the 
linear function  

 0 1 cmb b fγ = −  (82) 

where coefficients b0 and b1 are calculated in such a way, 
that their mean square errors would be minimum  

 2
2 ( ; ) ( ) ,

b

cm
a

d df a bω γ ω γ= − <∫  (83) 

Binomial expression under the integral of Eq. (83) 
is expanded  

 2
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b b b
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Integration by parts in respect to b0 and b1 of 
Eq. (84), collecting of terms and equating of the obtained 
expression to 0 results in the system of two equations  
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By numerical solution of the system of Eqs. (85) 



 

 

36

the values of b0 = 0.98 and b1 = 3,1·10-3 were obtained for 
(16 ≤ fcm ≤ 98) MPa. Then the relationship Eq. (82) takes 
the form as follows  

 30.98 3.1 10 cmfγ −= − ⋅  (86) 

Relationship between the coefficient γ and fck with 
consideration of Eq. (73) is  

 30.955 3.1 10 ckfγ −= − ⋅  (87) 

Variation of the coefficient γ with fcd is deter-
mined taking into account the relationship between charac-
teristic and design strength of the concrete. According to 
STR [1] fcd = αccfck/1,5 when fck ≤ 50 MPa and 
fcd = αccfck/(1,5/(1,1-fck/500) when fck > 50 MPa, where αcc is 
the coefficient for long-term strength. Solution of these 
expressions in respect to fck gives  
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1 275 5 3025 30 , when (50 90)MPa
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ck cd ck
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f f f

f f f
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⎬
⎪= + − < ≤
⎪⎭

(88) 

Then coefficient γ in relation to fcd can be obtained putting 
Eq. (88) into Eq. (87).  

Since according to STR [1] coefficient α=1 in the 
case of NSD, and according to EC2 [2] fcd=αссfck/γс when it 
is recommended to take the long term coefficient αсс=1 
then relationships of γ in respect to fcd are as follows  
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f f

f
f
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 (89) 

In Eqs. (86) to (89) fcm, fck and fcd are in MPa. The 
ratio between the depths xeff/xw of the diagrams according 
to Eq. (55) and coefficient γ according Eq. (87) are plotted 
in Fig. 9.  

The maximum error d1(2ωcrv;γ)=max|2ωcrv-γ| and 
the mean square error by Eq. (83) are: in the interval of 
(8≤fck≤50) MPa d1=0.01292 and d2=0.0012, in the interval 
of (50≤fck≤90) MPa d1=0.0241 and d2=0.00823.  

 

Fig. 9 Variation of coefficients ω and γ with cylinder char-
acteristic compression strength fck  

Fig. 9 shows that the relationship of γ describes 
the ratio between the depths of RSB and NSDs quite well. 
It is evident that using nonlinear relationship the ratio of 

these depths can be described more accurately. However, 
the obtained errors are sufficiently small and the proposed 
relationship is suitable for practical application. 

In summary, the results of investigation give op-
portunity to state that the coefficients for substitution of the 
diagrams presented in the codes EC2, STR, DIN cannot 
provide the equivalent substitution of RSB for nonlinear 
stress diagram with descending branch. Therefore carrying 
capacity of flexural, eccentrically compressed and eccen-
trically tensioned members determined using RSB and 
these obtained using the nonlinear stress diagram with de-
scending branch will be different. 

 
7. Conclusions 

In the following conclusions the term nonlinear 
diagram is referred to as nonlinear diagram with descend-
ing branch for concrete compression stresses according to 
EC2 and STR 2.05.05:2005.  

1. It was determined that the substitution of rec-
tangular stress block for nonlinear stress diagram accord-
ing to EC2 and STR 2.05.05:2005 results in some inaccu-
racies. If the centroids of the diagrams coincide then the 
ratio between the areas of nonlinear stress diagram and of 
rectangular stress block varies in the interval of 0.103 to 
1.201. If for substitution of the diagrams the coefficient of 
0.9 is applied, as it is required in STR 2.05.05:2005, the 
interval of variation for this ratio is smaller: 0.995 to 1.081.  

2. When the centroids of the diagrams coincide 
then coefficient ω, which is the ratio between depths of the 
diagrams, can be considered as the depth of rectangular 
stress block in normalized coordinates. When the areas of 
the diagrams are equal then the coefficient ω can be con-
sidered as the area of the nonlinear diagram described in 
normalised coordinates, divided by concrete compressive 
strength. Thus the said coefficient takes a new physical 
meaning.  

3. It was determined that agreement of the ratio 
between the depths of the diagrams used in STR 
2.05.05:2005 with the ratio between the depths of the rec-
tangular stress block and that of the equivalent nonlinear 
stress diagram is very poor.  
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E. Dulinskas, D. Zabulionis 
 

KREIVINĖS ĮTEMPIŲ DIAGRAMOS PAKEITIMO 
STAČIAKAMPE ĮTEMPIŲ DIAGRAMA 
EKVIVALENTIŠKUMO ANALIZĖ 
 
R e z i u m ė 

 
Darbe analizuojama kreivinės įtempių diagramos 

su žemyn krintančia dalimi pakeitimo stačiakampe įtempių 
diagrama ekvivalentiškumas skaičiuojant stačiakampio 
skerspjūvio lenkiamus, ekscentriškai gniuždomus ir eks-
centriškai tempiamus gelžbetoninius elementus. Pasiūlyta 
metodika, leidžianti ekvivalentiškai pakeisti šias diagra-
mas. Pateiktos kreivinės diagramos su žemyn krintančia 
dalimi ploto ir svorio centro analizinės išraiškos. Standar-
tinėms betono klasėms yra apskaičiuoti ir pateikti koefi-
cientai, įgalinantys ekvivalentiškai pakeisti minėtas diag-
ramas. Tai leidžia skaičiuoti gelžbetoninį elementą taikant 
stačiakampės įtempių diagramos modelį. Diagramų pakei-
timas pagal EC2 ir STR 2.05.05:2005 palygintas su ekvi-
valentišku kreivinės diagramos su krintančia dalimi pakei-
timu stačiakampe įtempių diagrama. Parodyta, kad pagal 
STR 2.05.05:2005 aukščių santykis labai skiriasi tikrojo 
nuo stačiakampės ir kreivinės įtempių diagramos aukščių 
santykio. Straipsnyje taip pat pateikta šio santykio tiksli 
analizinė išraiška bei tiesinė aproksimacija priklausomai 
nuo betono charakteristinio ir skaičiuojamojo stiprio.  

  
 

E. Dulinskas, D. Zabulionis 
 
ANALYSIS OF EQUIVALENT SUBSTITUTION OF 
RECTANGULAR STRESS BLOCK FOR NONLINEAR 
STRESS DIAGRAM 
 
S u m m a r y 
 

This article deals with the analysis of equivalency 
of the substitution of rectangular stress block for nonlinear 
stress diagram with descending branch for the calculation 
of flexural, eccentrically compressed and eccentrically 
tensioned reinforced concrete members of rectangular 
cross-section. The method for equivalent substitution of 
these diagrams is proposed. Analytical relationships of 
area and its centre for the nonlinear diagram with descend-
ing branch are presented. Coefficients for equivalent sub-
stitution of the said diagrams for the standard concrete 
strength classes are determined and given. It gives the op-
portunity to design reinforced concrete members using 
rectangular stress block model. Substitution of the dia-
grams applied in EC2 and in STR 2.05.05:2005 is com-
pared with the equivalent substitution of rectangular stress 
diagram for nonlinear stress diagram with descending 
branch. It is shown that in STR 2.05.05:2005 description of 
the ratio between the depth of the rectangular diagram and 
that of the equivalent nonlinear one with descending 
branch is very poor. An explicit analytical relationship for 
this ratio and its linear approximation in respect to the con-
crete characteristic and design strengths are presented in 
this article as well.  

 
 
 



 

 

38

Е. Дулинскас, Д. Забулёнис 
 
АНАЛИЗ ЭКВИВАЛЕНТНОСТИ ЗАМЕНЫ 
КРИВОЛИНЕЙНОЙ ДИАГРАММЫ НАПРЯЖЕНИЙ 
НА ПРЯМОУГОЛЬНУЮ ДИАГРАММУ 
НАПРЯЖЕНИЙ 
 
Р е з ю м е 
 

В статье анализируется эквивалентность заме-
ны криволинейной диаграммы с ниспускающейся вет-
вью на прямоугольную диаграмму при расчете изги-
баемых, внецентрально сжатых и внецентрально рас-
тянутых элементов прямоугольного сечения. Предло-
жена методика, позволяющая эквивалентную замену 
этих диаграмм. Даны аналитические выражения пло-
щади и её центра тяжести для криволинейной диа-
граммы с ниспускающейся ветвью. Для стандартных 

прочностных классов бетона подсчитаны и даны ко-
эффициенты, позволяющие эквивалентную замену 
упомянутых диаграмм. Это позволяет железобетонный 
элемент рассчитывать, используя модель прямоуголь-
ной диаграммы. Сравнена замена диаграмм согласно 
EC2 и STR 2.05.05:2005 с эквивалентной заменой кри-
волинейной диаграммы с ниспускающейся ветвью на 
прямоугольную диаграмму напряжений. Показано что 
STR 2.05.05:2005 очень неточно описывает отношение 
высот прямоугольной диаграммы и эквивалентной 
криволинейной с ниспускающейся ветвью диаграммы. 
В статье также дано точное аналитическое выражение 
этого отношения и его линейная аппроксимация в за-
висимости от нормативной и расчетной прочности бе-
тона.  
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