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Modified genetic algorithm for optimal design of truss structures
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1. Introduction

Truss systems are widely used in engineering
practice, mainly due to the economy, simple manufacturing,
transportation and storage. These systems form the frame-
work of such constructions as bridges, towers, roof sup-
porting structures, etc. Usually a truss system includes a
large number of elements (trusses), which can have differ-
ent parameters (length, cross-sectional area, shape of cross-
section, material). Thus, the optimization of truss systems
is relevant problem in engineering. Truss systems can be
optimized according several criteria: sizing, shape, and
topology [1]. Large number of design parameters makes
this problem complex. As the sizing optimization usually
does not cause serious computational problems, further we
will deal with the topology and shape optimization.

In topology optimization the optimal truss place-
ment scheme in the framework of nodes with fixed posi-
tions is sought. This problem is discrete; the number of
possible variants depends on the number of nodes and is
huge even in the case of small-scale structures. Therefore
full-search algorithms can not be used for the solution.
Instead, different methods and algorithms avoiding the
examination of all possible connection combinations are
exploited. Thus, in the so-called “ground structure method”
[2] the solution begins from an over-connected truss sys-
tem, and the superfluous trusses are eliminated. Also the
simulated annealing method [3], which is the generaliza-
tion of Monte Carlo method, is used. However, the most
natural strategy for topology optimization of truss systems
seems to be the use of genetic algorithms (GA), where the
solution is adapted to the constraints and objective function
[4]. In this paper we solve the topology optimization prob-
lems using original modified genetic algorithm, which for
this particular class of problems yields better results than
the classical GA [5].

In shape optimization the number of nodes and
trusses is constant, and only positions of the nodes may
vary. Design parameters in this case are the coordinates of
certain set of nodes [6]. Thus, the truss system topology
must be known prior to the shape optimization. Naturally,
in the joint topology/shape optimization the multilevel de-
sign strategy can be employed, where in one phase the to-
pology optimization is dealt with, and in the other — the
shape optimization [7]. In this paper we also employ this
approach; shape optimization is performed using classical
GA, thus improving the solution obtained in the topology
optimization phase.

An additional research was conducted in order to
ascertain what strategy can yield better solutions: to carry
out the shape optimization following the topology optimi-
zation, or simply perform only the topology optimization
with increased number of nodes.

2. Problem formulation

As the objective function for topology and shape
optimization the total mass M of the structure is taken

minM(x),xeD (1

where x denotes the design parameters, and D is the feasi-
ble configuration of the truss system. Total mass of struc-
ture can be simply obtained summing up the masses of all
truss system’s elements

M = iLepeAe (2)

e=1

where L, is the length of eth element, p, is density, and
A, is cross-sectional area of the same eth element.

The constrains for the problem involve equilib-
rium (3) and local stability (4) checks. Also stresses in the
trusses should not exceed the given threshold value (5).
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where F.j is the jth force at the ith node; the forces are

obtained solving the main statics equation [K ]{u}: {F } s

where [K] and {u} are stiffness matrix and displacements
of the truss system.
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where F, is maximum allowed compression force at the
eth element, £, is Young’s modulus, /, is moment of

inertia, and L, is the length of the same element.
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where o, is stress in the eth truss, and o,
allowable stress.

The objective value is obtained by the finite ele-
ment method [8, 9]. For this purpose it is possible to use
commercially available packages ANSYS, ALGOR,
ABAQUS, COSMOS, etc [10]. Original connection tech-
nology between the optimization algorithm in C++ and
package ANSYS, which examines the requirements of
constraints and obtains all the data necessary for objective
value, is suggested by the authors [11].

In this paper the original software in C++ was
used for the finite element method instead of general-



purpose commercial packages. In the case of commercial
packages application, a lot of computer time is wasted for
package loading into service application and unloading
processes. As the genetic algorithm is also implemented in
C++, the unified computational environment dramatically
reduces the required computational resources.

3. Topology optimization

For topology optimization of truss systems the
GA concept is employed [5, 12]. The interface between
GA and particular truss system, namely, how to convert the
truss system into string of bits, is described in details in
[11]. The original modified GA was used in this work [13]

(Fig. 1).

Start

Generation of initial
population

Selection

v

Crossover

)’

Mutation

Obtaining the new
population

Purification of genotype

More
generations
needed ?

Fig. 1 Scheme of modified genetic algorithm

As it is seen, the modified GA adds to the classi-
cal algorithm (Fig. 8) one additional phase — the purifica-
tion of genotype. Here, beside the selection, cross-over and
mutation processes, each individual (which is entire truss
system) is additionally analyzed. Provided that there are
particular trusses with stresses below some threshold value,
they are eliminated from the truss system, and the values of
fitness function associated with these individuals are recal-
culated. However, these individuals are retained in the
population. If these individuals prove to be unfit, they will
not survive the selection. Evidently, as an alternative for
genotype purification the following constraint can be led
into mathematical model:
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(6)

min

is minimum allowable stress.

where o,
However, the experience of numerous truss sys-
tems optimization clearly states, that such a constraint im-

pedes the optimization process, because a number of indi-
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viduals must be eliminated from each generated population.
It is obvious from engineering point of view: at the begin-
ning of optimization process the truss system contains usu-
ally fairly large number of elements, and the probability to
obtain the under-stressed trusses is high. The suggested
heuristics proved to retain more possibilities for obtaining
the global solution.

Let us illustrate the process of optimization on
one numerical example: rectangular cell of dimensions
3x2 m with two clamped nodes and nonsymmetrical load-
ing (three concentrated loads; vertical loads of magnitude
25 kN and 10 kN, horizontal — of 15 kN)); the positions of
boundary conditions and loads are fixed. Nodes are to be
connected by trusses with cross-sectional area of 5e-4 m?;
material Young's modulus is 200 GPa and density is
7800 kg/m®. At the beginning the cell is divided into 12
nodes (Fig. 2), later on the discrete scheme is refined regu-
larly.

Fig. 2 Connection “all-to-all” in 12-node truss system

In this case there are 66 possible node connec-
tions and approximately 7.4E+19 variants of truss system.
In order to increase the probability of obtaining the global
solution, the problem was solved with different values of
genetic parameters. Thus, the population size was varied in
the range from 40 individuals to 90 with a step of 2 indi-
viduals, and the mutation probability was from 1% to 5%
(step 1%) — 130 numerical experiments in total. The best
solution was obtained, when the population size is 86 indi-
viduals and mutation probability is 1%. The total length of
elements of the truss system corresponding to this individ-
ual (Fig. 3) is 20371.6 mm, and mass — 794.492 kg.

B

Fig. 3 The best solution of topology optimization problem
(12-node truss system)



The problem was solved on the processor AMD
Athlon 1.09 GHz, 1 GB of RAM. For each generated
population 200 iterations were performed, after what the
GA is stopped and the best obtained individual is selected.
Processing of 200 iterations for the population, where the
best individual was obtained (Fig. 3), took 15 sec.

The evident strategy for better solution is refine-
ment of the discrete scheme of the problem. Thus, let us
regularly duplicate the density of the mesh retaining all the
initial data of the problem. The obtained scheme with 35
nodes is shown in Fig. 4.

Fig. 4 Connection “all-to-all” in 35-node truss system

Now the size of the problem increases until 595
possible node connections and approximately 1.3E+179
variants of the truss system. As the length of each individ-
ual (i.e., length of the string of bits) now increases until
595 bits comparing to 66 bits in previous case, the popula-
tion size also must be increased. Practical experience
shows, that minimum size of the population should be of
the rank of individual’s length.

The populations possessing from 150 to 400 indi-
viduals with a step of 10 individuals and the mutation
probability from 1% to 5% were examined. The best solu-
tion (Fig. 5) is obtained in 92 sec. for the population hav-
ing 220 individuals and with mutation probability 1%.

Fig. 5 The best solution of topology optimization problem
(35-node truss system)

Total length of the elements of the obtained truss
system is 18916.9 mm, mass is 737.759 kg. Thus, the solu-
tion is improved from 794.492 kg to 737.759 kg, or by

7.1%. However, the increase of computational time (92 sec.

instead of 15 sec.) naturally leads to the exploration of
other possible solution strategies. One evident strategy is to
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carry out shape optimization of the obtained topologies
instead of increasing node mesh density.

4. Shape optimization

During the shape optimization optimal positions
of the nodes (or of a particular set of nodes) are sought; the
design parameters are coordinates of these nodes. Now the
interface program between GA and the truss system must
be able to render all coordinates of the nodes and their al-
lowed alteration ranges in the strings of bits, and vice versa.

The coordinates of each node are coded in the fol-
lowing way. Let the x and y are known initial Cartesian
coordinates, and the string of 4 bites is given for one coor-
dinate value. Then we have 2* = 16 different positions in x
direction and 16 — in y direction. Thus, the coding of one
node’s position requires 8 bits; the node will be able to
take one of 2% = 256 different discrete positions. Allotment
of longer string for one coordinate increases the number of
possible positions of the node; however, longer computa-
tional time is also to be expected. Fig. 6 shows the range of
possible node’s positions, when each coordinate is coded
into 3 bits (i.e., 8 positions); 6 bits for one node. In this
case the node can take 64 different positions.

Fig. 6 Feasible range of nodes’ positions (coding in 6 bits
string)

Possible positions of the node are shown as the
black dots; initial position is rimmed. The initial position is
not in the centre of the range, because always we have
even number of node's positions: 4, 8, 16, 32, etc. There-
fore for x coordinate the nearest position from the left side
is chosen, and for y coordinate — the nearest one from the
bottom side. Now the interface scheme is as shown in
Fig. 7.
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Fig. 7 Transformation of coordinate value

In Fig. 7 the coding of x coordinate is shown us-
ing the string of 3 bits. 8 positions are possible (from 0 to
7); the initial (third) position is rendered in the string of
bits “011”. Thus, if GA yields solution “011”, the incre-
ment of x coordinate is 0. Correspondingly, the value
“100” means transition to the 4th position, etc. Another
important parameter for the interface is the distance be-
tween adjacent positions. If this value is chosen (the
smaller this value, the more precise solutions is expected),
decoding of the string into coordinates of the node may be
carried out in the following way
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where x,,, is x coordinate of the node, x,,,, is initial co-

ordinate, V' is the decimal number corresponding to the
string of bits, V, ... is a value to be subtracted in order to

ransf
obtain the nearest to the central position from the left side,
and S is the distance between adjacent positions. V,

transf
depends on the number of bits N allotted for the coordinate
rendering:

@®)

Coordinate y is calculated in the same way.

Coding coordinates of the whole truss system, the
string of bits is obtained, where x and y coordinates of all
nodes in sequence are recorded

0
aaaaaaaaaaaaq...aaaaaa , a € { 9
daddagqaaqdaq...adqddd 1
X Y X Y X Y
Node 1 Node _2 Node _K

where a is the value of a bit, x and y are Cartesian coordi-
nates of ith node, and K is the number of nodes to be coded
(less than the overall number of system's nodes, as
clamped and loaded nodes are not allowed to change their
positions).
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Fig. 8 Scheme of classical genetic algorithm

The described algorithm is implemented in C++.
An algorithm was applied for shape optimization of the
structure shown in Fig. 3 (the best topology of 12-node
system), hoping to improve the obtained topology by vary-
ing node positions. In this particular system only positions
of 3 nodes can changed, as remaining nodes are fixed due
to boundary and loading conditions. 10 bits were allotted

for coding of each node, 30 bits in total for the truss system.

Thus, the range of 2*° or approximately 1.07E+09 different
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positions were examined. The distance between adjacent
positions of the nodes in vertical and horizontal directions
was equal; the value was chosen in such a way that two
neighboring nodes may nearly meet in the centre of the
nodes.

The purification of genotype now is meaningless
— the shape optimization starts from the best individual
selected by the topology optimization, and the probability
to obtain the under-stressed truss is not significant. Thus,
classical GA (Fig. 8) was employed for the optimization.

Now the population size may be taken in the
range of tens of individuals, because the length of one in-
dividual is much shorter. Margins for the values of other
genetic parameters are the same as in previous numerical
examples.

As in the case of topology optimization, a number
of combinations of genetic parameters were examined: the
population size varied from 2 to 50 individuals with a step
of 2 individuals, and the mutation probability was from 1%
to 5%. The best solution (Fig. 9) was obtained with the
population size of 42 individuals and the mutation prob-
ability of 5%.

Fig. 9 The best solution of shape optimization (12-node
system)

Total length of the elements of the obtained truss
system is 18831.9 mm, and mass is 734.444 kg. The solu-
tion is obtained per 8 sec. For each population, as in the
case of topology optimization, 200 generations were gen-
erated.

5. Discussion on numerical experiments

Three numerical experiments for the optimization
of the same truss system were performed: topology optimi-
zation of initial truss system (serving as the basis for com-
parison of two different optimization strategies), topology
optimization with subsequent shape optimization, and re-
fined topology optimization. The results of all three ex-
periments are presented in Table 1.

Table 1
Numerical results of optimization experiments

Type of optimization | The best | Decrease of | Increase

mass, kg mass, kg of time, s
Topology (12 nodes) 794.492 0 0
Topology (35 nodes) 737.759 56.733 77
Topology (12 nodes) | 734.444 60.048 8
+ shape




The results show, that the topology optimization
with refined mesh of nodes decreases mass of the truss
system by 7.1 %, however, the computational time in-
creases from 15 sec. to 92 sec., i.e., by 513%. Shape opti-
mization for the same case reduces the mass a little bit
more — by 7.6%, while the computational time increases by
53.3%. The required computational time is shown in
Fig. 10.
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Fig. 10 Dependence of computational time on the type of
optimization

It is impossible to judge about the best optimiza-
tion strategies relying on one numerical example, therefore
an additional series of numerical experiments were carried
out. This time let us start from the 35-node system (the
best topology obtained is shown in Fig. 5) and, as in previ-
ous chapter, try to improve the solution using the same
strategies: to accomplish topology optimization with dupli-
cated mesh of nodes, and to carry out shape optimization
on the obtained best solution of the topology optimization
of 35-node system.

For the first case the number of nodes increases
until 117 nodes; there are 6786 possible node connections
and approximately 6.02E+2042 variants of truss system
(all possible variants of the truss system now can not be
shown graphically, see Fig. 11). The problem size in-
creased dramatically, and precise tuning of genetic opera-
tors is needed in order to obtain reasonable solutions. Thus,

Fig. 11 Connection “all-to-all” in 117-node truss system

numerical experiments with small-size populations (from
50 to 500 individuals) do not render any better solutions.
The same is valid for large-scale populations (500 to 1700
individuals) using the mutation probabilities from 1% to
5% (in previous numerical examples these probabilities
always allow to obtain good solutions). This can be ex-
plained by the following reasons: now the length of each
individual is 6786 genes, however, approaching end of the
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solution it is expected to have a sparse populated individ-
ual (for the problem under consideration only about ten
truss elements should be presented in the final scheme).
Even the mutation of 1% will exchange approximately 70
genes per time — 70 genes of the value “1” will appear in
the individual. Now, even we will arrive to a reasonable
individual during the solution due to crossover, the muta-
tion will ruin all the achievements.

The mutation for similar problems should change
the values of only several genes. Thus, in this case the mu-
tation probabilities of rank 0.01% proved a success. The
best solution was obtained with the mutation probability
0.02% and the population size of 775 individuals (Fig. 12).
The overall length of trusses here is 17897.9 mm, and mass
is 698.018 kg. 200 iterations of the solution took 1530 sec.

Fig. 12 The best solution of topology optimization problem
(117-node truss system)

Thus, mass of the truss system was reduced, if
compare with 35-node problem, by 39.741kg (or
96.474 kg, if compared to 12-node problem).

Alternative strategy supposes to carry out addi-
tional shape optimization on the best solution of the topol-
ogy optimization (Fig. 5) instead of increasing number of
the nodes. Here only 2 nodes may change their positions.
Coordinates of the nodes are coded by 28 bit string. As in
the case of previous shape optimization of 12-node prob-
lem, several numerical experiments with different popula-
tion sizes and mutation probabilities (2 to 50 individuals
with step of 2 individuals; 1 to 5% with step of 1%) were
carried out. The best solution (Fig. 13) was obtained using
the population size of 30 individuals and the mutation
probability of 4%; 200 iterations took 4 sec.

Fig. 13 The best solution of shape optimization (35-node
system)



Here the overall length of trusses is 18715.9 mm,
and the mass is 729.92 kg, i.e. the value of fitness function
was reduced by 7.839 kg compared to the starting value.

Table 2 summarizes results of the both strategies.
Thus, the topology optimization on the regularly refined
computational scheme yields substantially better solution
than the topology optimization/shape optimization strategy,
however, at the expense of 15.9 times longer computations.

Table 2
Numerical results of optimization experiments
on 35-node system

Type of optimization The best | Decrease of | Increase
mass, kg mass, kg of time, s

Topology (35 nodes) 737.759 0 0

Topology (117 nodes) | 698.018 39.741 1438

Topology (35 nodes) 729.92 7.839 4

+ shape

6. Conclusions

Genetic algorithms can be naturally adapted to the
joint topology and shape optimization of truss systems. For
that the interface program must be designed rendering the
truss system as the string of bits, and vice versa. The inter-
face for shape optimization renders node positions into
strings in a similar way.

The solution of a particular problem may be im-
proved in two ways. First, the topology optimization of the
same problem with more dense initial mesh of nodes yields
always a better solution. Second, the alternative strategy of
solution improvement is to carry out the topology optimi-
zation with a more rough mesh of nodes and to employ the
shape optimization on the defined solution; this usually
further improves the solution.

What is the best strategy of optimization? The
pure topology optimization on regularly refined computa-
tional scheme, perhaps, yields slightly better solution than
the topology optimization of initial scheme and successive
shape optimization. However, the required computer re-
sources compared to the second strategy increase dramati-
cally.
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D. Sesok, R. Beleviius

SANTVARU OPTIMIZAVIMAS MODIFIKUOTU
GENETINIU ALGORITMU

Reziumé

Straipsnyje aprasoma strypiniy sistemy (santvary
arba rémuy) topologijos ir formos optimizacija. Optimizaci-
ja pradedama nuo i baigtini mazgy skaiciy sudalytos struk-
tiros; mazgai strypais vieni su kitais sujungiami visais
galimais variantais. Netinkami strypiniy sistemy variantai
atmetami. Nagrinéjamos dvi alternatyvios optimizavimo
strategijos: didesnio mazgy skaiciaus pradinés struktiiros
vien tik topologijos optimizavimas ir topologijos optimiza-
vimas, pradedant nuo mazesni mazgy skaiéiy turinéios
struktiiros ir papildomai optimizuojant gauta topologijos
forma. Topologijai optimizuoti naudojamas autoriy modi-
fikuotas genetinis algoritmas, kuris tos klasés uzdaviniams
spresti tinka geriau negu klasikinis genetinis algoritmas. [
algoritma vietoj apribojimy sistemos plétimo jtrauktas pa-
pildomas zingsnis — genomo iSgryninimas, leidziantis pa-
pildomai pagerinti atskirus populiacijos individus bei islai-
kyti daugiau galimybiy optimizavimo procesui, nei kad
leisty ribojimy grieztinimas. Formai optimizuoti taikomas
klasikinis genetinis algoritmas. Abi strategijos efektyviai
gerina sprendinj, taciau taikant bendraja topologijos ir
formos optimizavimo strategija reikia mazesniy kompiute-
rio iStekliy. Visi straipsnyje aprasomi skaitiniai pavyzdziai
i§spresti naudojantis originalia autoriy sukurta programine
jranga.
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MODIFIED GENETIC ALGORITHM FOR OPTIMAL
DESIGN OF TRUSS STRUCTURES

Summary

In this paper, topology and shape optimization of
truss or frame structures is discussed. The optimization
starts from a structure, into which a finite number of nodes
are set; all the nodes are connected together by trusses in
all possible variants. Unfit variants of the truss system are
rejected. Two alternative ways of the optimization are
compared: topology optimization starting from initial
structure with a larger number of nodes, and topology op-
timization starting from initial structure with smaller num-
ber of nodes but with additional shape optimization of the
obtained topology. The topology optimization is solved
with original modified genetic algorithm, giving better
results in comparison with classical genetic algorithm. In-
stead of further development of constraint system, the ad-
ditional step is introduced into algorithm — purification of
genotype, which allows complementary improvement of
particular population individuals, and together for the op-
timization process retains more possibilities than stiffening
of constraints. The shape optimization is solved by classi-
cal genetic algorithm. Both strategies effectively improve
the solution, however the common topology/shape optimi-
zation requires less computer resources. All numerical ex-
amples are obtained with original software developed by
the authors.
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MOIUPUIIMPOBAHHbII TEHETUYECKUI
AJITOPUTM JIJIS1 ONTUMM3ALIMA ®EPMEHHBIX
KOHCTPYKII

Pe3wowMme

B crarbe onmceiBaeTcsl ONTHMHU3ALMS TOHOJIOTHH
n (hopMbl (hepMEHHBIX KOHCTPpYKIMH. OnTUMH3aIys Havu-
HAeTCsl CO CTPYKTYpBI, MOJICICHHOW Ha KOHEYHOE YHCIIO
Y3JI0B. Y3JIbI COEAMHSIOTCS CTEPXKHSAMH IPYT C IPYroM
BCEMH BO3MOXXHBIMH BapuaHTaMH. HekoppekTHbIe Bapu-
AHTBI CTEPXKHEBBIX CHCTEM OTOpachiBaroTcs. CpaBHUBAOT-
Csl JIB€ albTCPHATUBHBIE CTPATETHH ONTHUMMU3AIMU: ONTHU-
MH3aLusl TOMOJOTUU C OOJBLIMM KOJIWYECTBOM Y3JIOB H
ONTHUMU3ALMS TOIOJIOTHH C MEHBIIMM KOJIMYECTBOM Y3JIOB,
HO C TOCIEAYIONEH JOMOJHUTEIHHON ONTHUMH3AIUEI
¢dopmebl. [ ONTHMU3ALMU TOMOJIOTHH HCHOJIB3YETCSI MO-
JUQUIMPOBAaHHBIH aBTOPaMH T'€HETHYECKHH aJrOpHTM,
KOTOPBI ISl TAaHHOTO KJlacca 3a/ad AaeT JIydIne pe3yJib-
TaThl, YeM KJIACCHYECKUI T'€HETHUECKHH alropuT™. B ai-
TOPUTM BMECTO PACIIMPEHHS CHCTEMbI OTPaHWYCHUH 1O-
0aBlIEH MOMOJHWUTENBHBIM IIar — OYMINEHWE T'€HOTHIIA,
KOTOPBIN IO3BOJISICT OMOJHHUTENBHO YIYYIIUTh HEKOTO-
pble MHIWBUABI TOMYJISIIUMA U COXPAHWUTH OOJBIINE BO3-
MOXHOCTH IJIsI IIpoliecca ONTHUMMU3AIMU, YeM 3TO ObI MHO-
3BOJIMJIO Y)KECTOYEHHE OrpaHuyeHuil. Jins ontumuzanuu
(hOpMBI UCHIOJIB3YETCS KIIACCHUECKUI TEHETUIECKUN aJro-
putMm. O0e crparernu 3G(GEKTUBHO YIYYIIAIOT pElIeHHE,
OJTHAKO COBMECTHAsI CTpaTerusi ONTHMHU3ALNU TOIOJIOTHHU-
(hopmbI TpeOyeT MEHBIINX KOMITBIOTEPHBIX pecypcoB. Bcee
NIPUBE/ICHHBIC B CTAaThe YMCIEHHBIE IPUMEpPbI ObUTH pellle-
HBl C MWCHOJI30BAHUEM OPUTHHAIBHOTO IPOTPAMMHOTO
obecnieueHns1, pa3pabOTaHHOTO aBTOPaMHU.
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