
 398 

ISSN 1392-1207. MECHANIKA. Vol. 30, No. 5, 2024: 398−407 

Structure Analysis for Plate Components Using an Advanced Boundary  

Element Method 

Yudong ZHONG, Xue ZENG, Guizhong XIE, Junjian HOU, Ruolan WANG, Liangwen WANG, 
Wenbin HE 
Henan Provincial Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Mechanical and Electrical En-

gineering Institute, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China,  

E-mail: zhongyd@zzuli.edu.cn 

https://doi.org/10.5755/j02.mech.36578 

1. Introduction 

Due to the different structural properties of the 

plates used in various construction machinery structures, 

different characteristics have been formed, which deter-

mines their scope of use in actual projects. In the process of 

design and manufacture of mechanical structure and its 

components, the correct evaluation of its structural strength 

is a key technology. To ensure the normal use of the me-

chanical structures under various complex conditions, the 

related plate structures must have sufficient strength and fa-

tigue resistance [1]. Accurately evaluating the strength of 

plate components can help to reduce the self-weight of me-

chanical structures, reduce the construction cost, improve 

the fatigue strength and the loading capacity, and thus im-

prove the economy and safety of mechanical structure [2, 3]. 

So it is necessary to perform the structure analysis for plate 

components.  

With the rapid development of computer technol-

ogy and numerical theory, a great breakthrough has been 

made in the structure analysis of plate components by nu-

merical methods. Among these numerical methods, Finite 

element method (FEM) is the most commonly used and 

greatly depends on the shape and quality of the mesh [4]. 

When FEM is used to analyze the thin plate components, the 

plate and shell elements with geometric assumptions are 

usually introduced [5]. If all solid elements are used, to 

avoid mesh distortion, a large number of meshes need to be 

divided according to the minimum feature size, resulting in 

a sharp increase in computation. Meshless methods [6-9] are 

developed which only need nodes without using predefined 

mesh information for domain discretization, and can easily 

simulate the flow field of various complex shapes by coor-

dinate point calculation. Boundary element method (BEM) 

is a semi-analytical method, which has the advantages of di-

mensionality reduction and high computational accuracy 

[10-13]. In addition, BEM only needs boundary discretiza-

tion and has no connectivity requirement for grid nodes, 

which is very suitable for analyzing the physical variables 

(e.g. displacement, traction, stress, etc.) of the plate compo-

nents with thin features. In the boundary element analysis, 

to ensure the accurate calculation of the physical variables, 

the element interpolation and numerical integration (espe-

cially for the near singular integrals in thin-structural prob-

lems) associated with boundary integral equation (BIE) 

need special attention.  

For element interpolation, at present, BEM mainly 

uses two interpolation methods: continuous element and dis-

continuous element interpolation [14]. The continuous 

element can reduce the discrete error of geometric model 

[15], while discontinuous element has the advantages of 

easy to handle corner and mesh generation [16, 17]. As BIE 

does not require the continuity of trial functions, the discon-

tinuous element interpolation method is commonly used in 

the BEM analysis. However, discontinuous elements inter-

polation method cannot accurately simulate the physical 

quantities on small features and narrow surfaces of the plate 

components. Even if a large number of elements are placed 

on these special structures, it is difficult to achieve the de-

sired effect, and the calculation amount also increases dra-

matically. To improve the simulation accuracy of physical 

variables on engineering structure, an advanced interpola-

tion method is employed in this paper. The interpolation el-

ement is obtained by adding virtual points on the boundary 

of the original discontinuous element. As the degrees of 

freedom of virtual nodes can be eliminated by collocation 

nodes of the element, so the size of the coefficient matrix of 

the system equation is unchanged, and the order of interpo-

lation polynomials is also improved. 

In terms of numerical integration, there are both 

singular integrals and near singular integrals in the BIE due 

to the singularity of the fundamental solution. In structure 

analysis of BEM, there are several types of singular inte-

grals in BIE, such as weakly singular and strongly singular 

integral. These types of singular integrals have been suc-

cessfully evaluated by various methods, such as coordinate 

transformations method [18-20] and the approximate expan-

sion methods [21, 22], etc. For near singular integrals, tre-

mendous efforts have been made to derive convenient inte-

gral forms or construct complex transformation techniques, 

and good research achievements have been achieved. In 

these achievements, analytical and semi-analytical methods 

[23, 24], element subdivision [25, 26] and nonlinear trans-

formation methods [27-31], etc. are included. As analytical 

integral methods and element subdivision methods are lim-

ited by generality and efficiency, nonlinear transformation 

methods are often employed to deal with the near singular 

integrals. In these nonlinear transformation methods, the 

sinh transformation method proposed by Johnston [32, 33] 

is an effective and general method to process near singular 

integrals. After this transformation, the trend of the inte-

grand is smoothed and the near singularities can also be 

eliminated. Therefore, applying the sinh method, the near 

singular integrals in BIE of structure analysis for plate com-

ponents with thin features can be accurately evaluated. 

In this paper, an advanced BEM is developed to 

evaluate the physical variables for plate components with 

curve or thin features. Firstly, the expanding element 
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interpolation is employed to improve the simulation accu-

racy of the physical variables according to the characteris-

tics of plate structure with curve or thin features, which can 

not only improve the order of interpolation polynomials 

without changing the degrees of freedom of system equa-

tions, but also can well simulate physical variables on 

curves and thin structures, reducing geometric errors. Then 

the integral transformation frame is applied to deal with the 

singular and near singular integral in BIE, to ensure the ac-

curate calculation of the singular and near singular integrals 

on the geometrical model of plate components. With this 

method, the physical variables of the plate components can 

be accurately evaluated. 

The outline of the paper as follows. Section 2 de-

scribes the numerical implementation of advanced BEM for 

structure analysis of plate components, which the treatment 

methods of element interpolation, singular and near singular 

integrals are included. A porous plate, a deck framing and a 

propeller structure are presented to verify the feasibility and 

universality of the presented method in Section 3. The con-

clusions are given in Section 4. 

2. Numerical Implementation of the Advanced BEM 

In the elastic structure analysis for the plate com-

ponents, the corresponding equilibrium equations of this 

problem can be formulated in Eq. (1) [34] in the absence of 

the body forces. 
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in which, v denotes the Poisson’s ratio, ui is the component 

of displacement. For plane problem, i = 1, 2 and the varia-

bles in Eq. (1) associated with u3 and x3 are 0; for space 

problem, i = 1, 2, 3. The boundary conditions are given as 

follows 

Dirichlet: ( ) ( ) ,i i uu x u x x =   (2) 

Neumann: ( ) ( )i i tt x t x x =   (3) 

in which, Γ denotes the boundary, ti is the boundary traction. 

In BEM analysis for the plate components, the solutions of 

Eq. (1)-Eq. (3) can be solved by the BIE of the elasticity 

problem, and the formulas of the BIE can be expressed as 

[35] 
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where cij(P) is the free-term coefficients associated with the 

boundary Γ, P and Q are the source and field point in the 

discrete domain. uj and tj denote the displacement and trac-

tion on the boundary, respectively. * ( , )iju P Q  and ( )*

ijt P,Q  

are the displacement and traction fundamental solutions 

which can be found in [39]. 

To evaluate the integral equation Eq. (4), the 

boundary Γ should be discretized first. If we discretize the 

boundary of the solution domain with N elements, the dis-

crete equation can be formulated as 
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in which, Nα(Q) is the shape function of the αth node of the 

element Γe. It can be observed in Eq. (5), to evaluate the in-

tegral equation accurately and effectively, the element inter-

polation and numerical integration in Eq. (5) require special 

attention. Therefore, the paper focuses on the improvement 

of the interpolation and integration in integral equations of 

structure analysis for the plate components. 

2.1. The implementation of element interpolation of  

advanced BEM 

Due to the inevitable existence of narrow strip face, 

curved surface and other special structures in the plate struc-

tures, traditional element interpolation method cannot accu-

rately simulate the physical quantities on these structures. 

Even if a large number of elements are placed on these spe-

cial structures, it is difficult to achieve the desired effect and 

the computational efficiency will also decrease. In this sec-

tion, a novel expanding element interpolation method is em-

ployed to improve the simulation accuracy of the physical 

quantities.  

The interpolation element is composed of the 

source nodes and virtual nodes, and is obtained by adding 

virtual points on the boundary of the original discontinuous 

element. In the case of plane problem, the boundaries of a 

geometric model become line segments. Fig. 1 shows the 

three different types of line elements, where Fig. 1, a, Fig. 1, 

b, Fig. 1, c are the constant, linear and quadratic expanding 

element, respectively. The symbols si and vi (i =1, 2, 3) in 

Fig. 1 represent the source and virtual nodes. It can be seen 

that the expanding element is similar to a continuous ele-

ment and can raise the order of the interpolation polynomial. 

While the virtual nodes are removed, this element turns to 

be a discontinuous element. In this way, the expanding ele-

ment has an ability to unify the discontinuous and continu-

ous elements, and can better simulate the physical quantities 

on narrow faces and curved surface. The shape functions of 

the expanding element can be obtained by Lagrange inter-

polation according to the coordinates of its source and vir-

tual points. 
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Fig. 1 Three types of expanding elements: a – constant ex-

panding element; b – linear expanding element;  

c – quadratic expanding element 

 

Fig. 2 The implementation example 

In this element, the degrees of freedom of virtual 

nodes do not appear in the final system equation, so how to 

get the values of the virtual nodes is the key point. In the 

following part, the quadrilateral field with curve features in 

Fig. 2 is considered to introduce the computational method 

of the virtual nodes under different conditions. As shown in 

Fig. 2, the model is discretized into eight expanding 

elements, where two constant expanding elements, four lin-

ear expanding elements and two quadratic expanding ele-

ments are included. 

The displacement boundary conditions u  are im-

posed on the bottom and left sides of the quadrilateral do-

main and the traction boundary conditions t  are applied on 

the bottom and right sides. The following content is the de-

tailed interpolation process of the expanding element in the 

quadrilateral domain. 

When interpolating the known variable on bound-

ary, the value of the virtual node is directly equal to the 

boundary conditions. For example, the value of virtual 

nodes 22 and 6 in Fig. 2 can be can be directly equated to 

the boundary conditions t  of the side on which it is located. 

When interpolating the unknown variable on boundary, the 

values of virtual nodes can be obtained by extrapolating of 

adjacent elements and then averaging. Taking virtual nodes 

6 and 18 in Fig. 2 as examples, the displacement boundary 

conditions of the edge where virtual node 6 is located are 

known, while the traction is unknown; and the traction 

boundary conditions of the edge where virtual node 18 is 

located are known, the displacement is unknown. The trac-

tion and displacement of the virtual nodes 6 and 18 can be 

obtained by Eq. (6)  
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Here, i

rN  is the lower-order shape functions consisting of 

two internal source points of the element 
f

iN  is the higher-

order shape functions consisting of the source points and 

virtual nodes. For the discontinuous traction field variables, 

two virtual points belong to the two adjacent elements of the 

connected vertices are configured at the geometric vertex of 

the boundary, which can ensure the accurate estimation of 

discontinuous boundary conditions. The traction values of 

virtual nodes 14 and 15 in Fig. 2 can be directly equated to 

the boundary conditions of the edge on which it is located 

(which is 14 14 15 15,=  = t t t t ). For continuous field variables, 

the value of virtual node at vertex 11 can be obtained by 

11 10 10= =u u u , the virtual nodes 14 and 15 can be calculated 

by Eq. (7) 
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After the values of virtual nodes are obtained, the 

physical variables in the BIE can be interpolated by the 

high-order shape functions of the expanding element. The 

displacement and traction on the edge (such as right edge in 

Fig. 2) can be interpolated by Eq. (8).  
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Substituting the above method for solving virtual 

points into Eq. (8), the following expressions can be ob-

tained 
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By substituting the formulas of the above interpo-

lation method to the discrete BIE, the integral forms in 

Eq. (5) can be rewritten as Eq. (10), and the ne in Eq. (5) is 

the number of the element nodes (including source and vir-

tual nodes).  
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Using Eq. (10), Eq. (5) can be rewritten as the ma-

trix form Hu = Gt. If the computing domain is separated 

into n source nodes and m virtual nodes, the variables in the 

matrix are distinguished according to known and unknown 

boundary conditions, and the matrix equation can be ex-

pressed as 
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in which, the vectors u , t  and u, t with the superscripts s 

and v denote the known and unknown boundary conditions 

at the source and virtual nodes, respectively. The matrixes 

H , G  and H, G with the superscripts s and v are the com-

posed of known and unknown quantities at the source and 

virtual nodes, respectively. Since the virtual nodes are not 

used as source points in Eq. (11), the matrices H and G are 

not square matrices. The values of the virtual nodes can be 

interpolated by the shape functions i

rN  of the correspond-

ing elements, that is, by using the formulas

= =u N u t N t
v r s v r s,   , the Eq. (11) can be further written as 
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According to Eq. (12), as the degrees of freedom 

of the virtual node can be condensed by the relationship with 

the source point, the size of the coefficient matrix of the 

linear system equation is the same as that of the traditional 

discontinuous element interpolation. Therefore, the pre-

sented method can improve the order of interpolation poly-

nomials without changing the solution scale of system equa-

tions, and can better simulate the physical variables of the 

plate components. 

2.2. The processing technique of boundary integrals in  

advance BEM 

The plate structures contain skeleton plate, deck, 

and other thin structures. When BEM is used to analyze the 

physical variables of these structures, the singular integrals 

and a large number of near singular integrals will arise in 

the integral equation (Eq. (5) and Eq. (10)), we simplify this 

equation in the form of Eq. (13) (where f(P, Q) is a regular 

term containing all external terms, such as shape functions, 

etc. r is the distance from the source point P to field point Q 

in boundary element). To ensure the simulative accuracy of 

the physical variables, the extra treatment of singular and 

near singular integrals is indispensable and this is also an-

other key content of the paper. 
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In terms of singular integrals, in can notice that the 

integral of displacement fundamental solution in Eq. (10) 

has ln(1/r) singularity and the integral of traction fundamen-

tal solution has 1/r singularity. To remove the singularity in 

I1, the weak singular integral can be formulated as the fol-

lowing form 
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where η is local coordinates of the field point Q related to 

the position of the source point, f(ξ) is a regular term con-

taining all external terms, such as the Jacobian of the coor-

dinate transformation from the boundary element to local 

coordinates space [-1, 1], shape functions, etc. When P ap-

proaches Q, the local coordinate point ξ approaches η. The 

singularity in the first term of I1 can be removed if f(ξ) sat-

isfies certain continuity conditions, such as the Lipschitz 

condition, and the second term of I1 can be calculated 

straightforward by using the integral formula of integration 

by parts. 

By using the above method, we can apply the sub-

traction and addition methods to eliminate the strong singu-

larity in the integral I2, and construct a formula r1() with 

the same properties as the integrand by performing a Taylor 

expansion of the distance function. The strong singular in-

tegral can be formulated as 
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in which, ξ0 is the local coordinate of the source point. With 

this equation, the singularity in the first term of I2 can be 

removed, and the second term can be evaluated by analytic 

integral formulas. 

In the current treatment of the near singular inte-

grals, the sinh transformation methods [36, 37] are general 

methods to eliminate the near singularities. Take plane prob-

lem as the considered object, the near singular integrals arise 

in Eq. (10) and Eq. (13) can be rewritten as the following 

form 
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When P is close to the integral element Γe (r→0), 

the near singularity will arise. l = 1/2, [ 1,1]  −  is the local 

coordinates. The parameters a and b are the position of the 

projection of the source point and the shortest distance 
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between the source point and the boundary element, respec-

tively (Fig. 3). 

 

Fig. 3 The sketch map of near singular integrals 

To evaluate the near singular integrals in Eq. (16), 

the following sinh transformation formula can be employed 

[40] 

( )1 2a b sinh k t k . = + −  (17) 

To facilitate the integration calculation with con-

ventional Gaussian integrals, the interval of t can be selected 
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By using the transformation formula Eq. (17), the 

corresponding Jacobian of the sinh coordinate transfor-

mation can be obtained 
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Substituting the transformation formula Eq. (17) 

and Eq. (19) into Eq. (16), the nearly singular integral for-

mulas can be expressed as 
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With this transformation, the original integral ker-

nels in Eq. (10) and Eq. (16) can be transformed into the 

well-behaved functions (see Eq. (20)). The near singularity 

of the integral kernels can be eliminated and the near singu-

lar integrals can be directly computed by using the regular 

Gaussian integrals. Therefore, the sinh method can remove 

the influence of near singular integrals in the BIE of struc-

ture analysis for plate components. 

3. Numerical Examples 

In this section, three plate structures with curve or 

thin features are given to verify the validity of the proposed 

method. In which, the symbols ‘Exact_Tx’, ‘Exact_Ty’ and 

‘Exact_Mises’ in all figures denote the analytical solution of 

traction in x, y, z direction and von Mises stress, 

respectively. The symbols ‘Traditional_Tx’, ‘Tradi-

tional_Ty’, ‘Traditional_Mises’ and ‘Proposed_Tx’, ‘Pro-

posed_Ty’, ‘Proposed_Mises’ represent the numerical re-

sults obtained by traditional BEM and the advanced BEM, 

respectively. 

3.1. The porous plate structure 

To verify the validity and feasibility of the ad-

vanced method, a porous plate structure with 75 holes is 

considered in the first example, which is obtained by pro-

jective plane of deck plate. This structure can reduce weight 

and facilitate the access of maintenance personnel, which is 

widely used in the design and manufacture of engineering 

structures. As shown in Fig. 4, the length and width [2] of 

the porous plate are a = 2.4 m, b = 0.8 m, the transverse and 

longitudinal distance between the center of two adjacent 

holes are d = 0.15 m, c = 0.15 m. The radius of each hole is 

0.02 m. 

 

Fig. 4 The geometry of the porous plate structure 

To compare with the analytical solutions, the sec-

ondary and cubic displacement analytical fields are imposed 

on the boundaries of the porous plate structure. The formu-

las of the analytical fields in Eq. (21) are given as follows: 

2 2 2 2

3 2 3 2

secondary: 3   3 ,

cubic 3   3

x y

x y

u x y , u x y

: u y yx , u x xy .

  = − = − +

   = − = − +
 (21) 

The boundary of the geometric model of the porous 

plate structure is discretized into 332 quadratic elements. 

According to the geometrical and physical equations of elas-

ticity, we can find the Young’s modulus and Poisson's ratio 

only as a coefficient in the component of analytical solu-

tions. So just for the sake of calculation, we assume the 

Young’s modulus E = 1.0 and Poisson's ratio v = 0.25, re-

spectively. Take the physical variables on circular holes 1, 

2 and 3 in Fig. 4 as the computational object. For a more 

intuitive comparison, the numerical results of tractions and 

von Mises stresses on the boundary of circle 1, 2, 3 are plot-

ted on a graph, respectively, which are as shown in Fig. 5-

Fig. 10. Where Fig. 5 and Fig. 9 are the numerical results on 

the boundary of the circle 1 with different boundary condi-

tions, Fig. 6 and Fig. 10 are the numerical results on the 

boundary of the circle 2, Fig. 7 and Fig. 10 are the numerical 

results on the boundary of the circle 3. The X axes in Fig. 5-

Fig. 10 represents the abscissa of the point on the circle 1, 2 

and 3. 

It can be observed from Fig. 5-Fig. 10, compared 

with the traditional boundary element method, whether it is 

a quadratic or a cubic analytical field, the results of the pro-

posed method can agree very well with the analytical solu-

tion. Especially for the calculation of traction (e.g. Tx), 

when  the  traditional  method  is  used  to  interpolate  the  
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Fig. 5 The results on the boundary of the circle 1 with sec-

ondary fields 

 

Fig. 6 The results on the boundary of the circle 2 with sec-

ondary fields 

 

Fig. 7 The results on the boundary of the circle 3 with sec-

ondary fields 

 

Fig. 8 The results on the boundary of the circle 1 with cubic 

field 

 

Fig. 9 The results on the boundary of the circle 2 with cubic 

field 

 

Fig. 10 The results on the boundary of the circle 3 with cu-

bic field 

physical variables on the curve features, to ensure the accu-

racy of the interpolation, a certain number of elements need 

to be used. However, when the number of elements is small, 

the interpolation accuracy of physical variables will be seri-

ously affected, and the expanding element interpolation 

method used in the paper can overcome this defect, improve 

the interpolation accuracy without changing the size of the 

coefficient matrix of the system equation. In other words, 

with the same number of elements, the proposed method can 

obtain higher accuracy. 

3.2. The deck framing 

In this example, a cross-section of deck framing 

with thin features is considered to further verify the accu-

racy of the advanced method, which can be also seen as a 

stiffened plate of the panel structure. The coordinate system 

is located at the center of the deck framing model and the 

geometric parameters are as shown in Fig. 11, where the 

lengths a = 1.24 m, l = 0.6 m and the heights b = 2 m, 

h = 1 m, the thickness t = 0.02 m. For sake of calculation, 

the Young’s modulus and Poisson's ratio are assumed to be 

E = 1.0, v = 0.25. In all boundaries of the deck framing struc-

ture, the cubic analytical fields in Eq. (22) are suffered as 

the boundary conditions. 

( )

3 2 3 2

2 2

3   3 ,

4 8  4 8  2 4

x y

x y xy

u y yx , u x xy

. xy, . xy, . y x .  

= − = − +

= − = = −
 (22) 
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144 quadratic elements are used in the boundaries 

of the discrete geometric model. The advanced method is 

used to evaluate the physical variables of the deck framing 

structure. To compare with the analytical solutions, the nu-

merical results on intraregional line AB (where x = −0.31), 

intraregional line CD (where y = −0.51), external Edge 1 and 

internal Edge 2 by using the proposed method are consid-

ered as the comparison objects, and the comparisons of re-

sults are shown in Fig. 12 – Fig. 15. Where the X axes in 

Fig. 12 and Fig. 14 represents the ordinates of the points on 

the line CD and Edge 1, the X axes in Fig. 13 and Fig. 15 

represents the abscissas of the points on the line AB and 

Edge 2. 

Fig. 12 – Fig. 17 show the results of the displace-

ment and von Mises stress on line AB and CD, respectively. 

Fig. 16 and Fig. 17 show the results of the traction and von 

Mises  

 

Fig. 11 The geometric model of the structure 

 

Fig. 12 The results of the displacement on the line AB 

 
Fig. 13 The results of the von Mises stress on the line AB 

 

Fig. 14 The results of the displacement on the line CD 

 

Fig. 15 The results of the von Mises stress on the line CD 

 

Fig. 16 The results of the traction and von Mises stress on 

the Edge 1 

 

Fig. 17 The results of the traction and von Mises stress on 

the Edge 2 
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stress on Edge 1 and Edge 2, respectively. It can be seen 

from Fig. 12 – Fig. 17, the numerical results obtained by the 

advanced method can agree very well with the analytical so-

lution, and the correctness of the presented method is further 

verified. 

3.3. The propeller structure 

To further verify the proposed method, a planar 

graph of the propeller with curve features is considered in 

Fig. 18. The geometrical parameters and the boundary con-

ditions of the model are as shown in Fig. 18, a and Fig. 18, 

b, respectively, where R1 = 0.12 m, R2 = 0.274 m, 

R3 = 1.3769 m and P = 1 MPa. The Young’s modulus 

E = 105 GPa, and the Poisson's ratio v = 0.25.  

  

a b 

Fig. 18 The Geometric model and boundary conditions 

The boundary of the geometric model of the ma-

rine propeller is discretized into 132 quadratic elements, that 

is, the number of elements N in Eq. (5) is 132. The results 

obtained by finite element method with 6861 quadratic 

quadrilateral elements are regarded as the reference solu-

tion. The proposed method is employed to solve the integral 

equation Eq. (5), and the numerical results on the external 

boundary AB and BC together with the reference solution 

are shown in Fig. 19 – Fig. 22. The X axes in Fig. 19-Fig. 22 

represents the abscissa of the point on the boundary AB and 

BC. 

Fig. 19 and Fig. 20 illustrate the distributions of the 

displacement and von Mises stresses along the external 

boundary BC, respectively. Fig. 21 and Fig. 22 show the dis-

tributions of the displacement and Mises stresses along the 

external boundary AB, respectively. From Fig. 19 – Fig. 22, 

we can see the results obtained by the presented method can 

achieve the same effect as the reference solution obtained 

by FEM. 

 

Fig. 19 The results on the boundary BC  

 

Fig. 20 The results of the Mises stress on the boundary BC 

 

Fig. 21 The results on the boundary AB 

 

Fig. 22 The results of the Mises stress on the boundary AB 

4. Conclusions 

An advanced BEM is developed to perform struc-

ture analysis for plate components with curve or thin fea-

tures. The advanced BEM first employs an expanding ele-

ment interpolation method to improve the simulation accu-

racy of the physical quantities of the plate structures, which 

can improve the order of interpolation polynomials without 

changing the degrees of freedom of system equations; And 

then the integral frame is applied to deal with the singular 

and near singular integrals, to ensure the accurate calcula-

tion of elastic parameters. Finally, the advanced BEM is 

used to analyze the physical variables of plate components. 

The numerical results indicate that the advanced BEM can 

provide a precise and reliable solution for structural analysis, 
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and can be accurately and stably used for BEM analysis of 

plate components. 
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Y. Zhong, X. Zeng, G. Xie, J. Hou, R. Wang, L. Wang,  

W. He 

STRUCTURE ANALYSIS FOR PLATE COMPONENTS 

USING AN ADVANCED BOUNDARY ELEMENT 

METHOD 

S u m m a r y 

Accurate and effective evaluation of physical vari-

ables (displacement, traction, stress) of the plate structure is 

of great significance for the safety and stability of its design. 

In this paper, an advanced boundary element method is de-

veloped to perform the structure analysis for plate compo-

nents with curve or thin features. The method is imple-

mented as follows: Firstly, a novel interpolation method is 

developed to improve the simulation accuracy of the physi-

cal quantities on various structural models of plate compo-

nents, which can improve the order of interpolation polyno-

mials without changing the degrees of freedom of system 

equations, and eliminate the influence of the fitting error of 

physical variable in integral equation; And then an integral 

transformation frame is employed to remove the influence 

of the singular and nearly singular integrals in integral equa-

tion and ensure the accurate calculation of elastic parame-

ters of plate components; Finally, several numerical exam-

ples (a porous plate, a deck framing and a propeller structure 

are included) are given to verify the feasibility of the pro-

posed method. The results show that the proposed method 

can accurately evaluate the physical variables of the plate 

components. 

Keywords: nearly singular integrals, structure analysis, 

plate components, boundary analysis, sinh transformation. 
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