
 423 

ISSN 1392-1207. MECHANIKA. Vol. 30, No. 5, 2024: 423−429 

Performance of a Small Hydrodynamic Journal Bearing Involving 

Adsorbed Layer and Surface Elastic Deformation 

Shuxiong XIAO, Yongbin ZHANG 
College of Mechanical Engineering, Changzhou University, Changzhou, Jiangsu Province, China,  

E-mails: yongbinzhang@cczu.edu.cn, engmech1@sina.com (Corresponding author) 

https://doi.org/10.5755/j02.mech.37032 

1. Introduction 

The small hydrodynamic journal bearing with the 

diameter of the rotating shaft on the 1mm scale or less has 

its specifically important application in industry or ordi-

nary life such as in medical apparatus, small equipments 

and micro machines etc. The working principle and design 

method of this bearing are actually different from those of 

the classical journal bearing [1] as it involves more com-

plicated hydrodynamic phenomena. One factor is the effect 

of the physically adsorbed layer intrinsically present on the 

bearing surface which may be significant, as the bearing 

clearance can be so small. Another factor is the continuum 

hydrodynamic fluid film which may still be existent in the 

bearing. These two factors thus result in the multiscale 

flow in the bearing [2, 3]. The adsorbed layer flow is mo-

lecular-scale, while the continuum fluid flow is macro-

scopic. New hydrodynamic theories thus need to be de-

veloped for this small-size bearing, rather than using clas-

sical hydrodynamic theories [1]. 

Owing to the interaction between the fluid and the 

bearing surface, the adsorbed layer is packed, and its rheo-

logical properties like the density and viscosity are differ-

ent from its bulk values [4, 5]. There is also the 

non-continuum effect in such a layer. Classical multiscale 

schemes use molecular dynamics simulation to model the 

adsorbed layer flow while use the continuum fluid model 

to simulate the continuum fluid flow [6-8]. As a journal 

bearing possesses the engineering sizes, these multiscale 

schemes are presently actually incapable to simulate the 

multiscale flow in the above mentioned small bearing be-

cause of too high computational cost. 

In recent years, Zhang derived the closed-form 

explicit mathematical equations respectively for the ad-

sorbed layer flow and the intermediate continuum fluid 

flow in the two-dimensional multiscale flow problem [9].  

In the former studies, Gu and Zhang analytically 

studied the load performance of the hydrodynamic journal 

bearing with conventional sizes (on the 10mm scale) with 

the eccentricity ratios subjected to approaching to unity, 

where the flow is indeed multiscale because of the locally 

very low bearing clearances [10]. They assumed the bear-

ing surfaces as elastic and showed the very significant ef-

fect of the adsorbed layer on the load-carrying capacity of 

the bearing. 

Specifically, the present paper studies the load 
and friction performances of the small hydrodynamic 

journal bearing with the radius of the rotating shaft equal 

to 1 mm for the widely varying eccentricity ratios from 0.1 

to nearly unity, by using Zhang’s multiscale flow equations. 

The bearing surfaces are considered as elastic and the cal-

culation results are compared with those for rigid surfaces. 

The results of the frictional coefficient of this bearing are 

also calculated based on the multiscale flow theory. The 

obtained load and friction results of this small bearing are 

largely different from the classical recognition, showing 

the important influence of the adsorbed layer. They should 

be of significance to the design and application of the men-

tioned type of the bearing. 

2. The Small Elastohydrodynamic Journal Bearing 

 

Fig. 1 The magnified picture of the studied small hydro-

dynamic journal bearing involving the adsorbed 

layer and the surface elastic deformation 

Fig. 1 describes the configuration of the small 

elastohydrodynamic journal bearing the diameter of which 

may be on the scales of 0.1-1.0 mm or less. These small 

journal bearings have specific applications in micro appa-

ratus or micro machines to support the load. Because of 

their downsizing, their sliding speeds may be low and their 

characteristic feature is the very low bearing clearances 

even for the normal eccentricity ratio, which is on the scale 

of 0.1. The thickness of the physically adsorbed layer on 

the bearing surface thus becomes comparable to the inter-

mediate continuum fluid film thickness. The adsorbed lay-

er effect should consequently be strongly involved. The 

notations are: e – eccentricity, hbf – adsorbed layer thick-

ness, h – continuum fluid film thickness, pmax – maximum 

film pressure, r – shaft radius, R – sleeve radius, 

u – circumferential velocity, 0 – angular coordinate of the 

maximum film pressure position, e – angular coordinate 

of the exit of the bearing. The used x and y coordinates are 

shown in Fig. 1. 
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3. Mathematical Analysis 

Here, the analysis is based on Zhang’s multiscale 

flow equations [9]. It assumes that: 

a. The fluid is Newtonian;  

b. There is no interfacial slippage;  

c. No side leakage occurs;  

d. The two adsorbed layers are identical;   

e. The bearing surfaces are ideally smooth;  

f. The condition is isothermal and steady-state. 

For the used low sliding speed, assumptions a, b 

and f are valid. For the same shaft and sleeve surface ma-

terials, assumption d is valid. For the ratio of the bearing 

axial length to the shaft diameter over 8, assumption c is 

valid; Regarding the effect of the bearing surface rough-

ness which may be on the molecular scale, the work will 

be done further.  

3.1. Fundamental equations for mass continuity, film pres-

sure and load 

The total mass flow rate per unit contact length 

through the bearing is [9, 10]: 
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where c = R−r,  is the angular coordinate, 
eff
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In Eqs. (2) and (3), bf = hbf / h, D is the fluid 

molecule diameter,  is the fluid bulk viscosity, x is the 

circumferential separation of the neighboring fluid mole-

cules in the adsorbed layer, n the equivalent number of the 

fluid molecules across the adsorbed layer thickness, q0 (>1) 

is the average value of j+1 / j (j is the separation be-

tween the (j + 1)th and jth fluid molecules across the ad-

sorbed layer thickness), n-2 is the separation between the 

neighboring fluid molecules across the adsorbed layer 

thickness just on the adsorbed layer-fluid interface, and , 
F1 and F2 are the parameters reflecting the non-continuum 

effect of the adsorbed layer and their formulations have 

been shown in [9].  

There are the (N+1) discretized points in the in-

itially set simulated lubricated area. By considering the 

elastic deformations of the bearing surfaces, the contin-

uum fluid film thickness on the ith discretized point is: 
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for i = 1, 2, …, N (exit), (4) 

where e is the bearing eccentricity as shown in Fig. 1, and 

Ev is the equivalent Young’s modulus of elasticity of two 

bearing surfaces. 

By forward difference of Eq. (1) and using the 

boundary condition p0 = 0, it is finally expressed that 

[10]: 
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for i = 1, 2, ..., N. (5) 

The film force per unit contact length acting in the 

x coordinate direction is: 
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The film force per unit contact length acting in the 

y coordinate direction is: 
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The load per unit contact length of the bearing is: 

2 2

x yw w w= + . (8) 

3.2. Shear stress and friction coefficient 

The shear stress on the sleeve surface is [9]: 
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where line, j-1 is the local viscosity between the jth and 

(j − 1)th fluid molecules across the adsorbed layer thickness, 

vA is the boundary velocity of the continuum film adjacent 

to the sleeve surface, and u̅a is the fluid molecule velocity 

on the sleeve surface and here u̅a = 0. 

The shear stress on the shaft surface is [9]: 
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where vB is the boundary velocity of the continuum film 

adjacent to the shaft surface, and bu  is the fluid molecule 

velocity on the shaft surface and here bu u= . 

It is formulated that [9]: 
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Assume that line,j / line,j+1 = q0, where  is constant [9]. It is obtained that: 
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Substituting Eqs. (11), (13) and (14) into Eq. (9) gives that: 
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Substituting Eqs. (12), (13) and (14) into Eq. (10) gives that: 
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The friction forces per unit contact length on the 

sleeve and shaft surfaces are respectively: 
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The friction coefficients on the sleeve and shaft 

surfaces are respectively: 
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3.3. Numerical calculation of the surface elastic defor-

mation, numerical solution procedure and formulation 

of the operational parameters 

The numerical calculation of the surface elastic 

deformation and the numerical solution procedure can be 

found from [10]. Through the numerical procedure, the 

Reynolds boundary condition [1] is satisfied on the exit of 

the bearing. We developed the computing software by our-

selves through the MATLAB platform. The dependence of 

the fluid viscosity and density on the fluid pressure was 

considered. Their formulations were shown in [11]. The 

weak, medium and strong fluid-bearing surface interac-

tions were respectively considered. The values of the pa-

rameters for characterizing them were also mentioned in 

[11]. 
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4. Calculation Results 

 

In all the calculations, the following operational 

parameter values have been used [10]: 

x/D = n-2/D = 0.15, d = 0.5 nm, r = 1 mm, c = 0.1 m, 

 = 1.610−8 m2/N, a = 0.03 Pas,  = 0.410−9 Pa−1, 

Ev = 2.091011 Pa, N = 2500. 

The values of u and  are chosen such that the 

generated maximum film pressures in the bearing are 

mostly on the scale of 1 MPa and give the practical 

loads within the scope of the mechanical strength of a 

micro apparatus. 

4.1. Film pressure distribution 

Fig. 2, a shows the film pressure distributions in 

the bearing for different contact regimes and different flu-

id-bearing surface interactions when u = 10 m/s and 

 = 0.9. For elastic surfaces, the effect of the fluid-bearing 

surfaces interaction on the film pressure is weaker than that 

for rigid surfaces. However, whenever the bearing surfaces 

are rigid or elastic, the effect of the adsorbed layer very 

significantly increases the load-carrying capacity of the 

bearing for the medium or strong fluid-bearing surface 

interactions. For this very low sliding speed, for the weak 

interaction, the pressure distribution in the elastic contact is 

nearly overlaid with those in the rigid contact or calculated 

from the classical hydrodynamic lubrication theory [1]. For 

a given operating condition, the pressure in the elastic 

contact is much lower than that in the rigid contact for the 

medium or strong interactions even for such a low speed. 

Fig. 2, b shows that when the sliding speed is in-

creased to 1 mm/s, for  = 0.2 this phenomenon popularly 

exists for whichever interaction; It indicates the overall 

significant effect of the surface elastic deformation in the 

given operating condition. For the elastic contact, the 

pressures are even lower than those calculated from the 

classical hydrodynamic lubrication theory if the interaction 

is medium or weak. Fig. 2, c shows that in the elastic con-

tact the effect of the sliding speed on the film pressure is 

weaker than that in the rigid contact, as an example for 

 = 0.2 and the strong fluid-bearing surface interaction. 

4.2. Bearing load 

Fig. 3, a shows that when u = 10 m/s, for   0.8, 

the influence of the surface elastic deformation on the car-

ried load of the bearing is negligible for the given three 

fluid-bearing surface interactions; It should be due to the 

generated low pressures. However, for   0.9 the carried 

loads of the elastic contact are considerably smaller than 

those of the rigid contact for the three interactions. This 

should be due to the generated higher pressures which cause 

pronounced surface elastic deformations. 

Fig. 3, b shows that when u = 0.1 mm/s, the in-

fluence of the surface elastic deformation on the bearing 

load is stronger than in Fig. 3, a. In this case, for elastic 

surfaces the effect of the fluid-surface interaction on the 

carried load is much reduced as compared to Fig. 3, a. 

4.3. Minimum bearing clearance 

Fig. 4, a shows that when u = 10 m/s, for   0.8,  

 

a 

 

b 

 

c 

Fig. 2 Film pressure distributions in the bearing for differ-

ent cases: a – u = 10 m/s,  = 0.9, b – u = 1 mm/s, 

 = 0.2, c – for  = 0.2 and the strong fluid-bearing 

surface 

the effect of the fluid-surface interaction on the mini-

mum bearing clearance (htot,min) is negligible. In these 

conditions,   although the surface elastic deformation 
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a 

 

b 

Fig. 3 The carried loads of the bearing for different condi-

tions: a – u = 10 m/s, b – u = 0.1 mm/s 

result in the higher values of htot,min, the influence of the 

surface elastic deformation on the minimum bearing 

clearance is quite weak. However, for   0.9 both the 

stronger fluid-surface interaction and the surface elastic 

deformation result in considerably higher values of htot,min. 

For the strong interaction, the minimum bearing clearance 

for the elastic contact is much higher than that for the rigid 

contact. 

Fig. 4, b shows the influence of the sliding speed 

on the minimum bearing clearance when the bearing sur-

faces are elastic and the fluid-surface interaction is strong. 

For   0.8, this influence is weak. However, for   0.9 

this influence is very significant, and the speed increase 

effectively enlarges the minimum bearing clearance. Even 

for ε approaching to unity and for the very low sliding 

speed 1 μm/s, a residual film appears to exist, giving the 

values of htot,min more than 5 nm. This result is radically 

different from the conventional recognition (for rigid sur-

faces). 

4.4. Shear stress and friction coefficient on the bearing 

surface 

Fig. 5, a and b  respectively show the shear stress  

 

a 

 

b 

Fig. 4 Minimum bearing clearances for different operating 

conditions: a – u = 10 m/s, b – for the strong  

fluid-surface interaction 

distributions on the shaft and sleeve surfaces when  = 0.9 

and u = 1000 m/s. For the same fluid-surface interaction, 

the magnitudes of the shear stresses on both the bearing 

surfaces for the elastic contact regime are overall smaller 

than those for the rigid contact regime. When the flu-

id-surface interaction is stronger, the magnitudes of the 

shear stresses on both the bearing surfaces are greater. 

However, the surface elastic deformation much reduces the 

sensitivity of the surface shear stress to the fluid-surface 

interaction.  

Figs. 6, a-b show that the friction coefficients 

on the bearing surfaces calculated from the present 

model are significantly smaller than those calculated 

from classical hydrodynamic lubrication theory espe-

cially for small eccentricity ratios whenever the bearing 

surfaces are elastic or rigid and the fluid-surface inter-

action is weak, medium or strong. The surface elastic 

deformation results in the higher friction coefficient 

especially for large eccentricity ratios and the strong 

fluid-surface interaction as compared to the results for 

rigid surfaces. For a given eccentricity ratio, if the flu-

id-surface interaction is stronger, the friction coefficient 

on the bearing surface is smaller. This is particularly the  
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a 

 

b 

Fig. 5 Shear stress distributions respectively on the shaft 

and sleeve surfaces when  = 0.9 and u = 1000 m/s: 

a – shear stress on the shaft surface, b – shear stress 

on the sleeve surface 

case for rigid surfaces and large eccentricity ratios. 

5. Conclusions 

The load and friction performances of a small hy-

drodynamic lubricated journal bearing with the shaft radius 

equal to 1mm are analytically investigated by using the 

multiscale hydrodynamic flow model. Both the adsorbed 

layer on the bearing surface and the continuum hydrody-

namic fluid contribute to the bearing performance. The 

molecular-scale non-continuum adsorbed layer flow be-

comes comparable to the flow of the intermediate contin-

uum fluid film. The hydrodynamic flow in this bearing is 

thus essentially multiscale. The rigid and elastic bearing 

surfaces are respectively considered. The fluid-bearing 

surface interaction is respectively considered as weak, me-

dium and strong. Zhang’s multiscale flow equations [9] are 

used for fast solving the film pressure, carried load and 

friction coefficient of the bearing. 

According to the calculations results, the con-

clusions are drawn as follows:  

a. The effect of the surface elastic deformation is  

 

a 

 

b 

Fig. 6 Friction coefficients respectively on the shaft and 

sleeve surfaces when  = 0.9 and u = 1000 m/s: a – 

friction coefficient on the shaft surface, b – friction 

coefficient on the sleeve surface 

overall significant in the bearing. It results in the reduc-

tions of the film pressure and carried load of the bearing 

for a given eccentricity ratio especially for large eccen-

tricity ratios and the strong fluid-bearing surface interac-

tion; 

b. In the elastic contact the effect of the sliding 

speed on the film pressure is weaker than that in the rigid 

contact; 

c. For large eccentricity ratios such as ε  0.9, both 

the strong fluid-surface interaction and the surface elastic 

deformation result in the considerably higher value of the 

minimum bearing clearance than the classical hydrody-

namic theory gives (for rigid surfaces and ignoring the 

fluid-surface interaction); 

d. For large eccentricity ratios such as ε  0.9, 

when the bearing surfaces are elastic and the fluid-surface 

interaction is strong, the increase of the sliding speed ef-

fectively enlarges the minimum bearing clearance. Even 

for the eccentricity ratio ε approaching to unity and for the 

very low sliding speed 1μm/s, a residual film was found to 

exist, giving the minimum bearing clearance more than 

5 nm; 
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e. For a given fluid-surface interaction, the mag-

nitudes of the shear stresses on the elastic bearing surfaces 

are overall smaller than those on the rigid bearing surfaces; 

The magnitudes of the shear stresses on both the bearing 

surfaces are increased with the increase of the interaction 

strength between the fluid and the bearing surface. The 

surface elastic deformation results in the reduced sensitiv-

ity of the surface shear stress to the fluid-surface interac-

tion; 

f. The friction coefficient of the bearing calculated 

from the present model is significantly smaller than that 

calculated from classical hydrodynamic lubrication theory 

especially for small eccentricity ratios. The surface elastic 

deformation results in the higher friction coefficient espe-

cially for large eccentricity ratios and the strong flu-

id-surface interaction as compared to the results for rigid 

surfaces. However, a stronger fluid-surface interaction 

gives a smaller friction coefficient of the bearing especially 

for rigid surfaces and large eccentricity ratios. 
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S. Xiao, Y. Zhang 

PERFORMANCE OF A SMALL HYDRODYNAMIC 

JOURNAL BEARING INVOLVING ADSORBED 

LAYER AND SURFACE ELASTIC DEFORMATION 

S u m m a r y 

The load and friction performances of a small 

elastohydrodynamic journal bearing with the shaft radius 

1mm have been computationally studied. The effect of the 

adsorbed layer is incorporated and the multiscale hydro-

dynamic flow theory is used. It is shown that the multiscale 

performance of this bearing occurs in the wide eccentricity 

ratio range from 0.3 to nearly unity because of the influ-

ence of the adsorbed layer, and thus the generated pres-

sures and carried load of this bearing are significantly 

greater than the classical hydrodynamic theory calcula-

tions. The effect of the adsorbed layer is more stronger for 

rigid bearing surfaces than for elastic bearing surfaces es-

pecially for a strong fluid-bearing surface interaction, and 

it is strong for the high eccentricity ratios over 0.9. In this 

bearing, when the effect of the adsorbed layer is incorpo-

rated, the friction coefficients on both bearing surfaces are 

reduced in the wide eccentricity ratio range as compared to 

the classical calculation; Stronger the fluid-bearing surface 

interaction, greater the reduction of the friction coefficient, 

showing the pronounced non-continuum effect of the ad-

sorbed layer. However, for elastic surfaces the friction co-

efficient is a bit higher than that for rigid surfaces espe-

cially for high eccentricity ratios and strong fluid-bearing 

surface interactions. 

Keywords: adsorbed layer, elastohydrodynamics, jour-

nal bearing, multiscale. 
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