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1. Introduction 

Acceleration sensor is used to acquire the vibration 

signal of mechanical equipment, which is very important to 

detect the state of mechanical equipment, which can im-

prove equipment security and reliability [1-5]. The complex 

features of output signals of acceleration sensor behavior 

pose serious challenges to establish effective fault diagnosis 

for acceleration sensor [6-8]. As the numerous features of 

acceleration sensor data can affect diagnosis accuracy and 

diagnosis speed, the features of acceleration sensor data 

must be reduced. Recently, there are a lot of dimensionality 

reduction algorithms, such as include local linear embed-

ding (LLE) algorithm, PCA [9, 10]. As there is poor ability 

of current dimensionality reduction algorithms in the pro-

cessing of acceleration sensor data, an LLE algorithm based 

on IEM is proposed to reduce the features of acceleration 

sensor data, which can address the impact of misaligned 

sample position differences.  

In order to improve the fault diagnosis for acceler-

ation sensor ability of extreme learning machine (ELM), a 

weighted kernel ELM algorithm using kernel functions is 

beneficial for improving the robustness and nonlinear pro-

cessing ability of the traditional weighted ELM. Finally, the 

feasibility of fault diagnosis method for acceleration sensor 

of IEM-based LLE and weighted ELM to identify accelera-

tion sensor is testified. The testing results illustrate that 

shows that the diagnosis accuracy for acceleration sensor by 

using IEMLLE-WKELM is 99.375%, the diagnosis accu-

racy for acceleration sensor by using LLE-WKELM is 

95.625%, the diagnosis accuracy for acceleration sensor by 

using LLE-ELM is 94.375%, and the diagnosis accuracy for 

acceleration sensor by using PCA-ELM is 92.5%, it is con-

cluded that IEMLLE-WKELM is the higher diagnosis accu-

racy for acceleration sensor than other methods. 

Firstly, IEM-based LLE algorithm is introduced. 

Secondly, weighted kernel extreme learning machine is in-

troduced. Thirdly, experimental analysis is introduced. Fi-

nally, conclusions are introduced. 

2. IEM-based LLE Algorithm 

In the dimensionality reduction process of LLE al-

gorithm [13], Euclidean distance is used to select the nearest 

neighbor in the processing of feature extraction, there is a 

significant problem of the position difference of misaligned 

samples. An LLE algorithm based on IEM is proposed to 

address the impact of misaligned sample position differ-

ences, among which information entropy can solve the prob-

lem of information quantification. Given high dimensional 

dataset X = (x1, x2, …, xL) (xi represents any sample point 

with N features), calculate the information entropy E(xi), 
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where 
ijxP  is the appearing probability.

 The entropy difference is calculated as follows: 

( ) ( )e i jD E x E x= − . (2) 

Select k nearest neighbors of a sample by using en-

tropy difference. The reconstruction weight coefficient ijw

is calculated as follows: 
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Reconstruct the vector z using ijw  to minimize 

quadratic form, which is expressed as follows: 
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Then, calculate the corresponding low dimensional 

embedding results as follows: 

( ) ( )

( ) ( )

T

T

L Z tr ZVZ

V I w I w

 =


 = − −

. (5) 

Fig. 1 gives the comparison of the distribution of 

two classes between IEMLLE and LLE. 

As shown in Fig. 1, the IEMLLE’s discrimination 

rate of the two types of data based on is higher than that that 

of LLE. Obviously, the LLE algorithm based on IEM helps 

to address the impact of misaligned sample position differ-

ences. 

3. Weighted Kernel Extreme Learning Machine 

An ELM model is given as follows [14]: 
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NM m x , ,m x =   is the hidden layer feature 

mapping matrix;  1

T

NT t , ,t= is the training objective ma-

trix. 
The weighted cumulative error of each sample is 

minimized as follows: 
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where W is the diagonal matrix, i is the error, and the 

ELM’s weight is given as Eq. (8) after adding I / C to the 

main diagonal of MM T, 

 
a 

 

b 

Fig. 1 Comparison of the distribution performance between 

IEMLLE and LLE: a – the data distribution of two 

classes based on IEMLLE, b – the data distribution 

of two classes based on LLE 
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where C is the penalty parameter and I is the identity matrix. 

The weighted extreme learning machine is de-

scribed as Eq. (9) after introducing the kernel instead of 

MM T, 
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where ( ) ( )2

i j i jK x ,x exp x x= − −  is the kernel function 

( is kernel parameter).  

Obviously, C and  need to be determined. In PSO 

algorithm, given the i-th particle’s position xi and the i-th 

particle’s velocity vi, the position and velocity of the parti-

cles are updated according to the follows [15]: 
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where  denotes the inertia weight; k denotes the iteration 

counter; r1 and r2 belong to 0 ~ 1; (c1 = c2 = 2); pbij is the  

i-th particle’s best previous position, and gbt is the best par-

ticle among all the particles. 

As PSO is prone to getting stuck in local optima, 

Randomly initialize a n-dimensional vector composed of 

the parameters of WKELM

Obtain the chaos queues

Compute the fitness values of chaos particle

Update the velocity and position of each particle

Optimize the global best by chaos search

Replace the position of a randomly selected particle by 

the best solution 

The procedure proceeds until the maximum iteration is 

rearched
 

Fig. 2 Optimization process of the WKELM’s parameters 

by using CPSO 
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chaotic dynamics is used to improve PSO, thereby avoiding 

falling into local optima. The chaotic queue is obtained by 

using the logistic equation,  

( )1 1n n nb b b+ = − , 0  1   n , , , N= , (11) 

where bn is a variable parameter (0  b0  1), and  is the 

control parameter.  

As shown in Fig. 2, the optimization process of the 

WKELM’s parameters by using CPSO are given as follows: 

Step 1 Initialize a n-dimensional vector randomly. 

Step 2 Obtain the chaos queues by Eq. (11). 

Step 3 Compute the chaos particle’s fitness values. 

Step 4 Each particle’s velocity and position is ob-

tained according to Eq.(10). 

Step 5 The global best is optimized by chaos 

search, and the best solution p* is obtained.  

Step 6 Replace the position of a randomly selected 

particle by p*. 

Step 7 The procedure proceeds until the maximum 

iteration is reached. Otherwise, loop to step 3. 

4. Experimental Analysis 

In the study, the state types of the acceleration sen-

sor include normal, offset fault, gain fault, drifting fault. In 

the experiment, 160 samples are used as the testing samples, 

and 40 samples are used in each state. Time-frequency  

images of the state types of acceleration sensor based on em-

pirical wavelet transform are given in Fig. 3. Texture fea-

tures of time-frequency images are employed. 

C and  are optimized by using CPSO, and the 

number of the particles is 20 in CPSO. The fault diagnosis 

model for acceleration sensor of IEM-based LLE and 

WKELM with CPSO is obtained. The comparison of the op-

timization process between CPSO and PSO is given in 

Fig. 4, and it can be seen that CPSO is better than PSO. 

Fig. 5 gives the comparison of the actual results 

and fault diagnosis results for acceleration sensor of 

IEMLLE-WKELM,it can be seen that only one sample is 

incorrectly diagnosed by using IEMLLE-WKELM. Fig. 6 

gives the comparison of the actual results and fault diagnosis 

results for acceleration sensor of LLE-WKELM, it can be 

seen that 7 samples are incorrectly detected by using LLE-

WKELM. Fig. 7 gives the comparison of the actual results 

and fault diagnosis results for acceleration sensor of LLE-

ELM, it can be seen that 9 samples are incorrectly diagnosed 

by using LLE-ELM. Fig. 8 gives the comparison of the ac-

tual results and fault diagnosis results for acceleration sen-

sor of PCA-ELM, it can be seen that that 12 samples are 

incorrectly detected by PCA-ELM. 

   
a b 

   
c d 

Fig. 3 Time-frequency images of the state types of acceleration sensor: a – normal state, b – offset fault, c – gain fault,  

d – drifting fault 

Time t/s

F
re

q
u

e
n

c
y 

f/
H

z

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time t/s

F
re

q
u

e
n

c
y 

f/
H

z

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time t/s

F
re

q
u

e
n

c
y 

f/
H

z

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time t/s

F
re

q
u

e
n

c
y 

f/
H

z

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V03-4W3PT4W-2&_user=2321961&_coverDate=11%2F30%2F2009&_alid=1112770522&_rdoc=1&_fmt=full&_orig=search&_cdi=5635&_sort=r&_st=4&_docanchor=&_ct=3&_acct=C000056894&_version=1&_urlVersion=0&_userid=2321961&md5=d8a53591a2ffefef3fb19448924630e9#fd8
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V03-4W3PT4W-2&_mathId=mml84&_user=2321961&_cdi=5635&_rdoc=1&_ArticleListID=1112770522&_acct=C000056894&_version=1&_userid=2321961&md5=f6a136b44d379492753007e0b1d5fa28
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V03-4W3PT4W-2&_mathId=mml84&_user=2321961&_cdi=5635&_rdoc=1&_ArticleListID=1112770522&_acct=C000056894&_version=1&_userid=2321961&md5=f6a136b44d379492753007e0b1d5fa28


 70 

 

Fig. 4 Comparison of the optimization process between 

CPSO and PSO 

 

Fig. 5 Fault diagnosis results for acceleration sensor of 

IEMLLE-WKELM 

 

Fig. 6 Fault diagnosis results for acceleration sensor of 

LLE-WKELM 

As shown in Table 1, the fault diagnosis accuracy 

for acceleration sensor by using IEMLLE-WKELM is 

99.375%, the diagnosis accuracy for acceleration sensor by 

 

Fig. 7 Fault diagnosis results for acceleration sensor of 

LLE-ELM 

 

Fig. 8 Fault diagnosis results for acceleration sensor of 

PCA-ELM 

Table 1 

Comparison of the fault diagnosis results for acceleration 

sensor among IEMLLE-WKELM, LLE-WKELM, LLE-

ELM, and PCA-ELM 

Diagnosis 

algorithm 

The total 

number of 

samples 

The number 

of correct di-

agnosis 

Diagnosis 

accuracy/% 

IEMLLE-

WKELM 
160 159 99.375 

LLE-

WKELM 
160 153 95.625 

LLE-ELM 160 151 94.375 

PCA-ELM 160 148 92.5 

 

using LLE-WKELM is 95.625%, the diagnosis accuracy for 

acceleration sensor by using LLE-ELM is 94.375%, and the 

diagnosis accuracy for acceleration sensor by using PCA-

ELM is 92.5%. The experimental results indicate that 

IEMLLE-WKELM is the higher fault diagnosis accuracy 

for acceleration sensor than other methods. 
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5. Conclusions 

An LLE based on IEM called IEMLLE is pre-

sented to reduce the features of accelerometer data. The dis-

criminative ability of IEMLLE based on the distribution of 

different categories of sample data is higher than that that of 

LLE.In addition, a WKELM algorithm is beneficial for im-

proving the robustness and nonlinear processing capabil-

ityof WKELM is proposed in this paper. Aiming at the local 

optimization problem of PSO algorithm, CPSO is presented 

to determine the penalty parameter and kernel parameter of 

WKELM, thereby avoiding falling into local optima. The 

experimental results show that shows that the fault diagnosis 

accuracy for acceleration sensor by using IEMLLE-

WKELM is 99.375%, the diagnosis accuracy for accelera-

tion sensor by using LLE-WKELM is 95.625%, the diagno-

sis accuracy for acceleration sensor by using LLE-ELM is 

94.375%, and the diagnosis accuracy for acceleration sensor 

by using PCA-ELM is 92.5%, it is concluded that IEMLLE-

WKELM is the higher fault diagnosis accuracy for acceler-

ation sensor than other methods. 
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Z. H. Gao 

A NOVEL FAULT DIAGNOSIS METHOD FOR 

ACCELERATION SENSOR UTILIZING IEM-BASED 

LLE AND WKELM 

S u m m a r y 

In this study, fault diagnosis method for accelera-

tion sensor by IEM-locally linear embedding and weighted 

kernel ELM (IEMLLE-WKELM) is proposed. An IEM-

based LLE method is proposed to reduce the features of ac-

celeration sensor data. The IEMLLE’s discrimination rate 

of the two types of sample data is higher than that that of 

LLE. In addition, a weighted kernel ELM algorithm using 

kernel functions is beneficial for improving the robustness 

and nonlinear processing ability of the traditional weighted 

ELM is proposed. The testing results show that shows that 

the fault diagnosis accuracy for acceleration sensor by using 

IEMLLE-WKELM is 99.375%, the diagnosis accuracy for 

acceleration sensor by using LLE-WKELM for acceleration 

sensor is 95.625%, the diagnosis accuracy for acceleration 

sensor by using LLE-ELM is 94.375%, and the diagnosis 

accuracy for acceleration sensor by using PCA-ELM is 

92.5%, it is concluded that IEMLLE-WKELM is the higher 

diagnosis accuracy for acceleration sensor than other meth-

ods. 

Keywords: IEMLLE, weighted kernel extreme learning 

machine, fault diagnosis, acceleration sensor. 
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