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1. Introduction 

In aerospace, mechanical, and civil engineering, 

structural vibrations pose significant hazards. Dynamic 

loads can greatly affect the safety and stability of structures 

[1]. Obtaining dynamic load data, especially from hard-to-

measure and critical points, is essential for research and 

structural health monitoring [2]. 

Structural dynamic response reconstruction (DRR) 

technology can extrapolate abundant data from a limited 

number of measurement points, partially compensating for 

insufficient measurement data. Therefore, an algorithm ca-

pable of simultaneously identifying structural dynamic 

loads and reconstructing responses is vital. 

Response reconstruction on precise structural mod-

els is a traditional problem. However, the structural param-

eters of actual engineering structures are unknown. It is es-

sential to investigate the issue of dynamic load identification 

for uncertain structures [3]. Jiang et al. [4] proposed a novel 

dynamic load identification method that takes into account 

unknown initial conditions of structures which is based on 

the improved basis functions and implicit Newmark-β 

method. Cui et al. [5] introduced a convolutional neural net-

work (CNN) for the reconstruction of the interval of un-

known load.  Combining the interval analysis theory with 

Taylor expansion, the upper and lower boundaries of the su-

pervised loads are obtained and used as training samples. 

The trained CNN model can directly identify the boundaries 

of the unknown load interval. Yang et al. [6] proposed a 

novel method based on a deep dilated convolution neural 

network (DCNN) for dynamic load identification, directly 

constructing the inverse model between vibration response 

and excitation, avoiding solving the model parameter. The 

method for reconstructing dynamic responses in uncertain 

structures within linear systems relies on Kalman filtering. 

While classical Kalman filtering addresses uncertain mod-

els, obtaining specific excitation information is necessary. 

Li et al. [7] proposed a method allows for identifying earth-

quake ground motion using incomplete modal information 

and limited measurements through the standard Kalman fil-

ter. Naets et al. [8] utilized an improved augmented Kalman 

filter algorithm based on measurement to resolve prediction 

result divergence. Aucejo et al. [9] explored the adaptability 

of the adaptive Kalman filter (AKF) in reconstructing me-

chanical sources, proposing a new state space representation 

of dynamic systems based on a generalized method. Under 

the augmented Kalman filter, using only the accelerometer 

signal may result in algorithm recognition divergence due to 

the unobservability and insufficient rank of the augmented 

matrix. Maes et al. [10] proposed a Joint Input State Estima-

tion (JISE) algorithm that considers the correlation between 

model and measurement errors to quantify estimation uncer-

tainty caused by measurement errors and unknown random 

excitations.  

Huang et al. [11] proposed two generalized algo-

rithms based on generalized Kalman filtering under un-

known input (GKF-UI) for the identification of seismic 

ground excitation to multi-story and tall buildings, respec-

tively. Álvarez-Briceño et al. [12] used state-augmented 

Kalman filter (AKF) algorithm to estimate a point random 

force, which is applied at the end of a cantilevered structure. 

Hassanabadi et al. [13] proposed a linear recursive Bayesian 

filter for minimum variance unbiased joint input and state 

estimation of structural systems, in which unknown inputs 

are estimated without attributing any fictitious input model 

or statistics. 

The Kalman filtering algorithm shows promise in 

reconstructing structural dynamic responses, particularly in 

cases with model errors. However, simultaneous reconstruc-

tion of structural external excitation and response has re-

ceived limited attention [14]. In this paper, we propose an 

excitation prediction Kalman filtering algorithm for recon-

structing structural dynamic responses, based on the classi-

cal Kalman filtering method for continuous system. 

Initially, we derived the load identification theory 

of continuous system by taking the simply supported beam 

as an example in modal space. Then, using the same contin-

uous system as a simulation example, we analyse the accu-

racy of the response signal identified and reconstructed by 

our algorithm under a fixed frequency external excitation. 

Additionally, we introduce various noise conditions and 

model errors to assess the algorithm's robustness against 

noise. Finally, we validate the feasibility and reliability of 

both the system and the structural DRR algorithm through 

experiments. 

2. Structural DRR algorithm based on Bayesian 

method for continuous system 

2.1. Simply supported beam model and equation of motion 

in modal space 

This paper derives the load identification theory of 

continuous system by taking the simply supported beam as 

an example. The model of the simply supported beam is 

shown in Fig. 1. 
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Fig. 1 Simply supported beam model under concentrated 

force 

It is assumed that the beam shown in the Fig. 1 is a 

homogeneous Bernoulli-Euler beam [15] with equal sec-

tions. The differential equation of bending vibration of the 

beam can be obtained as 
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here, A is the cross-sectional area, and C, E and  represent 

the damping coefficient, the elastic modulus of the material 

and the material density, respectively. I represents the mo-

ment of inertia of the section about the neutral axis. The lat-

eral external force distributed on the beam per unit length is 

denoted by f(x,t); w(x,t) represents the transverse displace-

ment of the cross-section neutral axis with coordinates x at 

time t.  

The partial differential equation of the continuous 

system can be transformed into a series of ordinary differ-

ential equations represented by the main coordinate. Intro-

ducing the principal coordinate transformation by using the 

modal superposition method: 
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where Wn(x) represents the n-th mode shape function, and 

qn(t) is a time function describing the motion law. It is as-

sumed that the mode shapes of the system have been nor-

malized with respect to the mass. The orthogonality of mode 

shape function can be expressed as: 
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According to the orthogonality of mode shape 

function, Eq. (5) can be obtained by multiplying Wn(x) by 

both sides of Eq. (1) and integrating x along the length of 

the beam: 

( ) ( ) ( ) ( )22n n n n n n nq t q t q t f t  + + = ,  

n = 1, 2, 3... (5) 

where n and fn(t) are the n-th order modal damping ratio 

and modal force, respectively. High order modes contribute 

little to the vibration response of the system, hence, the 

modal truncation method can be used to reduce the DoF of 

the system. It is assumed that the modal truncation order is 

r, and Eq. (5) can be transformed into a finite number of 

independent equations as: 
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To transform the dynamic motion Eq. (6) into a lin-

ear state-space form we can write: 
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The vector x(t), y(t) are the structure state vector 

and measurement vector respectively, while Ac is the state 

transfer matrix. Bc is the influence matrix of external exci-

tation, which consists of 0 and 1. The location of the excita-

tion is 1, and the rest of the positions are 0. H and D being 

the observation matrix and excitation influence matrix re-

spectively. 

Assuming equispaced sampling time instants i.e. 

t(t = t0, t1, t2, …, tk, …) and assuming these instants are small 

enough, we can also reasonably assume that the excitation 

u(t) remains unchanged within (t = tk+1−tk), and the 

Eqs. (7) and (8) can be discretized as: 

1k k k

k k k

+ = +

= +

x Ax Bu

y Hx Du
, (10) 

where uk is the external excitation, xk+1 and xk represent the 

structural state vectors at time (k + 1)t and kt, 
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respectively. Here, A and B are the state transition matrix 

and the excitation influence matrix in a discrete format and 

defined as: 

e c t
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This paper proposes a structural DRR method 

based on the excitation prediction Kalman filter, which in-

cludes an excitation identification step and uses weighted 

least squares to identify the excitation. Combining Kalman 

filtering for state estimation, utilizing time update steps and 

measurement update steps to achieve recursion and state 

correction, can simultaneously achieve excitation recogni-

tion and response reconstruction. 

The specific calculation process is as follows. 

1. Time update step 

According Eq. (10), we obtain 

1 1 1 1|k|k k k k
ˆ − − − −= +x Ax Bu , (13) 

where 
1

x
k k−

 is a priori estimate,
1 1

x
k k− −

 is a poste-

riori estimate of time k−1. 

The error of the estimate of 
1

x
k k−

 is  

1 1 1 1 1 1k k k k k| k k k k| |          w− − − − − − − = + +x x x Ax Bu , (14) 

where, | |       x x xk k k k k − , 1kw −  is considered to be independ-

ent identically distributed Gaussian noise with the mean 

value 0. 

2. Excitation identification step 

Define residuals, 

1k k k|k    − −y y Hx , (15) 

with     k k k kv= + +y Hx Du . (16) 

Get the relationship between ky  and uk 

1k   k k k k k k|        v   −= + + = +y Du Hx Du e , (17) 

where 1k k kk |  v−= +e Hx . Since
1k k -

x is an unbiased estima-

tion and E(vk) = 0, E(ek) = 0; we can write 

( ) ( )k kE E=y D u . Next, the external excitation is estimated 

as: 

( )1k k k k k|
ˆ      −= −u J y Hx , (18) 

where Jk is to be solved parameter, which makes ˆ
ku be un-

biased estimation of the external excitation uk  

Replacing Eq. (18) with Eq. (16), we obtain 

k k k k k
ˆ    = +u J Du J e . (19) 

If k
ˆ  u is an unbiased estimate of uk, then JkD = I. Let 
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T x T
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In the above formula ( )T

k k kE v vR , kR  is a posi-

tive definite matrix. According to the least squares method, 

it can be inferred that: 
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Predicting uk is also a parameter estimation method 

similar to weighted least squares. Let ky be the observation 

value and the 1

k

−
R  be the weight, then the variance u

kP  of

ku  is 
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3. Measurement update step  

For measurement update, we assume that, 

( )1 1k k k k k k k k k| | |
ˆ    − −= + − −x x K y Hx Du , (23) 

where Kk is Kalman gain, which can be solved by minimiz-

ing the variance matrix using the weighted least squares 

method [16] 
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So far, the derivation of the Kalman filter algorithm 

based on excitation prediction has been completed. The time 

update step, force identification step, and measurement 

update step are detailed below: 
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To sum up, the flow of Kalman filter algorithm 

based on excitation prediction is given in Table 1. 

2.2. Structural DRR method 

To achieve structural response reconstruction, 

which involves predicting the response value at a target 

point using signals from limited observation points, we  
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Table 1 

Kalman filter algorithm based on excitation prediction 

1.Given the initial value 0 1|−x ， 0 1

x

|−P .  

2.Exciation identification step 
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utilize the Kalman filtering algorithm based on excitation 

prediction as derived in the preceding text. This enables us 

to obtain the system state and excitation prediction, thereby 

facilitating structure response reconstruction. At this junc-

ture, the state transfer equation and observation equation can 

be expressed as follows: 

1 1 1
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where the superscript m denotes the location of the m-th 

measuring point. In accordance with Eq. (27), the 

reconstruction response at the target point can be obtained 

through Kalman filtering, representing the posterior value

k|kx : 

r r r

k k|k k
ˆ= +y H x D u , (28) 

where the superscript r indicates the position of the recon-

struction value of the target point, r

ky is the response value 

of the reconstruction of the target point. Now, if yk is taken 

as the true response value of the target point, then 

r r

k k k
ˆ= +y H x D u . (29) 

When applying this algorithm to reconstruct the 

dynamic response of a known structure subjected to un-

known excitation, it is essential to compute the structure's 

model parameters as algorithm parameters. Additionally, 

the response data collected from finite element simulations 

or sensors should be inputted as observation values into the 

algorithm. This process enables the DRR of the structure 

and the prediction of the excitation. Although the measure-

ment signals in this paper are exclusively acceleration sig-

nals, this response reconstruction method remains feasible 

for other measurement signals such as strain, displacement, 

and velocity. 

3. Response Reconstruction Algorithm Flow of  

Continuous System in Modal Space 

The natural frequency, mass-normalized natural 

mode shape, and damping matrix of the model are directly 

acquired via Patran&Nastran. Once the modal truncation 

number is determined, the matrix , ,  are calculated, and 

then the parameter matrix AC and BC for the structural dy-

namic response method is constructed. Discretizing it using 

the time interval t, we derive the state transition matrix A  

Model Frequency, Model Mode and 

Model Damping

Discretized state transition matrices 

A and B

Structural Response Reconstruction 

Algorithm for Infinite Degree of 

Freedom Systems in Modal Space

Observation equation matrix

H and D

Modal Mode Matrix Φ,

Modal stiffness matrix Λ,

Modal damping matrix Γ,          

Excitation matrix 

Determine observation points

Matrix H0 

System response under 

external excitation

Reconfigure the response 

of the target point

Observations of structural 

components
Refactoring values

Determine sampling time

Determine the order of 

modal truncation

Continuous state transition matrix

AC and BC

Establish a finite element model and 

determine the number of elements

 

Fig. 2 Flow chart of response reconstruction method for continuous system in modal space 
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and excitation influence matrix B. The estimation of the ex-

ternal excitation of the system kû  is acquired through the 

excitation identification step. Simultaneously, the state esti-

mation k k|x is obtained through the measurement update step 

and the time update step. Leveraging the partially observed 

values yk of the system response under external excitation, 

the response information r

ky at the target point can be recon-

structed. Fig. 2 shows the flow chart of response reconstruc-

tion method for continuous system in modal space. 

4. Simulation Example 

The simply supported beam model depicted in 

Fig. 1 has dimensions of 1 m in length, 0.05 m in width, and 

0.005 m in thickness. It possesses a modulus of elasticity of 

206 GPa, a density of 7900 kg/m³, and a Poisson's ratio of 

0.3. A dynamic load f is applied to the beam. Following the 

DRR method proposed in this paper for continuous system, 

the dynamic response of the target point is reconstructed us-

ing response information from a finite number of points. 

Simultaneously, the dynamic load applied to the structure is 

identified and compared with the actual structural dynamic 

response and load to verify the feasibility and accuracy of 

this DRR method for a continuous structure. 

4.1. Algorithm accuracy evaluation method 

The peak relative error approach (PREA), signal to 

noise ratio (SNR) and angle cosine method (ACM) are used 

to evaluate the accuracy of load identification in this paper.  

We assume that the theoretically response signal is repre-

sented by X(i), while the reconstructed value is represented 

by Y(i). 

1. PREA 
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PREA  is used to evaluate the amplitude error bet

ween the identified value or reconstructed value and the the

oretical value. 

2. SNR 
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n is the number of samples taken within time t. The closer 

the recognition value or reconstruction value Y(i) is to the 

theoretical value X(i), the larger the SNR. 

3. ACM 

( )
( ) ( )

( ) ( )

1

2 2

1 1

n

i

n n

i i

i i

ACM cos

i i

 =

= =
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X Y

X,Y

X Y
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The maximum value of ACM(X,Y) is 1, and the cl

oser the value is to 1, the closer the recognition value or rec

onstruction value signal is to the theoretical value. 

4.2. Case 1: Response reconstruction under impact excita-

tion considering modal parameter error and Gaussian 

white noise 

For the simply supported beam model in Fig. 1, the 

dynamic load is assumed to be an impact load and a half sine 

wave within a short duration, specifically from 0.1 s to 

0.110 s, while the load remains 0 at other times. 

Discretize the simply supported beam model uni-

formly into 50 elements. Impact load f = sin(250t) act-

ing on node 21. The system begins in a zero initial state. 

Patran software package is utilized for modeling the simply 

supported beam, while Nastran software package is em-

ployed for transient dynamics analysis. The acceleration re-

sponse is computed with a sampling rate of 1024, a sampling 

time of 5 seconds. 

Taking into account actual operating conditions 

and modal parameter errors, as well as introducing Gaussian 

white noise. Assuming the observation noise follows a 

Gaussian distribution with a mean of 0 and a standard devi-

ation of 10−3, and incorporating a 5% modal parameter error. 

According to the algorithm, Fig. 3 presents a partial en-

larged view of the comparison results between the load iden-

tified in the excitation identification step and the actual 

value at the moment of force application. Similarly, Fig. 4 

illustrates the comparison between the acceleration response  

 

Fig. 3 Partial magnification of identification results for im-

pact excitation with 5% modal noise error and Gauss-

ian white noise 

 

Fig. 4 Reconstruction results of acceleration response of tar-

get node with 5% modal noise error and Gaussian 

white noise 
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of target node reconstructed by the algorithm and the theo-

retical value. Table 2 provides the data results, which repre-

sent the average values computed from multiple data sets. 

Table 2 

Reconstruction error results under impact excitation with 

5% modal noise and Gaussian white noise 

Error evaluation method PREA, % SNR, dB ACM 

Load identification 8.33% 16.5666 0.8826 

Response reconstruction 7.06% 47.2440 0.9993 

As observed from the charts, when Gaussian white 

noise and modal parameter noise are concurrently intro-

duced, the relative error of the PREA remains within 10%. 

The SNR and the ACM have both been affected, but they are 

still within the acceptable error range for practical engineer-

ing applications. 

4.3. Case 2: Response reconstruction under fixed fre-

quency excitation considering modal parameter error 

and Gaussian white noise 

Let the dynamic load f be a fixed frequency load 

defined as: f(t) = sin(220t)+3sin(220t). Same as 

case one, Patran is utilized to simulate model for response 

calculation. With a sampling rate of 1024 Hz, the sampling 

time is set to 5 seconds, and the acceleration response is 

computed accordingly. By combining the calculated re-

sponse data with the natural frequencies and modes obtained 

through finite element analysis, we construct the parameter 

matrix required for the algorithm to reconstruct the re-

sponse. The initial state vector of the system 0|0x is assumed 

to be 0.  

Assuming that the observation noise follows a 

Gaussian distribution with a mean of 0 and a standard devi-

ation of 0.001, and incorporating a 5% modal parameter er-

ror. Following the algorithm, Fig.5 illustrates a partial en-

larged view of the comparison results between the load iden-

tified in the excitation identification step and the actual 

value. Similarly, Fig. 6 presents a partial enlarged view of 

the comparison between the acceleration response of the tar-

get node reconstructed by the algorithm and the theoretical 

value. Data results, representing the average values calcu-

lated from multiple data sets, are provided in Table 3. 

From the results, it is apparent that when consider-

ing the actual situation and introducing Gaussian white 

 

Fig. 5 Partial amplification of identification results of fixed 

frequency excitation with 5% modal noise error and 

Gaussian white noise 

 

Fig. 6 Partial amplification of reconstruction results of ac-

celeration response of target node with 5% modal 

noise error and Gaussian white noise 

noise and modal parameter error, the PREA remains within 

10%. Fortunately, SNR is relatively high, and ACM is close 

to 1, resulting in an excellent identification and reconstruc-

tion performance. This validates the feasibility and reliabil-

ity of the algorithm when a fixed frequency excitation is ap-

plied to continuous system in a practical scenario. 

Table 3 

Reconstruction error results with 5% modal error and 

Gaussian white noise 

Error evaluation method PREA, % SNR, dB ACM 

Load identification 5.89% 58.2600 0.9991 

Response reconstruction 7.93% 51.4794 1.0000 

5. Experimental Verification of Structural DRR 

5.1. Structural DRR test platform and equipment 

The structural DRR system is designed based on 

LabVIEW, encompassing both the overall scheme design 

and the specific software and hardware components. The 

correctness of the structural DRR algorithm, as well as the 

availability and reliability of the system, are further verified 

through a simply supported beam test. The test is divided 

into two parts: 

1. Modal test of the simply supported beam struc-

ture: This part is used to obtain the natural frequency, natu-

ral mode shape, and other modal characteristics of the 

simply supported beam. 

2. DRR test of the simply supported beam: struc-

tural DRR is completed by collecting the acceleration re-

sponse of the simply supported beam. The target point re-

sponse reconstruction data are obtained using the structural 

DRR system with limited observation points and compared 

with the actual measured acceleration response data of the 

point. 

5.2. Structural DRR test 

Fig. 7 shows the test site diagram, and the number 

of the measuring point positions on the simply supported 

beam. According to the test requirements, the instruments 

and equipment used are listed in Table 4. The test scheme 

for reconstructing the dynamic response of the structure un-

der fixed frequency excitation is shown in Fig. 8.  
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Fig. 7 Site diagram of structural DRR test 
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Fig. 8 Test scheme for structural DRR under fixed fre-

quency excitation 

Table 4 

Test instruments and equipment for DRR testing 

Equipment 

classification 
Name Number 

Excitation 

 equipment 

PCB 086C03 hammer 1 

HEV-50 permanent magnet ex-

citer 
1 

Power amplifier HEAS-2 power amplifier 1 

Dynamic signal ac-

quisition board 

NI USB 4431 acquisition card 1 

M+P AI810 acquisition card 1 

Signal acquisition 

instrument 

M+P vibmobile 

(up to 64 channels) 
1 

Sensor 
PCB 356A33 unidirectional 

acceleration sensor 
9 

Software 

M+P Smart Office 

(modal analysis) 
1 

Structural dynamic response 

 reconstruction system 
1 

5.3. Experimental plan for structural DRR under fixed fre-

quency excitation  

The fixed frequency excitation signal 

( )=7 sin(2 50 )+3 sin(2 60 )F t t t       is input. 

The comparison between the load identification re-

sults and the actual excitation signal is shown in Fig. 9. The 

comparison between the acceleration response at measure-

ment point of the test piece obtained through the algorithm 

and the actual measured response is shown in Fig. 10. 

It can be observed from Fig. 9, Fig. 10 and Table 5 

that the load identification and response reconstruction un-

der fixed frequency excitation generally produce satisfac-

tory results. The error from multi-point observation can be 

effectively controlled. 

 

Fig. 9 Identification results of fixed frequency excitation 

 

Fig. 10 Response reconstruction results of target point un-

der fixed frequency excitation 

Table 5 

Reconstruction error results of fixed frequency excitation 

Observation result category Load identification Response reconstruction 

Observation point location 

 (test piece number) 
3 2, 3, 4, 6, 8 3 2, 3, 4, 6, 8 

PREA, % 2.76% 1.98% 4.46% 3.62% 

SNR, dB 14.2 35.3 21.5 36.6 

ACM 0.86 0.99 0.86 0.98 

 

6. Conclusion 

A response reconstruction method based on the ex-

citation prediction Kalman filter for continuous system is 

established. The method can simultaneous identify the 

structural external excitation and reconstruct response at un-

measured positions for continuous system. Extending the al-

gorithm from physical space to mode space for continuous 

system, the calculation process of the excitation prediction 

Kalman filter algorithm is presented. A simply supported 

beam system is taken as a simulation example to analyze the 

feasibility and reliability of load identification and response 

reconstruction under different external excitations, such as 

impact excitation and fixed frequency excitation. Various 

noise conditions and model errors are introduced to evaluate 

the noise resistance of this method. The simulation results 

demonstrate that the algorithm can effectively identify and 

reconstruct various excitations. Finally, based on the pro-

posed structural DRR method, a test system is designed. The 

reconstruction test results show that PREA is below 5%, 

SNR is relatively high, while ACM is close to 1, indicating 

the algorithm can accurately identify the excitation under 

different load conditions and simultaneously reconstruct the 

target point response. 
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H. Li, J. Jiang, M. S. Mohamed 

STUDY ON SIMULTANEOUS IDENTIFICATION OF 

EXTERNAL EXCIATION AND RESPONSE 

RECONSTRUCTION FOR CONTINUOUS SYSTEM 

S u m m a r y 

This paper proposes a novel dynamic response re-

construction method based on the Kalman filter which can 

simultaneously identify external excitation and reconstruct 

dynamic responses at unmeasured positions. The weighted 

least squares method determines the load weighting matrix 

for excitation identification, while minimum variance unbi-

ased estimation determines the Kalman filter gain. The ex-

citation prediction Kalman filter is constructed through 

time, excitation, and measurement updates. Subsequently, 

the response at the target point is reconstructed using the 

state vector, observation matrix, and excitation influence 

matrix obtained through the excitation prediction Kalman 

filter algorithm. An algorithm for reconstructing responses 

in continuous system using the excitation prediction Kalman 

filtering algorithm in modal space is derived. The proposed 

structural DRR method evaluates response reconstruction 

and load identification performance under various load 

types and errors through simulation examples. Finally, a test 

system for structural DRR on simply supported beams is 

constructed and tested. Results demonstrate accurate excita-

tion identification under different load conditions and sim-

ultaneous reconstruction of target point responses, verifying 

the feasibility and reliability of the method. 

Keywords: structural response reconstruction, excitation 

identification, Kalman filter, excitation identification Kal-

man filter, continuous system. 
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