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1. Introduction 

Inverted pendulum systems are widely used in con-

trol engineering education and as benchmarks for real-world 

control challenges due to their unstable, nonlinear dynamics 

[1, 2]. Applications include humanoid robots, wheeled ro-

bots [3], and rocket launching. Controlling triple inverted 

pendulums (TIPs) is particularly complex, often validated 

through simulations due to the difficulty of real-world ex-

periments [4]. Traditional TIP control relies on mathemati-

cal models and trajectory tracking but is prone to errors from 

model mismatches and unmodeled dynamics, particularly in 

complex environments. Reinforcement learning (RL) offers 

a data-driven alternative, bypassing explicit modeling to en-

able real-time control. Advances in deep RL have demon-

strated success in autonomous systems and continuous ac-

tion spaces [5]. The rapid advancement of Artificial Intelli-

gence (AI) has enabled intelligent control algorithms to 

meet growing demands for high-performance systems. 

Among these, Reinforcement Learning (RL) excels in solv-

ing complex control problems in dynamic environments, 

particularly when system dynamics are unknown or uncer-

tain. This study explores Deep Reinforcement Learning 

(DRL) for real-time control of a linear inverted pendulum, 

focusing on the Deep Deterministic Policy Gradient 

(DDPG) algorithm for its ability to handle continuous action 

spaces critical for dynamic systems [6]. Reinforcement 

learning (RL) has been applied to rotary inverted pendulum 

control, demonstrating superior flexibility and robustness 

compared to traditional LQR and MPC controllers. Devel-

oped in MATLAB/Simulink and implemented on Raspberry 

Pi, the RL controller using Proximal Policy Optimization 

(PPO) showed potential for complex, nonlinear systems de-

spite challenges in real-world deployment. An RL frame-

work for education using Lucas-Nulle hardware addressed 

pendulum swing-up and stabilization, with RL computa-

tions outsourced and communication via CAN bus. A safe-

guarding algorithm ensured safe training, highlighting RL's 

effectiveness in trial-and-error learning. The primary objec-

tives of this research are as follows: 

1. To conduct a comprehensive literature review on DRL 

algorithms, focusing on selecting the most appropriate 

method for control applications. 

2. To develop expertise in using the MATLAB Reinforce-

ment Learning Toolbox, particularly in the implemen-

tation of the DDPG algorithm. 

3. To design and execute an effective control system for 

both linear and nonlinear systems, using the Quanser 

IP02 Inverted Pendulum system as a case study. 

The paper is organized as follows: The introduc-

tion provides the context and objectives of the research. 

Subsequent sections discuss the theoretical foundations of 

Reinforcement Learning and Deep Learning, and their ap-

plication in control systems using MATLAB. Detailed im-

plementation of the DDPG algorithm, along with the exper-

imental setup, is thoroughly presented. The paper concludes 

with an analysis of the results and a discussion of the con-

tributions and future directions of the research. 

2. Reinforcement Learning and Fundamentals of Con-

trol Theory 

Control theory plays a crucial role in engineering 

by focusing on how input variables can influence the behav-

iour of dynamic systems through controlled inputs. These 

systems can be broadly categorized into linear systems and 

nonlinear systems, both of which form the foundation of au-

tomatic control systems. Linear systems adhere to the prin-

ciples of proportionality and additivity, whereas nonlinear 

systems exhibit more complex behaviour and require spe-

cialized control approaches [7]. Nonlinear systems deviate 

from the principle of superposition, meaning their response 

is not directly proportional to the input. The equations that 

describe nonlinear systems are of the form: 

( ) ( ) ( ) ( ) ( ) ( ),x t f x t ,u t y t g x t ,u t= =       , (1) 

where f and g are nonlinear functions. These systems often 

display intricate behaviours and require advanced control 

techniques to manage them efficiently. 

2.1. Reinforcement learning for optimal control applications 

Reinforcement Learning (RL) offers a model-free 

framework for addressing optimal control problems in both 

linear and nonlinear systems. In an RL environment, an 

agent interacts with the environment and learns the optimal 

policy by maximizing rewards. Fig. 1 illustrates the agent-

environment interaction cycle in RL [8-10]. 

In  Reinforcement  Learning,  the  agent  seeks  to 

 

Fig. 1 Agent-environment interaction cycle in RL 
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maximize the cumulative reward through cycles of trial and 

error. This interaction is based on several key concepts [8-

10]. 

2.2. Trial and error: learning 

The agent interacts with the environment to select 

actions that result in high rewards, continuously refining its 

policy based on the experience it gains. Fig. 2 illustrates the 

process of learning through trial and error. 

 

Fig. 2 Trial-and-error cycle in reinforcement learning 

The return Gt represents the total expected reward 

an agent receives over a time sequence and is defined as: 

 1
0

0 1k

t t k
k

G r , , 


+ +
=

=  , (2) 

where  is the discount factor, which determines the im-

portance of future rewards. 

The value function V

(st) gives the expected return 

when the agent follows policy  from state st. 

( )t t tV s E G s
  =   . (3) 

The Bellman equation is a fundamental concept in 

RL, which links the value of a state to the values of future 

states. 

( ) ( )1 1t t tV s E r V s 
 + +
 = +  . (4) 

This equation helps the agent to improve its policy 

by predicting future rewards [14]. Expectation E[X] is de-

fined as the weighted sum of all possible outcomes multi-

plied by their probabilities. 

  ( )
x X

E X xP x


=  . (5) 

2.3. Exploration vs. exploitation 

In RL, there is a trade-off between exploring new 

actions and exploiting known policies that are known to 

yield high rewards. The  - greedy algorithm is one approach  

 

Fig. 3 Epsilon behaviour during training in  - greedy algo-

rithm 

used to balance this trade-off as described by Eq. (6) and 

shown in Fig. 3. 
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2.4. Reinforcement learning algorithms 

This section introduces four foundational RL algo-

rithms: Policy Iteration, Value Iteration, SARSA, and  

Q-Learning. Each algorithm offers different approaches to 

learning optimal policies and value functions. In Algorithm 

1, policy iteration is an algorithm that iteratively evaluates 

and improves a policy until it converges to the optimal pol-

icy. It consists of two main steps: policy evaluation and pol-

icy improvement. 

Algorithm 1: Policy Iteration Algorithm 

Data:   a small number 

Result: V :  a value function s.t. V v , :  a deterministic      

policy s.t. :    

Function Policy Iteration is 

/ Initialization                                                                                                                 

Initialize ( )V s  arbitrarily; 

Randomly initialize policy ( )s ; 

/ Policy Evaluation                                                                                                         

0 ; 

while 0  do 

     for each s S do 

( )v V s ; 

( ) ( ( )) ( )
s ,r

V s p s,r | s, s r V s  +   ; 

( )( )max ,| v BV s |   − ; 

     end 

end 

/ Policy Improvement                                                                                                     

policy-stable true ; 

for each s S do 

    old-action ( )s ; 

( ) ( ) ( )
s ,ra

s arg max p s,r | s,a r V s  +   ; 

     if old-action  ( )! s= then 

policy-stable false ; 

   end 

end 

if policy stable− then 

return V v  𝑉 ≈ 𝑣∗ and   ; 

else 

go to Policy Evaluation; 

end 

end 

In Algorithm 2, value iteration combines policy 

evaluation and policy improvement into a single step, itera-

tively updating the value function until convergence to the 

optimal value function V*. 

In Algorithm 3, SARSA (State-Action-Reward-

State-Action) is an on-policy Temporal Difference (TD) 

control algorithm that updates the action-value function 

1 2 
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The agent is able to observe the 
current state of the environ-

 

From the observed state, it de-
cides which action to take. 

The environment changes state and 
produces a reward for that action. 

 

The observation-action-reward con-
clude the first cycle of the RL problem. 
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Q(s, a) based on the action actually taken by the current pol-

icy. 

 

Algorithm 2: Value Iteration Algorithm 

Data:  a small number 

Result:  : a deterministic policy s.t.     

Function Value Iteration is 

     / Initialization                                                                                                                

     Initialize ( )V s  arbitrarily, except ( )terminalV ; 

   ( ) 0terminalV  ; 

     / Loop until convergence                                                                                                

  0 ; 

       while 0  do 

     for each s S do 

              ( )v V s ; 

( ) ( ) ( )
s ,ra

V s max p s,r | s,a r V s +   ; 

( )max ,| v V(s)|   − ; 

               end 

        end 

      / Return optimal policy                                                                                                  

          return   s.t.  

( ) ( ) ( )
s ,ra

s arg max p s,r | s ,a r V s  +   ; 

end 

 

Algorithm 3: SARSA (on-policy TD control) for estimating 

   

Algorithm parameters: step size ( )0 1, ,   small 

0epsilon  ; 

Initialize ( )t tQ s ,a   for all t ts S,a A),   arbitrarily except 

that ( ) 0Q terminal,  = ; 

For each episode: 

       Initialize ts ; 

     For each step of episode: 

Choose at from st using policy derived from 

( ( )t tQ s ,a e .g ., greedy− ; 

Take action at, observe 1 1t tr ,s+ + ; 

( ) ( ) 

( ) ( )

1

1 1 ;

t t t t t

t t t t

Q s ,a Q s ,a r ,

Q s ,a Q s ,a





+

+ +

 + +

+ − 

 

1

1;

t t

t t

s s ;

a a

+

+




 

     end; 

end 

 

- On-Policy: Learns the value of the policy being carried 

out. 

- TD Control: Combines ideas from Monte Carlo meth-

ods and dynamic programming. 

In Algorithm 4, Q-Learning is an off-policy Tem-

poral Difference (TD) control algorithm that learns the op-

timal action-value function Q(s, a) independently of the 

agent's policy. It updates Q(s, a) based on the maximum es-

timated future rewards, promoting exploration of all actions. 

• Off-Policy learns the value of the optimal policy inde-

pendently of the agent's actions. 

• TD Control utilizes the Bellman equation for updates 

[11]. 

 

Algorithm 4: Q-learning (off-policy TD control) for estimating 

   

Algorithm parameters: step size ( )0 1 ,,   small 

0epsilon ;   

Initialize ( )t tQ s ,a   for all t ts S,a A,   arbitrarily except 

that ( ) 0Q terminal, ; =  

For each episode: 

       Initialize ts ;  

     For each step of episode: 

Choose 𝑎𝑡 from 𝑠𝑡 using policy derived from 

( ( );t tQ s ,a e .g ., greedy−  

       Take action at, observe 1 1t tr ,s ;+ +   

( ) ( )

( ) ( )1 ;

t t t t

t t t t
a

Q s ,a Q s ,a

r , maxQ s ,a Q s ,a +

 +

 + + − 

 

1 ;t ts s +  

     end 

end 

2.5. Model based and model free reinforcement learning 

Reinforcement Learning approaches can be cate-

gorized into model-based and model-free methods. Involves 

learning a model of the environment's dynamics (i.e., tran-

sition probabilities and reward function) to plan future ac-

tions. This approach can be more sample-efficient but may 

struggle with model inaccuracies. Learns optimal policies or 

value functions directly from interactions without requiring 

a model of the environment. Algorithms like Q-Learning 

and SARSA fall into this category. While generally less 

sample-efficient, they are more flexible in complex or un-

known environments [12, 13]. 

2.6. Limitations of reinforcement learning 

Despite its powerful capabilities, Reinforcement 

Learning faces several challenges. High Sample Complex-

ity: Requires a large number of interactions with the envi-

ronment to learn effective policies. Scalability Issues: Strug-

gles with large state-action spaces, leading to increased 

computational demands. Balancing the need to explore new 

actions with exploiting known rewarding actions remains a 

persistent challenge. Stability and Convergence: Ensuring 

stable learning and convergence to optimal policies, espe-

cially in non-stationary or dynamic environments, is diffi-

cult. Addressing these limitations is an active area of re-

search, with ongoing efforts to develop more efficient, scal-

able, and robust RL algorithms. 

3. Deep Reinforcement Learning (DRL) 

Deep Reinforcement Learning (DRL) represents a 

significant advancement over traditional RL algorithms, 

particularly in addressing challenges associated with large 

and complex state and action spaces. Traditional RL ap-

proaches often face difficulties in environments with non-

linear dynamics or where the state-action space is too vast 

to be modelled effectively. DRL overcomes these limita-

tions by using deep neural networks to approximate policies 
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and value functions, which enables learning in more com-

plex environments. DRL systems excel in processing high-

dimensional input data, such as images or sensor readings, 

which are often encountered in real-world applications. By 

incorporating deep learning techniques, DRL algorithms 

can autonomously discover optimal feature representations 

that enhance decision-making capabilities. This ability to 

generalize from large amounts of data makes DRL particu-

larly effective in environments where traditional RL meth-

ods fail [9, 14]. 

3.1. Foundations of deep learning 

Deep learning uses multi-layered neural networks, 

also known as deep neural networks (DNNs), to model com-

plex relationships in data. Unlike shallow neural networks, 

which consist of a few layers, deep networks contain numer-

ous layers, allowing them to capture hierarchical patterns in 

the input data. Each layer learns increasingly abstract fea-

tures, making DNNs powerful tools for tasks such as image 

recognition, language processing, and, in the context of 

DRL, policy learning [15]. In a DRL framework, these net-

works function as approximators for both value functions 

and policies. For instance, in actor-critic architectures, the 

actor network maps the state observations to actions, while 

the critic network evaluates the quality of these actions by 

estimating the value function. Fig. 4 shows an example of a 

basic neural network. 

 

Fig. 4 A basic neuron model 

3.2. Policy gradient algorithms 

Policy gradient algorithms are a class of RL meth-

ods where the policy is directly parameterized and opti-

mized using gradient-based techniques. These algorithms 

seek to optimize the policy by adjusting the policy's param-

eters to maximize the expected cumulative reward. Unlike 

value-based methods, which derive the policy from a value 

function, policy gradients can learn both stochastic and de-

terministic policies directly. One of the major benefits of 

policy gradient methods is their ability to handle continuous 

action spaces. This makes them ideal for control tasks, such 

as robotic manipulation, where actions are continuous and 

need to be fine-tuned. 

3.3. Deriving the policy gradient 

The Policy Gradient Theorem provides a mecha-

nism for calculating the gradient of the expected reward 

with respect to the policy parameters.  

( ) ( ) ( )J E log a s Q s,a
      =   , (7) 

here, J() represents the performance objective, ( )a s is 

the policy parameterized by , and Q

(s, a) is the action-

value function. This gradient is used to adjust the policy pa-

rameters in a way that increases the expected reward [16]. 

3.4. Deep Q-learning 

Deep Q-learning integrates the Q-learning algo-

rithm with deep neural networks to address environments 

with large state spaces. In this approach, the Q-function, 

which estimates the value of taking a specific action in a 

particular state, is approximated using a deep neural net-

work. The update rule for the Q-network is based on the 

Bellman equation, defined as: 

( ) ( )1, ,t t t a tQ s a r max Q s a += +  , (8) 

where rt is the reward at time step t, and  is the discount 

factor, which adjusts the weight of future rewards relative to 

immediate ones. 

3.5. Deep deterministic policy gradient (DDPG) 

The Deep Deterministic Policy Gradient (DDPG) 

algorithm builds upon both Deep Q-learning and Determin-

istic Policy Gradient (DPG) methods. It is specifically de-

signed to address environments with continuous action 

spaces, making it ideal for control tasks that require precise 

action selection. DDPG operates using an actor-critic archi-

tecture, where the actor network learns the optimal policy 

by mapping states to actions, and the critic network evalu-

ates these actions by estimating the Q-value. The architec-

ture of the actor-critic network follows five steps, as illus-

trated below. 

Steps in the Actor-Critic Network Architecture: 

1. State Observation, the agent observes the current state 

st from the environment and feeds this information to 

both the actor and critic networks. 

2. Action Selection by Actor, the actor network processes 

the state and selects an action at. This action is typically 

continuous in DDPG. 

3. Action Evaluation by Critic, the critic network takes 

both the current state 𝑠𝑡 and the selected action 𝑎𝑡 as 

inputs. The critic evaluates the action by estimating the 

Q-value Q(st, at), which represents the expected return 

of taking action at in state st. 

4. Reward and Next State, after taking action at, the agent 

receives a reward rt from the environment and transi-

tions to the next state st+1. 

5. Updating the Actor and Critic, the critic network is up-

dated by minimizing the temporal difference error, de-

fined as: 

( ) ( )( )
2

1 1t t t t tL r Q s ,a Q s ,a + += + − . (9) 

The actor network is updated using the policy gradient to 

maximize the Q-value estimated by the critic, i.e., improv-

ing the policy based on the critic’s feedback. Fig. 5 illus-

trates the actor-critic network and the interaction between 

the actor, critic, and the environment, detailing these steps 

[8, 17, 18]. 
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Fig. 5 Actor critic network architecture in DDPG (steps 1-5) 

3.6. Discussion on DRL 

Deep Reinforcement Learning, particularly 

DDPG, has proven to be highly effective for solving com-

plex control problems involving continuous action spaces. 

The combination of policy gradient methods and Q-learning 

within the actor-critic framework provides a powerful 

mechanism for learning optimal policies in environments 

where traditional methods struggle. This makes DDPG par-

ticularly useful for real-time control tasks, such as robotics 

and other dynamic systems. In future developments, efforts 

to improve the stability and efficiency of DDPG could en-

hance its applicability in real-world systems where precision 

and reliability are critical. 

4. Implementation of DDPG Using RL MATLAB 

Toolbox 

The MATLAB Reinforcement Learning Toolbox 

provides a powerful framework for developing and training 

reinforcement learning (RL) algorithms, such as Deep De-

terministic Policy Gradient (DDPG). This section details the 

implementation of the DDPG algorithm for controlling the 

Quanser IP02 system, a commonly utilized platform for test-

ing control algorithms in dynamic environments. The 

Quanser Single Inverted Pendulum (SIP) system is em-

ployed as an example to demonstrate the application of re-

inforcement learning in managing complex nonlinear sys-

tems [19]. 

4.1. Problem formulation 

The primary goal of this control problem is to bal-

ance the inverted pendulum at its unstable equilibrium posi-

tion by controlling the cart’s movement. The system state 

consists of the cart's position x, the pendulum's angle , and 

their respective velocities x  and  . The control input is the 

voltage Vm applied to the DC motor driving the cart. The 

observation of the system at any time t can be represented 

as: 

 
meast ty y x x = = . (10) 

The agent interacts with the environment by select-

ing actions ut, which represent the voltage applied to the mo-

tor, to control the system [20]. The system's dynamic envi-

ronment  is  modelled using Simulink, where the nonlinear 

 

Fig. 6 Linear schematic of the inverted pendulum system, 

showing the cart position xc and the pendulum angle 

 [14] 



 128 

equations of motion are utilized to represent the system's be-

haviour. The pendulum's dynamics are obtained through the 

Lagrangian approach, with the input being the voltage ap-

plied to the DC motor. Due to the system's nonlinear nature, 

a visual representation of the linearized model is provided 

in Fig. 6. 

4.2. Equations of motion for linear inverted pendulum  

The equations of motion for the cart and pendulum 

system are derived from the Lagrangian mechanics. The 

motion of the cart can be described by: 

(

)

2

2

2

,

m g

p p p

mp

p p c eq

J K
M M x M l sin

r

M l cos F B x



 

 
+ + + − 

 
 

− = −  (11) 

where: 

- M is the mass of the cart, 

- Mp is the mass of the pendulum, 

- pl  is the length of the pendulum, 

- mJ  is the moment of inertia of the motor, 

- gK  is the gearbox ratio, 

- mpr  is the radius of the motor pinion, 

- cF  is the control force, 

- eqB is the equivalent viscous damping coefficient 

of the motor pinion. 

The pendulum’s equation of motion is: 

4

3
p p p p eqM l cos x M l g sin B  −  +  = − , (12) 

where Beq is the viscous damping coefficient of the pendu-

lum. 

4.3. Nonlinear equations of motion 

By solving the system's Eqs. (11) and (12), the non-

linear expressions for the second-order derivatives x  and 

 can be written as: 

for the cart 

( ) ( ) ( )

( ) ( )

2 2 2 2

2 2

3 4 3

3 3
,

mp p p mp mp eq

p

p mp mp c

r cos M l r sin r B x
x

l D D D

M r g cos sin r F

D D

   

  

 

 

  
= − − −


− +  (13) 

for the pendulum 

( )
( )

( ) ( )
(

)
( ) ( )

2 2 2

2

2

22
2

2

2

3
3

3
3

3
,

mp p mp m g p

p mp

p l

mp eq

p mp

p

mp c

m g

p p

Mr M r J K B
M r

M l D

r B cos xcos sin
M r

D l D

r cos Fg sin
J K

l D l D






 

 



 

+ + 
= − − 


 − + +

+  +  (14) 

where D() is a nonlinear expression defined as: 

( ) 2 2 2 2 24 4 3mp p mp m g p mpD Mr M r J K M r sin = + + . (15) 

4.4. System modelling and linearization 

To facilitate the design of the control system, the 

nonlinear dynamics of the Quanser Single Inverted Pendu-

lum are simplified through linearization around the upright 

equilibrium, where the pendulum angle  = 0 and the cart 

position x = 0. This approach allows us to approximate the 

system as a linear state-space model, making it more suita-

ble for applying linear control strategies. The linearized 

state-space model is expressed as. 

( ) ( ( )) ( ( )) ( ).
d

X t A X t B X t u t
dt

= +   (16) 

In this equation, the state vector 

( ) [ ( ), ( ), ( ), ( )]X t x t t x t t = contains the cart position x(t) 

pendulum angle, (t) cart velocity ( )x t , and pendulum an-

gular velocity ( )t . The control input u(t) represents the 

voltage Vm applied to the DC motor, which drives the cart's 

movement. The matrices A and B, derived from the system's 

physical parameters, describe how the system's state evolves 

over time in response to the applied control input. These pa-

rameters include the masses of the cart and pendulum, the 

pendulum length, and the characteristics of the DC motor 

that generates the force moving the cart. 

4.5. DC motor electrical model 

In the system, the input force Fc is translated into 

an input voltage Vm, which powers the DC motor responsi-

ble for moving the cart. Fig. 7 presents the electrical sche-

matic of the DC motor, showing the key components such 

as the motor armature and the voltage source that drives the 

system.  

The dynamics of the motor are modelled using the 

following equation  

0m a a e m

d
V L i Ri k

dt


 
= + + = 

 
. (17) 

In this model, Vm is the voltage applied to the mo-

tor, ia represents the armature current, R and L are the mo-

tor's resistance and inductance, respectively, ke is the back 

EMF constant, and m  is the motor's angular velocity. 

 

Fig. 7 Electrical schematic of the standard DC motor used 

to control the cart's movement 
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4.6. Linearization around the equilibrium 

Once the nonlinear model is derived, it is linearized 

around the system's unstable equilibrium point, where the 

pendulum is in the vertical position. This is accomplished 

by performing a Taylor series expansion around  = 0 and 

keeping only the linear terms. The reference frame transfor-

mation for the pendulum is shown in Fig. 8, where the ver-

tical position corresponds to  = 0 radians. This shift in ref-

erence frame simplifies the control system design process, 

allowing for easier stabilization of the pendulum in the up-

right position. 

 

Fig. 8 Conversion of the reference frame, making the verti-

cal upright position of the pendulum correspond to 

 = 0, rad 

By approximating the system dynamics around this 

equilibrium point, linear control strategies, such as state 

feedback or the Linear Quadratic Regulator (LQR), can be 

applied to effectively stabilize the pendulum and manage 

the cart's motion. 

4.7. Input voltage conversion 

In this implementation, the control input force Fc 

needs to be converted to the voltage Vm applied to the motor. 

The relation between the control force and the motor voltage 

is derived from the electrical model of the DC motor, repre-

sented by the following equations. From Kirchhoff’s volt-

age law 

0m m m m m emf

d
V R I L I E

dt

 
− − − = 

 
. (18) 

Neglecting the inductance Lm and using the relation 

for the back electromotive force  𝐸𝑒𝑚𝑓 = 𝐾𝑚𝜔𝑚, the input 

force can be expressed as:  

2 2

g t m g t m

c

m mp m mp

K K K x K K V
F

R r R r
= − + . (19) 

Substituting this into the equations of motion 

yields the final nonlinear equations governing the system’s 

dynamics 

 

( ) ( )

( )
( )

( )
( ) ( )

2 22 2 2

2

2 2 2

33 3

3
3

m mp eq g t mmp p p mp

p m

mp g t m

mp p mp m g

p m p

M r B K K K xr B cos M r cos sin
x

l D D R D

r K K cos Vg sin
Mr M r J K .

l D R l D

    

  



 

+ 
= − − +

+ + +  +  (20) 

For the pendulum  
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.

l D R l D
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

 

 

 

+ +  +
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+ +  (21) 

4.8. Reward signal design 

The reward function is designed to motivate the 

agent to reduce deviations from the pendulum’s target up-

right position. This reward is represented by a quadratic 

function, defined as: 

( )2 2 2 2 2

1 11 22 33 44 11t t t t t tR Q x Q x Q x Q Q u+ = − + + + + . (22) 

This reward function penalizes errors in both posi-

tion and velocity, as well as overly large control inputs, to 

promote smooth and stable system performance. 

4.9. Agent training and hyperparameters 

The architecture and hyperparameters of the 

DDPG agent play a crucial role in achieving effective con-

trol. Table 1 outlines the main physical parameters of the 

Quanser IP02 system, which were utilized during both sim-

ulation and RL agent training [21, 22]. 

The DDPG agent was trained using fully connected 

neural networks for both the actor and critic. Each network 

consists of three hidden layers, with 200 neurons per layer 

and ReLU activation functions. The important hyperparam-

eters for training are presented in Table 2. 

Fig. 9 presents the Simulink model used for train-

ing the reinforcement learning agent, based on a nonlinear 

representation of the Quanser Single Inverted Pendulum 

(SIP) system mounted on a Linear Cart IP02 [14]. The 

model integrates an RL Agent block that processes observa-

tion and reward signals to guide decision-making, generat-

ing motor voltage actions to stabilize the pendulum. This 

setup effectively facilitated the training of the DDPG agent 

for stable inverted pendulum control. 

4.10. System performance 

After the agent is fully trained, its performance is 

assessed through simulations using the Simulink model. The 

evaluation focuses on the pendulum's behaviour over time 

and the voltage applied to the motor. The overall control 

structure is illustrated in Fig. 10. The pendulum's angle  
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over time and the corresponding motor voltage Vm are pre-

sented in Fig. 11 and Fig. 12. 

This section explains the application of the Deep 

Deterministic Policy Gradient (DDPG) algorithm to control 

the Quanser IP02 system using MATLAB's Reinforcement 

Learning Toolbox. The nonlinear behaviour of the inverted 

pendulum was modelled and linearized for control purposes. 

The reinforcement learning agent was trained to stabilize the 

pendulum in its upright position. Key equations, reward 

functions, and figures were provided to illustrate the ap-

proach, and the system's performance was validated through 

simulation results. 

Table 1 

Key physical parameters of the  

Quanser Single Inverted Pendulum system 

Parameter Description Value 

Bp Viscous damping coefficient 0.0024, Nm/rad 

Beq 
Equivalent viscous damping co-

efficient 
5.4, Nms/rad 

g Gravitational constant 9.81, m/s2 

Ip Pendulum’s moment of inertia 8.359 E−003, kgm2 

Jp 
Pendulum’s moment of inertia at 

its pivot 
3.344 E−002, kgm2 

Jm Rotor's moment of inertia 3.90 E−007, kgm2 

Kg Planetary gearbox ratio 3.71 

Kt Motor torque constant 0.007, Nm/A 

Km 
Back electro-motive force 

(EMF) constant 
0.00767, Vs/rad 

lp 
Length of the pendulum from 

the pivot to the centre of gra-vity 
0.3302, m 

Mw Mass of the cart’s weight 0.37, kg 

M 
Mass of the cart with additional 

weight 
0.57+Mw, kg 

Mp Mass of the pendulum 0.230, kg 

Rm Motor armature resistance 2.6,   

rmp Radius of the motor pinion 6.35 E−003, m 

Table 2 

Hyperparameters for the DDPG agent 

Hyperparameters Values 

Reward 

Function 

Weights 

Case 1: 
11 22 33

44

0.75; 4; 0;

0; 0.0003;

Q Q Q

Q R

= = =

= =
 

 Case 2: 
11 22 33

44

5; 50; 0;

0; 0.002;

Q Q Q

Q R

= = =

= =
 

 Case 3: 
11 22 33

44

800; 150; 1;

1; 0.1;

Q Q Q

Q R

= = =

= =
 

Actor Network Architecture 1e-4 

L2 Regularization Factor 2e-4 

Discount Factor 0.995 

Sample Time 0.01 

Mini Batch Size 128 

Experience Buffer Length 1e6 

Noise Variance. 0.3
1* 30%

sT
= of Control  

Critic Network 

Architecture. 

Input Layer: 4 neurons  

Hidden Layers: 4 layers with 16 neurons 

each, Leaky ReLU with 0.5 slope.  

Note: Leaky ReLU allows negative values 

for better handling of negative observa-

tions. 

Critic Network Learning Rate. 1e−4 

Critic Network L2 Factor. 1e−4 

Training 

Options. 

Max Episodes:  10,000 

Max Steps per Episode: 1,000 

Episode Duration: 10 seconds (Sample Time *  

Max Steps per Episode)  

Score Averaging Window Length: 5  

Stop Training Criteria: Episode Reward.  

Stop Training Value: −10 
 

 

Fig. 9 The Simulink model utilized for training the reinforcement learning agent 

 

Fig. 10 The overall control structure used in the reinforce-

ment learning setup for controlling the pendulum 

 

 

Fig. 11 Inverted pendulum angle, deg 
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Fig. 12 Motor input voltage, V 

5. Experimental Results and Discussion 

This chapter presents the experimental results ob-

tained from the real-time implementation of the Deep De-

terministic Policy Gradient (DDPG) algorithm on the 

Quanser IP02 Single Inverted Pendulum (SIP) system. The 

SIP was tested through simulations and real-time experi-

ments. The primary goal was to balance the pendulum in its 

upright position while minimizing the cart's displacement 

and control effort. The performance of the algorithm is eval-

uated based on various weight matrix configurations and ex-

perimental observations. 

5.1. Experimental setup 

The experimental setup involved the Quanser IP02 

platform, consisting of a servo-driven cart, a mounted pen-

dulum, and data acquisition hardware for real-time feed-

back. The control system interacted with the hardware using 

Simulink and QUARC software for real-time execution. 

The experimental environment is depicted in Fig 13, while 

Fig. 14 shows the actual hardware used during the experi-

ments.  

The pendulum's position and velocity were rec-

orded using the encoder mounted on the cart, while the mo-

tor generated control inputs to adjust the cart's position, 

which, in turn, influenced the pendulum's angular position. 

The system used for both swing-up and balance control was 

configured through Simulink [23], with the control signals 

generated by the Reinforcement Learning (RL) Agent. 

Fig. 16 illustrates the Simulink diagram integrated with 

QUARC Real-Time Control Software, which was used to 

implement both swing-up and balance control using the RL 

algorithm on the Quanser Single Inverted Pendulum (SIP) 

system mounted on a Linear Cart IP02. 

 

Fig. 13 Experimental setup of the Quanser IP02 system 

 

Fig. 14 Single inverted pendulum mounted on the 

QUANSER IP02 system 

This figure shows the Simulink diagram integrated 

with QUARC Real-Time Control Software for implement-

ing swing-up and reinforcement learning (RL) balance con-

trol on the Quanser Single Inverted Pendulum (SIP) system 

mounted on a Linear Cart IP02. The RL Agent interacts with 

the hardware through QUARC [24], processing observation 

signals and outputting control actions, like motor voltage, to 

first swing up the pendulum and then maintain its balance. 

This setup enables real-time control, demonstrating the ef-

fective use of RL in managing complex nonlinear dynamics 

5.2. Experimental results for swing-up and stabilization of 

the inverted pendulum 

The DDPG algorithm was applied to first swing up 

the pendulum from a resting position and then stabilize it in 

the upright configuration. Fig. 17 illustrates the sequence of 

the pendulum's swing-up and stabilization. 

In this sequence, frames 1-3 depict the increasing 

amplitude of the pendulum’s motion, while frames 4-6 

demonstrate  the successful  swing-up  phase.  Frames 7-9 

 

Fig. 16 Real-Time control architecture for the Quanser SIP system using reinforcement learning 
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Fig. 17 Sequence of the swing-up and stabilization of the 

Quanser IP02 SIP system 

highlight the inertia-based swing-up technique, and frames 

10-12 illustrate the final stabilization of the pendulum in the 

upright position. The system successfully swings the pendu-

lum to the upright position and maintains stability using 

feedback from the encoder. 

5.3. Performance with different weight matrices 

The performance of the control system was tested 

with various configurations of the weight matrices Q and R. 

These matrices influenced the system’s behavior by penal-

izing large deviations in position and angular displacement, 

as well as controlling the input effort. The results of the sys-

tem's behavior for different matrix configurations are sum-

marized in the following figures. 

The system demonstrated stable behaviour, with minimal 

oscillations in both the cart's position and the pendulum's 

angle. The choice of weight matrices significantly affected 

the performance, as shown in Figs. 22 - 28, where different 

values for Q and R were tested, resulting in variations in 

control effort and stability.  

The selection of weight matrices Q and R signifi-

cantly influences the system’s stability, control effort, and 

overall performance. To illustrate these effects, we tested 

multiple configurations, but only three representative cases 

 

Fig. 18 Motor voltage input for weight matrices 

Q = diag (0.75, 4, 0, 0), R = 0.0003 

 

Fig. 19 Cart position for weight matrices Q = diag (0.75, 4, 

0, 0), R = 0.0003 

 

Fig. 20 Pendulum angle for weight matrices Q = diag (0.75, 

4, 0, 0), R = 0.0003 

 

Fig. 21 Training progress for weight matrices 

Q = diag (0.75, 4, 0, 0), R = 0.0003 

were presented. These cases were chosen because they high-

light key differences in system behavior and demonstrate 

the trade-offs in designing an optimal controller. 

The Low Gain Configuration (Q = diag (0.75, 4, 0, 

0), R = 0.0003) represents a scenario with minimal penalties 

on state deviations, leading to larger oscillations in both the 

cart’s position and the pendulum’s angle. The control effort 

is relatively low, but the system takes longer to stabilize. 

This case serves as a baseline to observe how the system 

behaves with small weight values. The Moderate Gain Con-

figuration (Q = diag (5, 50, 0, 0), R = 0.002) has higher pen-

alties on deviations in position and angle, improving stabil-

ity compared to the low-gain case. 

 

Fig. 22 Motor voltage input for weight matrices 

Q = diag (5, 50, 0, 0), R = 0.002 
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Fig. 23 Cart position for weight matrices Q = diag (5, 50, 0, 

0), R = 0.002 

 

Fig. 24 Pendulum angle for weight matrices Q = diag (5, 

50, 0, 0), R = 0.002 

 

Fig. 25 Training progress for weight matrices 

Q = diag (800, 150, 1, 1), R = 0.1 

 

Fig. 26 Motor voltage input for weight matrices 

Q = diag (800, 150, 1, 1), R = 0.1 

 

Fig. 27 Cart position for weight matrices Q = diag (800, 

150, 1, 1), R = 0.1 

The control effort is increased to compensate for 

disturbances, reducing oscillations. This case illustrates how 

 

Fig. 28 Pendulum angle for weight matrices Q = diag (800, 

150, 1, 1), R = 0.1 

a moderate weighting strategy enhances system perfor-

mance without excessive energy consumption. The High 

Gain Configuration (Q = diag (800, 150, 1, 1), R = 0.1) uses 

a significantly higher weighting on state deviations, leading 

to faster stabilization and reduced oscillations. The in-

creased R value ensures that control effort remains within 

actuator limits, preventing saturation. This case represents a 

well-tuned system with a balance between stability and en-

ergy efficiency. These three sets of matrices were chosen 

because they provide clear insights into the system’s behav-

ior under different control strategies.  

Low-gain control demonstrates the effects of weak 

state feedback, moderate-gain control shows an improved 

balance between stability and control effort, and high-gain 

control highlights the trade-off between aggressive stabili-

zation and control input constraints. While many weight ma-

trix configurations were tested, these three cases were se-

lected to effectively illustrate the system’s response under 

different tuning conditions, providing a meaningful compar-

ison for control optimization. 

Training time is reduced by optimizing the weight 

matrices Q and R, which directly influence learning effi-

ciency. In the low-gain configuration, the system stabilizes 

slowly due to weaker feedback, resulting in more oscilla-

tions and longer training time. In the moderate-gain config-

uration, faster stabilization occurs with stronger feedback, 

significantly reducing the training time. The high-gain con-

figuration leads to quick stabilization with balanced control 

effort, resulting in the shortest training time. By shifting 

from a low-gain configuration to optimized moderate or 

high-gain configurations, training time is reduced by 45%, 

improving both efficiency and stability (Fig. 29). Training 

is considered complete when the system stabilizes, the error 

 

Fig. 29 Effect of weight matrix configuration (Q, R) on 

training time 
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is below a set threshold, the predefined number of iterations 

is reached, or energy consumption stabilizes. These criteria 

ensure a reliable assessment of training completion. 

5.4. Challenges in real-time implementation 

The real-time implementation of the DDPG algo-

rithm revealed several challenges: 

1. Noise in Sensor Measurements, real-time data acquisition 

introduced noise, particularly in the encoder measure-

ments. This required filtering and robust handling to en-

sure the control inputs remained effective. 

2. Nonlinearities in the System, the inverted pendulum sys-

tem exhibited nonlinear behaviour, especially during the 

swing-up phase. Handling these nonlinearities required 

fine-tuning of the reward function and adjusting the learn-

ing rate of the DDPG algorithm. 

3. Power Limitations, the motor driving the cart had a lim-

ited voltage range of 10 V. Exceeding this limit during 

swing-up or stabilization could result in system instabil-

ity. Therefore, constraints were added to the control in-

puts to ensure the motor operated within safe limits. 

5.5. Discussion on DDPG performance 

The DDPG algorithm effectively controlled the 

SIP system, maintaining stable balance in the upright posi-

tion. Its main advantages were: 

- Continuous Control, DDPG handled continuous action 

spaces well, ideal for real-time control of the cart and 

pendulum balance. 

- Adaptability, the algorithm adapted to different weight 

matrix configurations, minimizing both angular devia-

tion and cart displacement. 

However, limitations included: 

- Training Time, due to system complexity and high-fi-

delity simulations, training took considerable time. 

- Sensitivity to Hyperparameters: Proper tuning of learn-

ing rate, exploration noise, and reward function was es-

sential, as poorly set parameters led to instability. 

Despite these challenges, DDPG showed strong 

performance, with future work needed to enhance efficiency 

and reduce training time. 

6. Conclusions 

This research focused on applying and enhancing 

the Deep Deterministic Policy Gradient (DDPG) algorithm 

for controlling a Single Inverted Pendulum (SIP) system. 

The modifications to the algorithm, particularly in the expe-

rience replay buffer and Critic network, significantly im-

proved system performance. Real-world experiments and 

simulations demonstrated a 45%  reduction in training time, 

a 25% improvement in stability, and a 30% decrease in pen-

dulum displacement compared to baseline implementations. 

These results validate the effectiveness of the refined DDPG 

approach in managing the nonlinear dynamics of SIP sys-

tems. Despite these advancements, challenges remain re-

garding sample efficiency and algorithm stability in real-

world applications. Future work should aim to optimize hy-

perparameters, further improve computational efficiency, 

and explore hybrid approaches that integrate traditional con-

trol strategies with deep reinforcement learning. The suc-

cess achieved in this study demonstrates the potential for 

DRL to address complex control challenges in practical sce-

narios. 
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X. Bajrami, F. Kaçiu, E. Shala, R. Likaj 

REAL-TIME SWING-UP OF A LINEAR INVERTED 

PENDULUM USING REINFORCEMENT LEARNING 

S u mm a r y 

This study focused on applying and enhancing the 

Deep Deterministic Policy Gradient (DDPG) algorithm to 

effectively control a Single Inverted Pendulum (SIP) sys-

tem. The primary objective was to improve the algorithm's 

performance by addressing common challenges such as 

overestimation of Q-values and convergence to local op-

tima. The system's behaviour was analyzed through simula-

tion and real-world experiments, showcasing the algorithm's 

ability to offer faster responses, enhanced stability, and re-

duced pendulum displacement. The research introduced key 

modifications to the experience replay mechanism and the 

Critic network, which played a significant role in improving 

the efficiency of the learning process and the robustness of 

the control strategy. By combining Reinforcement Learning 

with traditional control methods, this approach successfully 

managed the nonlinear dynamics of the SIP system. Never-

theless, certain challenges persist, particularly in terms of 

the efficiency of deep reinforcement learning algorithms 

and their stability in real-world environments. These find-

ings suggest that future research should focus on further re-

fining DRL algorithms to increase their practical application 

in physical control systems. In conclusion, the research 

highlights the potential of combining DRL techniques with 

conventional control strategies for tackling complex control 

problems. The success achieved in controlling the SIP sys-

tem indicates a promising direction for further exploration 

and development in this field. 

Keywords: deep deterministic policy gradient, reinforce-

ment learning, control systems, deep learning, dynamical 

systems, single inverted pendulum. 
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