
 123

ISSN 1392-1207. MECHANIKA. Vol. 31, No. 2, 2025: 123−135

Real-Time Swing-up of a Linear Inverted Pendulum Using

Reinforcement Learning

Xhevahir BAJRAMI*, Fisnik KAÇIU*, Erjon SHALA**, Rame LIKAJ*
*Department of Mechatronics, Faculty of Mechanical Engineering, University of Pristina, 10000 Prishtina, Kosovo

**Department of Mechatronics, Faculty of Mechanical Engineering, University of Pristina, 10000 Prishtina, Kosovo,

E-mail: erjon.shala@uni-pr.edu (Corresponding Author)

https://doi.org/10.5755/j02.mech.39202

1. Introduction

Inverted pendulum systems are widely used in con-

trol engineering education and as benchmarks for real-world

control challenges due to their unstable, nonlinear dynamics

[1, 2]. Applications include humanoid robots, wheeled ro-

bots [3], and rocket launching. Controlling triple inverted

pendulums (TIPs) is particularly complex, often validated

through simulations due to the difficulty of real-world ex-

periments [4]. Traditional TIP control relies on mathemati-

cal models and trajectory tracking but is prone to errors from

model mismatches and unmodeled dynamics, particularly in

complex environments. Reinforcement learning (RL) offers

a data-driven alternative, bypassing explicit modeling to en-

able real-time control. Advances in deep RL have demon-

strated success in autonomous systems and continuous ac-

tion spaces [5]. The rapid advancement of Artificial Intelli-

gence (AI) has enabled intelligent control algorithms to

meet growing demands for high-performance systems.

Among these, Reinforcement Learning (RL) excels in solv-

ing complex control problems in dynamic environments,

particularly when system dynamics are unknown or uncer-

tain. This study explores Deep Reinforcement Learning

(DRL) for real-time control of a linear inverted pendulum,

focusing on the Deep Deterministic Policy Gradient

(DDPG) algorithm for its ability to handle continuous action

spaces critical for dynamic systems [6]. Reinforcement

learning (RL) has been applied to rotary inverted pendulum

control, demonstrating superior flexibility and robustness

compared to traditional LQR and MPC controllers. Devel-

oped in MATLAB/Simulink and implemented on Raspberry

Pi, the RL controller using Proximal Policy Optimization

(PPO) showed potential for complex, nonlinear systems de-

spite challenges in real-world deployment. An RL frame-

work for education using Lucas-Nulle hardware addressed

pendulum swing-up and stabilization, with RL computa-

tions outsourced and communication via CAN bus. A safe-

guarding algorithm ensured safe training, highlighting RL's

effectiveness in trial-and-error learning. The primary objec-

tives of this research are as follows:

1. To conduct a comprehensive literature review on DRL

algorithms, focusing on selecting the most appropriate

method for control applications.

2. To develop expertise in using the MATLAB Reinforce-

ment Learning Toolbox, particularly in the implemen-

tation of the DDPG algorithm.

3. To design and execute an effective control system for

both linear and nonlinear systems, using the Quanser

IP02 Inverted Pendulum system as a case study.

The paper is organized as follows: The introduc-

tion provides the context and objectives of the research.

Subsequent sections discuss the theoretical foundations of

Reinforcement Learning and Deep Learning, and their ap-

plication in control systems using MATLAB. Detailed im-

plementation of the DDPG algorithm, along with the exper-

imental setup, is thoroughly presented. The paper concludes

with an analysis of the results and a discussion of the con-

tributions and future directions of the research.

2. Reinforcement Learning and Fundamentals of Con-

trol Theory

Control theory plays a crucial role in engineering

by focusing on how input variables can influence the behav-

iour of dynamic systems through controlled inputs. These

systems can be broadly categorized into linear systems and

nonlinear systems, both of which form the foundation of au-

tomatic control systems. Linear systems adhere to the prin-

ciples of proportionality and additivity, whereas nonlinear

systems exhibit more complex behaviour and require spe-

cialized control approaches [7]. Nonlinear systems deviate

from the principle of superposition, meaning their response

is not directly proportional to the input. The equations that

describe nonlinear systems are of the form:

() () () () () (),x t f x t ,u t y t g x t ,u t= =       , (1)

where f and g are nonlinear functions. These systems often

display intricate behaviours and require advanced control

techniques to manage them efficiently.

2.1. Reinforcement learning for optimal control applications

Reinforcement Learning (RL) offers a model-free

framework for addressing optimal control problems in both

linear and nonlinear systems. In an RL environment, an

agent interacts with the environment and learns the optimal

policy by maximizing rewards. Fig. 1 illustrates the agent-

environment interaction cycle in RL [8-10].

In Reinforcement Learning, the agent seeks to

Fig. 1 Agent-environment interaction cycle in RL

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡

𝐴𝑔𝑒𝑛𝑡

𝑅𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔

𝑅
𝑒𝑤

𝑎
𝑟𝑑

,𝑟
𝑡

𝑆
𝑡𝑎

𝑡𝑒
,𝑠

𝑡
 𝐴

𝑐𝑡𝑖𝑜
𝑛

,𝑎
𝑡

 124

maximize the cumulative reward through cycles of trial and

error. This interaction is based on several key concepts [8-

10].

2.2. Trial and error: learning

The agent interacts with the environment to select

actions that result in high rewards, continuously refining its

policy based on the experience it gains. Fig. 2 illustrates the

process of learning through trial and error.

Fig. 2 Trial-and-error cycle in reinforcement learning

The return Gt represents the total expected reward

an agent receives over a time sequence and is defined as:

 1
0

0 1k

t t k
k

G r , , 


+ +
=

=  , (2)

where  is the discount factor, which determines the im-

portance of future rewards.

The value function V

(st) gives the expected return

when the agent follows policy  from state st.

()t t tV s E G s
  =   . (3)

The Bellman equation is a fundamental concept in

RL, which links the value of a state to the values of future

states.

() ()1 1t t tV s E r V s 
 + +
 = +  . (4)

This equation helps the agent to improve its policy

by predicting future rewards [14]. Expectation E[X] is de-

fined as the weighted sum of all possible outcomes multi-

plied by their probabilities.

  ()
x X

E X xP x


=  . (5)

2.3. Exploration vs. exploitation

In RL, there is a trade-off between exploring new

actions and exploiting known policies that are known to

yield high rewards. The  - greedy algorithm is one approach

Fig. 3 Epsilon behaviour during training in  - greedy algo-

rithm

used to balance this trade-off as described by Eq. (6) and

shown in Fig. 3.

1
t

optimal action, with probability
a

random action, with probability





−
= 


. (6)

2.4. Reinforcement learning algorithms

This section introduces four foundational RL algo-

rithms: Policy Iteration, Value Iteration, SARSA, and

Q-Learning. Each algorithm offers different approaches to

learning optimal policies and value functions. In Algorithm

1, policy iteration is an algorithm that iteratively evaluates

and improves a policy until it converges to the optimal pol-

icy. It consists of two main steps: policy evaluation and pol-

icy improvement.

Algorithm 1: Policy Iteration Algorithm

Data:  a small number

Result: V : a value function s.t. V v , : a deterministic

policy s.t. :  

Function Policy Iteration is

/ Initialization

Initialize ()V s arbitrarily;

Randomly initialize policy ()s ;

/ Policy Evaluation

0 ;

while 0  do

 for each s S do

()v V s ;

() (()) ()
s ,r

V s p s,r | s, s r V s  +   ;

()()max ,| v BV s |   − ;

 end

end

/ Policy Improvement

policy-stable true ;

for each s S do

 old-action ()s ;

() () ()
s ,ra

s arg max p s,r | s,a r V s  +   ;

 if old-action ()! s= then

policy-stable false ;

 end

end

if policy stable− then

return V v 𝑉 ≈ 𝑣∗ and   ;

else

go to Policy Evaluation;

end

end

In Algorithm 2, value iteration combines policy

evaluation and policy improvement into a single step, itera-

tively updating the value function until convergence to the

optimal value function V*.

In Algorithm 3, SARSA (State-Action-Reward-

State-Action) is an on-policy Temporal Difference (TD)

control algorithm that updates the action-value function

1 2

3 4

𝐴𝑔𝑒𝑛𝑡 𝐸𝑣𝑛 𝐴𝑔𝑒𝑛𝑡

𝐴𝑔𝑒𝑛𝑡 𝐴𝑔𝑒𝑛𝑡

𝐸𝑣𝑛

𝐸𝑣𝑛 𝐸𝑣𝑛

𝑂𝑏𝑠𝑒𝑟𝑣.

𝑂𝑏𝑠𝑒𝑟𝑣.

𝑅𝑒𝑤𝑎𝑟𝑑𝑠

𝑅𝑒𝑤𝑎𝑟𝑑𝑠

𝑂𝑏𝑠𝑒𝑟𝑣.

𝐴𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑐𝑡𝑖𝑜𝑛𝑠

The agent is able to observe the
current state of the environ-

From the observed state, it de-
cides which action to take.

The environment changes state and
produces a reward for that action.

The observation-action-reward con-
clude the first cycle of the RL problem.

 125

Q(s, a) based on the action actually taken by the current pol-

icy.

Algorithm 2: Value Iteration Algorithm

Data:  a small number

Result:  : a deterministic policy s.t.  

Function Value Iteration is

 / Initialization

 Initialize ()V s arbitrarily, except ()terminalV ;

 () 0terminalV  ;

 / Loop until convergence

 0 ;

 while 0  do

 for each s S do

 ()v V s ;

() () ()
s ,ra

V s max p s,r | s,a r V s +   ;

()max ,| v V(s)|   − ;

 end

 end

 / Return optimal policy

 return  s.t.

() () ()
s ,ra

s arg max p s,r | s ,a r V s  +   ;

end

Algorithm 3: SARSA (on-policy TD control) for estimating

 

Algorithm parameters: step size ()0 1, ,  small

0epsilon  ;

Initialize ()t tQ s ,a for all t ts S,a A),  arbitrarily except

that () 0Q terminal,  = ;

For each episode:

 Initialize ts ;

 For each step of episode:

Choose at from st using policy derived from

(()t tQ s ,a e .g ., greedy− ;

Take action at, observe 1 1t tr ,s+ + ;

() () 

() ()

1

1 1 ;

t t t t t

t t t t

Q s ,a Q s ,a r ,

Q s ,a Q s ,a





+

+ +

 + +

+ − 

1

1;

t t

t t

s s ;

a a

+

+





 end;

end

- On-Policy: Learns the value of the policy being carried

out.

- TD Control: Combines ideas from Monte Carlo meth-

ods and dynamic programming.

In Algorithm 4, Q-Learning is an off-policy Tem-

poral Difference (TD) control algorithm that learns the op-

timal action-value function Q(s, a) independently of the

agent's policy. It updates Q(s, a) based on the maximum es-

timated future rewards, promoting exploration of all actions.

• Off-Policy learns the value of the optimal policy inde-

pendently of the agent's actions.

• TD Control utilizes the Bellman equation for updates

[11].

Algorithm 4: Q-learning (off-policy TD control) for estimating

 

Algorithm parameters: step size ()0 1 ,,  small

0epsilon ;

Initialize ()t tQ s ,a for all t ts S,a A,  arbitrarily except

that () 0Q terminal, ; =

For each episode:

 Initialize ts ;

 For each step of episode:

Choose 𝑎𝑡 from 𝑠𝑡 using policy derived from

(();t tQ s ,a e .g ., greedy−

 Take action at, observe 1 1t tr ,s ;+ +

() ()

() ()1 ;

t t t t

t t t t
a

Q s ,a Q s ,a

r , maxQ s ,a Q s ,a +

 +

 + + − 

1 ;t ts s +

 end

end

2.5. Model based and model free reinforcement learning

Reinforcement Learning approaches can be cate-

gorized into model-based and model-free methods. Involves

learning a model of the environment's dynamics (i.e., tran-

sition probabilities and reward function) to plan future ac-

tions. This approach can be more sample-efficient but may

struggle with model inaccuracies. Learns optimal policies or

value functions directly from interactions without requiring

a model of the environment. Algorithms like Q-Learning

and SARSA fall into this category. While generally less

sample-efficient, they are more flexible in complex or un-

known environments [12, 13].

2.6. Limitations of reinforcement learning

Despite its powerful capabilities, Reinforcement

Learning faces several challenges. High Sample Complex-

ity: Requires a large number of interactions with the envi-

ronment to learn effective policies. Scalability Issues: Strug-

gles with large state-action spaces, leading to increased

computational demands. Balancing the need to explore new

actions with exploiting known rewarding actions remains a

persistent challenge. Stability and Convergence: Ensuring

stable learning and convergence to optimal policies, espe-

cially in non-stationary or dynamic environments, is diffi-

cult. Addressing these limitations is an active area of re-

search, with ongoing efforts to develop more efficient, scal-

able, and robust RL algorithms.

3. Deep Reinforcement Learning (DRL)

Deep Reinforcement Learning (DRL) represents a

significant advancement over traditional RL algorithms,

particularly in addressing challenges associated with large

and complex state and action spaces. Traditional RL ap-

proaches often face difficulties in environments with non-

linear dynamics or where the state-action space is too vast

to be modelled effectively. DRL overcomes these limita-

tions by using deep neural networks to approximate policies

 126

and value functions, which enables learning in more com-

plex environments. DRL systems excel in processing high-

dimensional input data, such as images or sensor readings,

which are often encountered in real-world applications. By

incorporating deep learning techniques, DRL algorithms

can autonomously discover optimal feature representations

that enhance decision-making capabilities. This ability to

generalize from large amounts of data makes DRL particu-

larly effective in environments where traditional RL meth-

ods fail [9, 14].

3.1. Foundations of deep learning

Deep learning uses multi-layered neural networks,

also known as deep neural networks (DNNs), to model com-

plex relationships in data. Unlike shallow neural networks,

which consist of a few layers, deep networks contain numer-

ous layers, allowing them to capture hierarchical patterns in

the input data. Each layer learns increasingly abstract fea-

tures, making DNNs powerful tools for tasks such as image

recognition, language processing, and, in the context of

DRL, policy learning [15]. In a DRL framework, these net-

works function as approximators for both value functions

and policies. For instance, in actor-critic architectures, the

actor network maps the state observations to actions, while

the critic network evaluates the quality of these actions by

estimating the value function. Fig. 4 shows an example of a

basic neural network.

Fig. 4 A basic neuron model

3.2. Policy gradient algorithms

Policy gradient algorithms are a class of RL meth-

ods where the policy is directly parameterized and opti-

mized using gradient-based techniques. These algorithms

seek to optimize the policy by adjusting the policy's param-

eters to maximize the expected cumulative reward. Unlike

value-based methods, which derive the policy from a value

function, policy gradients can learn both stochastic and de-

terministic policies directly. One of the major benefits of

policy gradient methods is their ability to handle continuous

action spaces. This makes them ideal for control tasks, such

as robotic manipulation, where actions are continuous and

need to be fine-tuned.

3.3. Deriving the policy gradient

The Policy Gradient Theorem provides a mecha-

nism for calculating the gradient of the expected reward

with respect to the policy parameters.

() () ()J E log a s Q s,a
      =   , (7)

here, J() represents the performance objective, ()a s is

the policy parameterized by , and Q

(s, a) is the action-

value function. This gradient is used to adjust the policy pa-

rameters in a way that increases the expected reward [16].

3.4. Deep Q-learning

Deep Q-learning integrates the Q-learning algo-

rithm with deep neural networks to address environments

with large state spaces. In this approach, the Q-function,

which estimates the value of taking a specific action in a

particular state, is approximated using a deep neural net-

work. The update rule for the Q-network is based on the

Bellman equation, defined as:

() ()1, ,t t t a tQ s a r max Q s a += +  , (8)

where rt is the reward at time step t, and  is the discount

factor, which adjusts the weight of future rewards relative to

immediate ones.

3.5. Deep deterministic policy gradient (DDPG)

The Deep Deterministic Policy Gradient (DDPG)

algorithm builds upon both Deep Q-learning and Determin-

istic Policy Gradient (DPG) methods. It is specifically de-

signed to address environments with continuous action

spaces, making it ideal for control tasks that require precise

action selection. DDPG operates using an actor-critic archi-

tecture, where the actor network learns the optimal policy

by mapping states to actions, and the critic network evalu-

ates these actions by estimating the Q-value. The architec-

ture of the actor-critic network follows five steps, as illus-

trated below.

Steps in the Actor-Critic Network Architecture:

1. State Observation, the agent observes the current state

st from the environment and feeds this information to

both the actor and critic networks.

2. Action Selection by Actor, the actor network processes

the state and selects an action at. This action is typically

continuous in DDPG.

3. Action Evaluation by Critic, the critic network takes

both the current state 𝑠𝑡 and the selected action 𝑎𝑡 as

inputs. The critic evaluates the action by estimating the

Q-value Q(st, at), which represents the expected return

of taking action at in state st.

4. Reward and Next State, after taking action at, the agent

receives a reward rt from the environment and transi-

tions to the next state st+1.

5. Updating the Actor and Critic, the critic network is up-

dated by minimizing the temporal difference error, de-

fined as:

() ()()
2

1 1t t t t tL r Q s ,a Q s ,a + += + − . (9)

The actor network is updated using the policy gradient to

maximize the Q-value estimated by the critic, i.e., improv-

ing the policy based on the critic’s feedback. Fig. 5 illus-

trates the actor-critic network and the interaction between

the actor, critic, and the environment, detailing these steps

[8, 17, 18].

 127

Fig. 5 Actor critic network architecture in DDPG (steps 1-5)

3.6. Discussion on DRL

Deep Reinforcement Learning, particularly

DDPG, has proven to be highly effective for solving com-

plex control problems involving continuous action spaces.

The combination of policy gradient methods and Q-learning

within the actor-critic framework provides a powerful

mechanism for learning optimal policies in environments

where traditional methods struggle. This makes DDPG par-

ticularly useful for real-time control tasks, such as robotics

and other dynamic systems. In future developments, efforts

to improve the stability and efficiency of DDPG could en-

hance its applicability in real-world systems where precision

and reliability are critical.

4. Implementation of DDPG Using RL MATLAB

Toolbox

The MATLAB Reinforcement Learning Toolbox

provides a powerful framework for developing and training

reinforcement learning (RL) algorithms, such as Deep De-

terministic Policy Gradient (DDPG). This section details the

implementation of the DDPG algorithm for controlling the

Quanser IP02 system, a commonly utilized platform for test-

ing control algorithms in dynamic environments. The

Quanser Single Inverted Pendulum (SIP) system is em-

ployed as an example to demonstrate the application of re-

inforcement learning in managing complex nonlinear sys-

tems [19].

4.1. Problem formulation

The primary goal of this control problem is to bal-

ance the inverted pendulum at its unstable equilibrium posi-

tion by controlling the cart’s movement. The system state

consists of the cart's position x, the pendulum's angle , and

their respective velocities x and  . The control input is the

voltage Vm applied to the DC motor driving the cart. The

observation of the system at any time t can be represented

as:

 
meast ty y x x = = . (10)

The agent interacts with the environment by select-

ing actions ut, which represent the voltage applied to the mo-

tor, to control the system [20]. The system's dynamic envi-

ronment is modelled using Simulink, where the nonlinear

Fig. 6 Linear schematic of the inverted pendulum system,

showing the cart position xc and the pendulum angle

 [14]

 128

equations of motion are utilized to represent the system's be-

haviour. The pendulum's dynamics are obtained through the

Lagrangian approach, with the input being the voltage ap-

plied to the DC motor. Due to the system's nonlinear nature,

a visual representation of the linearized model is provided

in Fig. 6.

4.2. Equations of motion for linear inverted pendulum

The equations of motion for the cart and pendulum

system are derived from the Lagrangian mechanics. The

motion of the cart can be described by:

(

)

2

2

2

,

m g

p p p

mp

p p c eq

J K
M M x M l sin

r

M l cos F B x



 

 
+ + + − 

 
 

− = − (11)

where:

- M is the mass of the cart,

- Mp is the mass of the pendulum,

- pl is the length of the pendulum,

- mJ is the moment of inertia of the motor,

- gK is the gearbox ratio,

- mpr is the radius of the motor pinion,

- cF is the control force,

- eqB is the equivalent viscous damping coefficient

of the motor pinion.

The pendulum’s equation of motion is:

4

3
p p p p eqM l cos x M l g sin B  −  +  = − , (12)

where Beq is the viscous damping coefficient of the pendu-

lum.

4.3. Nonlinear equations of motion

By solving the system's Eqs. (11) and (12), the non-

linear expressions for the second-order derivatives x and

 can be written as:

for the cart

() () ()

() ()

2 2 2 2

2 2

3 4 3

3 3
,

mp p p mp mp eq

p

p mp mp c

r cos M l r sin r B x
x

l D D D

M r g cos sin r F

D D

   

  

 

 

  
= − − −


− + (13)

for the pendulum

()
()

() ()
(

)
() ()

2 2 2

2

2

22
2

2

2

3
3

3
3

3
,

mp p mp m g p

p mp

p l

mp eq

p mp

p

mp c

m g

p p

Mr M r J K B
M r

M l D

r B cos xcos sin
M r

D l D

r cos Fg sin
J K

l D l D






 

 



 

+ + 
= − − 


 − + +

+  + (14)

where D() is a nonlinear expression defined as:

() 2 2 2 2 24 4 3mp p mp m g p mpD Mr M r J K M r sin = + + . (15)

4.4. System modelling and linearization

To facilitate the design of the control system, the

nonlinear dynamics of the Quanser Single Inverted Pendu-

lum are simplified through linearization around the upright

equilibrium, where the pendulum angle  = 0 and the cart

position x = 0. This approach allows us to approximate the

system as a linear state-space model, making it more suita-

ble for applying linear control strategies. The linearized

state-space model is expressed as.

() (()) (()) ().
d

X t A X t B X t u t
dt

= + (16)

In this equation, the state vector

() [(), (), (), ()]X t x t t x t t = contains the cart position x(t)

pendulum angle, (t) cart velocity ()x t , and pendulum an-

gular velocity ()t . The control input u(t) represents the

voltage Vm applied to the DC motor, which drives the cart's

movement. The matrices A and B, derived from the system's

physical parameters, describe how the system's state evolves

over time in response to the applied control input. These pa-

rameters include the masses of the cart and pendulum, the

pendulum length, and the characteristics of the DC motor

that generates the force moving the cart.

4.5. DC motor electrical model

In the system, the input force Fc is translated into

an input voltage Vm, which powers the DC motor responsi-

ble for moving the cart. Fig. 7 presents the electrical sche-

matic of the DC motor, showing the key components such

as the motor armature and the voltage source that drives the

system.

The dynamics of the motor are modelled using the

following equation

0m a a e m

d
V L i Ri k

dt


 
= + + = 

 
. (17)

In this model, Vm is the voltage applied to the mo-

tor, ia represents the armature current, R and L are the mo-

tor's resistance and inductance, respectively, ke is the back

EMF constant, and m is the motor's angular velocity.

Fig. 7 Electrical schematic of the standard DC motor used

to control the cart's movement

 129

4.6. Linearization around the equilibrium

Once the nonlinear model is derived, it is linearized

around the system's unstable equilibrium point, where the

pendulum is in the vertical position. This is accomplished

by performing a Taylor series expansion around  = 0 and

keeping only the linear terms. The reference frame transfor-

mation for the pendulum is shown in Fig. 8, where the ver-

tical position corresponds to  = 0 radians. This shift in ref-

erence frame simplifies the control system design process,

allowing for easier stabilization of the pendulum in the up-

right position.

Fig. 8 Conversion of the reference frame, making the verti-

cal upright position of the pendulum correspond to

 = 0, rad

By approximating the system dynamics around this

equilibrium point, linear control strategies, such as state

feedback or the Linear Quadratic Regulator (LQR), can be

applied to effectively stabilize the pendulum and manage

the cart's motion.

4.7. Input voltage conversion

In this implementation, the control input force Fc

needs to be converted to the voltage Vm applied to the motor.

The relation between the control force and the motor voltage

is derived from the electrical model of the DC motor, repre-

sented by the following equations. From Kirchhoff’s volt-

age law

0m m m m m emf

d
V R I L I E

dt

 
− − − = 

 
. (18)

Neglecting the inductance Lm and using the relation

for the back electromotive force 𝐸𝑒𝑚𝑓 = 𝐾𝑚𝜔𝑚, the input

force can be expressed as:

2 2

g t m g t m

c

m mp m mp

K K K x K K V
F

R r R r
= − + . (19)

Substituting this into the equations of motion

yields the final nonlinear equations governing the system’s

dynamics

() ()

()
()

()
() ()

2 22 2 2

2

2 2 2

33 3

3
3

m mp eq g t mmp p p mp

p m

mp g t m

mp p mp m g

p m p

M r B K K K xr B cos M r cos sin
x

l D D R D

r K K cos Vg sin
Mr M r J K .

l D R l D

    

  



 

+ 
= − − +

+ + +  + (20)

For the pendulum

()
() ()

()
()

()
() ()

2 2 2 2 22
2

2

2 2 2 2

3 3
3

3 3

mp p mp m g p m mp eq g t m

p mp

m pp l

mp p mp m g mp g t m

p m p

Mr M r J K B M r B K K K cos xcos sin
M r

D R l DM l D

Mr M r J K gsin r K K cos V
.

l D R l D

  


 

 

 

+ +  +
= − −  − +

+ +
+ + (21)

4.8. Reward signal design

The reward function is designed to motivate the

agent to reduce deviations from the pendulum’s target up-

right position. This reward is represented by a quadratic

function, defined as:

()2 2 2 2 2

1 11 22 33 44 11t t t t t tR Q x Q x Q x Q Q u+ = − + + + + . (22)

This reward function penalizes errors in both posi-

tion and velocity, as well as overly large control inputs, to

promote smooth and stable system performance.

4.9. Agent training and hyperparameters

The architecture and hyperparameters of the

DDPG agent play a crucial role in achieving effective con-

trol. Table 1 outlines the main physical parameters of the

Quanser IP02 system, which were utilized during both sim-

ulation and RL agent training [21, 22].

The DDPG agent was trained using fully connected

neural networks for both the actor and critic. Each network

consists of three hidden layers, with 200 neurons per layer

and ReLU activation functions. The important hyperparam-

eters for training are presented in Table 2.

Fig. 9 presents the Simulink model used for train-

ing the reinforcement learning agent, based on a nonlinear

representation of the Quanser Single Inverted Pendulum

(SIP) system mounted on a Linear Cart IP02 [14]. The

model integrates an RL Agent block that processes observa-

tion and reward signals to guide decision-making, generat-

ing motor voltage actions to stabilize the pendulum. This

setup effectively facilitated the training of the DDPG agent

for stable inverted pendulum control.

4.10. System performance

After the agent is fully trained, its performance is

assessed through simulations using the Simulink model. The

evaluation focuses on the pendulum's behaviour over time

and the voltage applied to the motor. The overall control

structure is illustrated in Fig. 10. The pendulum's angle 

 130

over time and the corresponding motor voltage Vm are pre-

sented in Fig. 11 and Fig. 12.

This section explains the application of the Deep

Deterministic Policy Gradient (DDPG) algorithm to control

the Quanser IP02 system using MATLAB's Reinforcement

Learning Toolbox. The nonlinear behaviour of the inverted

pendulum was modelled and linearized for control purposes.

The reinforcement learning agent was trained to stabilize the

pendulum in its upright position. Key equations, reward

functions, and figures were provided to illustrate the ap-

proach, and the system's performance was validated through

simulation results.

Table 1

Key physical parameters of the

Quanser Single Inverted Pendulum system

Parameter Description Value

Bp Viscous damping coefficient 0.0024, Nm/rad

Beq
Equivalent viscous damping co-

efficient
5.4, Nms/rad

g Gravitational constant 9.81, m/s2

Ip Pendulum’s moment of inertia 8.359 E−003, kgm2

Jp
Pendulum’s moment of inertia at

its pivot
3.344 E−002, kgm2

Jm Rotor's moment of inertia 3.90 E−007, kgm2

Kg Planetary gearbox ratio 3.71

Kt Motor torque constant 0.007, Nm/A

Km
Back electro-motive force

(EMF) constant
0.00767, Vs/rad

lp
Length of the pendulum from

the pivot to the centre of gra-vity
0.3302, m

Mw Mass of the cart’s weight 0.37, kg

M
Mass of the cart with additional

weight
0.57+Mw, kg

Mp Mass of the pendulum 0.230, kg

Rm Motor armature resistance 2.6, 

rmp Radius of the motor pinion 6.35 E−003, m

Table 2

Hyperparameters for the DDPG agent

Hyperparameters Values

Reward

Function

Weights

Case 1:
11 22 33

44

0.75; 4; 0;

0; 0.0003;

Q Q Q

Q R

= = =

= =

 Case 2:
11 22 33

44

5; 50; 0;

0; 0.002;

Q Q Q

Q R

= = =

= =

 Case 3:
11 22 33

44

800; 150; 1;

1; 0.1;

Q Q Q

Q R

= = =

= =

Actor Network Architecture 1e-4

L2 Regularization Factor 2e-4

Discount Factor 0.995

Sample Time 0.01

Mini Batch Size 128

Experience Buffer Length 1e6

Noise Variance. 0.3
1* 30%

sT
= of Control

Critic Network

Architecture.

Input Layer: 4 neurons

Hidden Layers: 4 layers with 16 neurons

each, Leaky ReLU with 0.5 slope.

Note: Leaky ReLU allows negative values

for better handling of negative observa-

tions.

Critic Network Learning Rate. 1e−4

Critic Network L2 Factor. 1e−4

Training

Options.

Max Episodes: 10,000

Max Steps per Episode: 1,000

Episode Duration: 10 seconds (Sample Time *

Max Steps per Episode)

Score Averaging Window Length: 5

Stop Training Criteria: Episode Reward.

Stop Training Value: −10

Fig. 9 The Simulink model utilized for training the reinforcement learning agent

Fig. 10 The overall control structure used in the reinforce-

ment learning setup for controlling the pendulum

Fig. 11 Inverted pendulum angle, deg

 131

Fig. 12 Motor input voltage, V

5. Experimental Results and Discussion

This chapter presents the experimental results ob-

tained from the real-time implementation of the Deep De-

terministic Policy Gradient (DDPG) algorithm on the

Quanser IP02 Single Inverted Pendulum (SIP) system. The

SIP was tested through simulations and real-time experi-

ments. The primary goal was to balance the pendulum in its

upright position while minimizing the cart's displacement

and control effort. The performance of the algorithm is eval-

uated based on various weight matrix configurations and ex-

perimental observations.

5.1. Experimental setup

The experimental setup involved the Quanser IP02

platform, consisting of a servo-driven cart, a mounted pen-

dulum, and data acquisition hardware for real-time feed-

back. The control system interacted with the hardware using

Simulink and QUARC software for real-time execution.

The experimental environment is depicted in Fig 13, while

Fig. 14 shows the actual hardware used during the experi-

ments.

The pendulum's position and velocity were rec-

orded using the encoder mounted on the cart, while the mo-

tor generated control inputs to adjust the cart's position,

which, in turn, influenced the pendulum's angular position.

The system used for both swing-up and balance control was

configured through Simulink [23], with the control signals

generated by the Reinforcement Learning (RL) Agent.

Fig. 16 illustrates the Simulink diagram integrated with

QUARC Real-Time Control Software, which was used to

implement both swing-up and balance control using the RL

algorithm on the Quanser Single Inverted Pendulum (SIP)

system mounted on a Linear Cart IP02.

Fig. 13 Experimental setup of the Quanser IP02 system

Fig. 14 Single inverted pendulum mounted on the

QUANSER IP02 system

This figure shows the Simulink diagram integrated

with QUARC Real-Time Control Software for implement-

ing swing-up and reinforcement learning (RL) balance con-

trol on the Quanser Single Inverted Pendulum (SIP) system

mounted on a Linear Cart IP02. The RL Agent interacts with

the hardware through QUARC [24], processing observation

signals and outputting control actions, like motor voltage, to

first swing up the pendulum and then maintain its balance.

This setup enables real-time control, demonstrating the ef-

fective use of RL in managing complex nonlinear dynamics

5.2. Experimental results for swing-up and stabilization of

the inverted pendulum

The DDPG algorithm was applied to first swing up

the pendulum from a resting position and then stabilize it in

the upright configuration. Fig. 17 illustrates the sequence of

the pendulum's swing-up and stabilization.

In this sequence, frames 1-3 depict the increasing

amplitude of the pendulum’s motion, while frames 4-6

demonstrate the successful swing-up phase. Frames 7-9

Fig. 16 Real-Time control architecture for the Quanser SIP system using reinforcement learning

 132

Fig. 17 Sequence of the swing-up and stabilization of the

Quanser IP02 SIP system

highlight the inertia-based swing-up technique, and frames

10-12 illustrate the final stabilization of the pendulum in the

upright position. The system successfully swings the pendu-

lum to the upright position and maintains stability using

feedback from the encoder.

5.3. Performance with different weight matrices

The performance of the control system was tested

with various configurations of the weight matrices Q and R.

These matrices influenced the system’s behavior by penal-

izing large deviations in position and angular displacement,

as well as controlling the input effort. The results of the sys-

tem's behavior for different matrix configurations are sum-

marized in the following figures.

The system demonstrated stable behaviour, with minimal

oscillations in both the cart's position and the pendulum's

angle. The choice of weight matrices significantly affected

the performance, as shown in Figs. 22 - 28, where different

values for Q and R were tested, resulting in variations in

control effort and stability.

The selection of weight matrices Q and R signifi-

cantly influences the system’s stability, control effort, and

overall performance. To illustrate these effects, we tested

multiple configurations, but only three representative cases

Fig. 18 Motor voltage input for weight matrices

Q = diag (0.75, 4, 0, 0), R = 0.0003

Fig. 19 Cart position for weight matrices Q = diag (0.75, 4,

0, 0), R = 0.0003

Fig. 20 Pendulum angle for weight matrices Q = diag (0.75,

4, 0, 0), R = 0.0003

Fig. 21 Training progress for weight matrices

Q = diag (0.75, 4, 0, 0), R = 0.0003

were presented. These cases were chosen because they high-

light key differences in system behavior and demonstrate

the trade-offs in designing an optimal controller.

The Low Gain Configuration (Q = diag (0.75, 4, 0,

0), R = 0.0003) represents a scenario with minimal penalties

on state deviations, leading to larger oscillations in both the

cart’s position and the pendulum’s angle. The control effort

is relatively low, but the system takes longer to stabilize.

This case serves as a baseline to observe how the system

behaves with small weight values. The Moderate Gain Con-

figuration (Q = diag (5, 50, 0, 0), R = 0.002) has higher pen-

alties on deviations in position and angle, improving stabil-

ity compared to the low-gain case.

Fig. 22 Motor voltage input for weight matrices

Q = diag (5, 50, 0, 0), R = 0.002

 133

Fig. 23 Cart position for weight matrices Q = diag (5, 50, 0,

0), R = 0.002

Fig. 24 Pendulum angle for weight matrices Q = diag (5,

50, 0, 0), R = 0.002

Fig. 25 Training progress for weight matrices

Q = diag (800, 150, 1, 1), R = 0.1

Fig. 26 Motor voltage input for weight matrices

Q = diag (800, 150, 1, 1), R = 0.1

Fig. 27 Cart position for weight matrices Q = diag (800,

150, 1, 1), R = 0.1

The control effort is increased to compensate for

disturbances, reducing oscillations. This case illustrates how

Fig. 28 Pendulum angle for weight matrices Q = diag (800,

150, 1, 1), R = 0.1

a moderate weighting strategy enhances system perfor-

mance without excessive energy consumption. The High

Gain Configuration (Q = diag (800, 150, 1, 1), R = 0.1) uses

a significantly higher weighting on state deviations, leading

to faster stabilization and reduced oscillations. The in-

creased R value ensures that control effort remains within

actuator limits, preventing saturation. This case represents a

well-tuned system with a balance between stability and en-

ergy efficiency. These three sets of matrices were chosen

because they provide clear insights into the system’s behav-

ior under different control strategies.

Low-gain control demonstrates the effects of weak

state feedback, moderate-gain control shows an improved

balance between stability and control effort, and high-gain

control highlights the trade-off between aggressive stabili-

zation and control input constraints. While many weight ma-

trix configurations were tested, these three cases were se-

lected to effectively illustrate the system’s response under

different tuning conditions, providing a meaningful compar-

ison for control optimization.

Training time is reduced by optimizing the weight

matrices Q and R, which directly influence learning effi-

ciency. In the low-gain configuration, the system stabilizes

slowly due to weaker feedback, resulting in more oscilla-

tions and longer training time. In the moderate-gain config-

uration, faster stabilization occurs with stronger feedback,

significantly reducing the training time. The high-gain con-

figuration leads to quick stabilization with balanced control

effort, resulting in the shortest training time. By shifting

from a low-gain configuration to optimized moderate or

high-gain configurations, training time is reduced by 45%,

improving both efficiency and stability (Fig. 29). Training

is considered complete when the system stabilizes, the error

Fig. 29 Effect of weight matrix configuration (Q, R) on

training time

 134

is below a set threshold, the predefined number of iterations

is reached, or energy consumption stabilizes. These criteria

ensure a reliable assessment of training completion.

5.4. Challenges in real-time implementation

The real-time implementation of the DDPG algo-

rithm revealed several challenges:

1. Noise in Sensor Measurements, real-time data acquisition

introduced noise, particularly in the encoder measure-

ments. This required filtering and robust handling to en-

sure the control inputs remained effective.

2. Nonlinearities in the System, the inverted pendulum sys-

tem exhibited nonlinear behaviour, especially during the

swing-up phase. Handling these nonlinearities required

fine-tuning of the reward function and adjusting the learn-

ing rate of the DDPG algorithm.

3. Power Limitations, the motor driving the cart had a lim-

ited voltage range of 10 V. Exceeding this limit during

swing-up or stabilization could result in system instabil-

ity. Therefore, constraints were added to the control in-

puts to ensure the motor operated within safe limits.

5.5. Discussion on DDPG performance

The DDPG algorithm effectively controlled the

SIP system, maintaining stable balance in the upright posi-

tion. Its main advantages were:

- Continuous Control, DDPG handled continuous action

spaces well, ideal for real-time control of the cart and

pendulum balance.

- Adaptability, the algorithm adapted to different weight

matrix configurations, minimizing both angular devia-

tion and cart displacement.

However, limitations included:

- Training Time, due to system complexity and high-fi-

delity simulations, training took considerable time.

- Sensitivity to Hyperparameters: Proper tuning of learn-

ing rate, exploration noise, and reward function was es-

sential, as poorly set parameters led to instability.

Despite these challenges, DDPG showed strong

performance, with future work needed to enhance efficiency

and reduce training time.

6. Conclusions

This research focused on applying and enhancing

the Deep Deterministic Policy Gradient (DDPG) algorithm

for controlling a Single Inverted Pendulum (SIP) system.

The modifications to the algorithm, particularly in the expe-

rience replay buffer and Critic network, significantly im-

proved system performance. Real-world experiments and

simulations demonstrated a 45% reduction in training time,

a 25% improvement in stability, and a 30% decrease in pen-

dulum displacement compared to baseline implementations.

These results validate the effectiveness of the refined DDPG

approach in managing the nonlinear dynamics of SIP sys-

tems. Despite these advancements, challenges remain re-

garding sample efficiency and algorithm stability in real-

world applications. Future work should aim to optimize hy-

perparameters, further improve computational efficiency,

and explore hybrid approaches that integrate traditional con-

trol strategies with deep reinforcement learning. The suc-

cess achieved in this study demonstrates the potential for

DRL to address complex control challenges in practical sce-

narios.

References

1. Boubaker, O. 2012. The inverted pendulum: A funda-

mental benchmark in control theory and robotics, Inter-

national Conference on Education and e-Learning Inno-

vations.

https://doi.org/10.1109/ICEELI.2012.6360606.

2. Muskinja, N.; Tovornik, B. 2006. Swinging up and sta-

bilization of a real inverted pendulum, in IEEE Transac-

tions on Industrial Electronics 53(2): 631-639.

https://doi.org/10.1109/TIE.2006.870667.

3. Fukushima, H.; Kakue, M.; Kon, K.; Matsuno, F.

2013. Transformation control to an inverted pendulum

for a mobile robot with wheel-arms using partial linear-

ization and polytopic model set, in IEEE Transactions

on Robotics 29(3): 774-783.

https://doi.org/10.1109/TRO.2013.2239555.

4. Baek, S.; Baek, J.; Choi, J.; Han, S. 2022. A Rein-

forcement Learning-based Adaptive Time-Delay Con-

trol and Its Application to Robot Manipulators, in 2022

American Control Conference (ACC): 2722-2729.

https://doi.org/10.23919/ACC53348.2022.9867835.

5. Zhang, Z.; Mo, Z.; Chen, Y.; Huang, J. 2022. Rein-

forcement Learning Behavioral Control for Nonlinear

Autonomous System, IEEE/CAA Journal of Automatica

Sinica 9(9): 1561-1573.

https://doi.org/10.1109/JAS.2022.105797.

6. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. 2018.

Soft Actor-Critic: Off-Policy Maximum Entropy Deep

Reinforcement Learning with a Stochastic Actor, Pro-

ceedings of the 35th International Conference on Ma-

chine Learning, PMLR 80: 1861-1870. Available from

https://proceedings.mlr.press/v80/haarnoja18b.html.

7. Baek, J.; Lee, C.; Lee, Y. S.; Jeon, S.; Han, S. 2024.

Reinforcement learning to achieve real-time control of

triple inverted pendulum, Engineering Applications of

Artificial Intelligence 128: 107518.

https://doi.org/10.1016/j.engappai.2023.107518.

8. Busoniu, L.; Babuska, R.; De Schutter, B.; Ernst, D.

2017. Reinforcement learning and dynamic program-

ming using function approximators. Boca Raton: CRC

press. 280p.

https://doi.org/10.1201/9781439821091.

9. Bhourji, R. S.; Mozaffari, S.; Alirezaee, S. 2024. Re-

inforcement Learning DDPG–PPO Agent-Based Con-

trol System for Rotary Inverted Pendulum, Arabian

Journal for Science and Engineering 49(2): 1683-1696.

https://doi.org/10.1007/s13369-023-07934-2.

10. Quer, J.; Ribera Borrell, E. 2024. Connecting stochas-

tic optimal control and reinforcement learning, Journal

of Mathematical Physics 65(8): 083512.

https://doi.org/10.1063/5.0140665.

11. Mnih, V.; Kavukcuoglu, K.; Silver, D. et al. 2015. Hu-

man-level control through deep reinforcement learning,

Nature 518: 529-533.

https://doi.org/10.1038/nature14236.

12. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra,

D.; Riedmiller, M. 2014. Deterministic Policy Gradient

Algorithms, Proceedings of the 31st International Con-

ference on Machine Learning, International conference

 135

on machine learning, PMLR 32(1): 387-395. Available

at: https://proceedings.mlr.press/v32/silver14.html.

13. Sutton, R. S.; Barto, A. G.; 2018. Reinforcement

Learning: An Introduction. 2nd ed. Adaptive Computa-

tion and Machine Learning Series. Cambridge, MA: The

MIT Press. 552p.

14. Linear Motion Servo Plants: IP01 or IP02 - Single In-

verted Pendulum (SIP) User Manual. 3rd ed. Quanser

Consulting, Inc.

15. Mallick, P.; Chen, Z. 2023. Dynamic Programming-

Based Approximate Optimal Control for Model-Based

Reinforcement Learning. ArXiv preprint arXiv:

2312.14463.

https://doi.org/10.48550/arXiv.2312.14463.

16. Li, Y. 2018. Deep Reinforcement Learning: An Over-

view. Available at: https://arxiv.org/pdf/1701.07274.

17. Dong, H.; Ding, Z.; Zhang, S. 2020. Deep Reinforce-

ment Learning: Fundamentals, Research and Applica-

tions. Singapore: Springer Singapore Pte. Ltd. 514p.

https://doi.org/10.1007/978-981-15-4095-0.

18. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;

Antonoglou, I.; Wierstra, D.; Riedmiller, M.A. 2013.

Playing Atari with Deep Reinforcement Learning, arXiv

preprint arXiv:1312.5602.

https://doi.org/10.48550/arXiv.1312.5602.

19. Nagabandi, A.; Kahn, G.; Fearing, R. S.; Levine, S.

2018. Neural Network Dynamics for Model-Based Deep

Reinforcement Learning with Model-Free Fine-Tuning,

2018 IEEE International Conference on Robotics and

Automation (ICRA): 7559-7566.

https://doi.org/10.1109/ICRA.2018.8463189.

20. Chen, P.; He, Z.; Chen, C.; Xu, J. 2018. Control Strat-

egy of Speed Servo Systems Based on Deep Reinforce-

ment Learning, Algorithms 11(5): 65.

https://doi.org/10.3390/a11050065.

21. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.;

Klimov, O. 2017. Proximal Policy Optimization Algo-

rithms, ArXiv preprint arXiv:1707.06347.

https://doi.org/10.48550/arXiv.1707.06347.

22. Kober, J.; Bagnell, J. A.; Peters, J. 2013. Reinforce-

ment Learning in Robotics: A Survey, The International

Journal of Robotics Research 32(11): 1238-1274.

https://doi.org/10.1177/0278364913495721.

23. Bajrami, X.; Pajaziti, A.; Likaj, R.; Shala, A.; Ber-

isha, R.; Bruqi, M. 2021. Control Theory Application

for Swing Up and Stabilisation of Rotating Inverted Pen-

dulum, Symmetry 13(8): 1491.

https://doi.org/10.3390/sym13081491.

24. Bajrami, X.; Shala, A.; Likaj, R.; Krasniqi, D.;

Shala, E. 2025. Utilizing linear quadratic regulator and

model predictive control for optimizing the suspension

of a quarter car vehicle in response to road excitation,

Journal of Theoretical and Applied Mechanics 63(1):

75-89.

https://doi.org/10.15632/jtam-pl/196293.

X. Bajrami, F. Kaçiu, E. Shala, R. Likaj

REAL-TIME SWING-UP OF A LINEAR INVERTED

PENDULUM USING REINFORCEMENT LEARNING

S u mm a r y

This study focused on applying and enhancing the

Deep Deterministic Policy Gradient (DDPG) algorithm to

effectively control a Single Inverted Pendulum (SIP) sys-

tem. The primary objective was to improve the algorithm's

performance by addressing common challenges such as

overestimation of Q-values and convergence to local op-

tima. The system's behaviour was analyzed through simula-

tion and real-world experiments, showcasing the algorithm's

ability to offer faster responses, enhanced stability, and re-

duced pendulum displacement. The research introduced key

modifications to the experience replay mechanism and the

Critic network, which played a significant role in improving

the efficiency of the learning process and the robustness of

the control strategy. By combining Reinforcement Learning

with traditional control methods, this approach successfully

managed the nonlinear dynamics of the SIP system. Never-

theless, certain challenges persist, particularly in terms of

the efficiency of deep reinforcement learning algorithms

and their stability in real-world environments. These find-

ings suggest that future research should focus on further re-

fining DRL algorithms to increase their practical application

in physical control systems. In conclusion, the research

highlights the potential of combining DRL techniques with

conventional control strategies for tackling complex control

problems. The success achieved in controlling the SIP sys-

tem indicates a promising direction for further exploration

and development in this field.

Keywords: deep deterministic policy gradient, reinforce-

ment learning, control systems, deep learning, dynamical

systems, single inverted pendulum.

Received October 21, 2024

Accepted April 22, 2025

This article is an Open Access article distributed under the terms and conditions of the Creative Commons

Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

