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1. Introduction 

With the continuous advancement of industrial 

technology, traditional symmetrical gear transmission sys-

tems no longer meet the demands for high performance and 

efficiency. New high-performance asymmetric gears 

demonstrate greater applicability in applications requiring 

high precision and reliability. The key design difference be-

tween asymmetric and traditional symmetrical gears is that 

the tooth profile is not symmetrical on the driving and non-

driving sides. By adjusting the drive-side tooth profile an-

gle, asymmetric gears can better distribute stress, enhance 

transmission efficiency, and reduce tooth surface wear par-

ticularly under high-pressure angle conditions. The bending 

strength at the tooth roots of both the pinion and the large 

gear in asymmetric gears is significantly improved com-

pared to that of traditional symmetrical gears. 

Mo et al. have established a 3D model by analysing 

the forming principle of the asymmetric tooth profile in in-

ternal and external helical gears, and demonstrating the ad-

vantages of asymmetric teeth. They further studied the in-

fluence of friction and shear stress on the bending stress at 

the tooth root[1]. Yang et al. have used the vector method to 

develop a numerical model of the tooth profile and demon-

strated the importance of pressure angle and tooth profile 

parameters on the loadbearing capacity of gear teeth [2]. 

Umar et al. have proposed a novel method to optimize the 

design parameters of asymmetric gears [3]. Based on the 

characteristics of the involute, Bian et al. derived the equa-

tion for asymmetric spur gears with double pressure angles 

and analysed the relationship between contact stress and 

pressure angle in asymmetric gears. Asymmetric gears have 

superior dynamic meshing forces compared to symmetrical 

gears [4]. According to the geometric relation and coordi-

nate transformation, Chen et al. derived the mathematical 

model of asymmetric parabolic tooth profile. This model is 

helpful for the design and production of asymmetric gears 

[5]. Zhuang et al. focused on the load carrying capacity of 

asymmetric gears with double pressure angles and a large 

pressure angle as the working side. They proposed an opti-

mization mathematical model and obtained optimized pa-

rameters for asymmetric gears [6]. Vaghela et al. conducted 

parametric analysis of asymmetric gears and proposed a nu-

merical analysis method for modelling and strength calcula-

tion of asymmetric gears. This study explores the influence 

of the tooth profile pressure angle on the geometric shape 

and meshing characteristics of the working side of the asym-

metric gear [7]. Weisong's team is proposed that the increas-

ing the pressure angle of the working tooth surface can ef-

fectively improve the wear resistance of gears [8]. Prabhu 

studied the correction coefficient of asymmetric tooth pro-

file to improve the wear resistance of teeth and improve the 

efficiency of gears [9]. Numerous studies have shown that 

the bending fatigue fracture performance and contact fatigue 

performance of asymmetric gears surpass those of standard 

gears[10, 11]. Cao et al. established a precise full-tooth pro-

file model based on the gear generation principle, providing 

a method for the parametric design of accurate tooth profiles 

[12]. Zouridaki et al. used the finite element method to ana-

lyse the influence of geometric characteristics on the bend-

ing stress and strength of asymmetric gears [13]. Puneeth et 

al. proposed a new contact analysis boundary condition 

method to evaluate the contact stress of asymmetric gears 

[14]. Deepak et al. evaluated the difference between the re-

sults of the helical gear bending stress calculation formula 

and those obtained by the finite element method of the 

AGMA standard [15]. 

At present, research on asymmetric involute gears 

has made more in-depth results, but the research on the cal-

culation method of tooth root bending stress of asymmetric 

helical gears is still relatively scarce. Due to the special 

tooth profile design of asymmetric gears, the traditional gear 

stress calculation formulas are no longer applicable. There-

fore, it is urgent to develop a new calculation method for 

tooth root bending stress to solve this problem. In this paper, 

the finite element method is used to simulate the distribution 

of tooth root bending stress in asymmetric gears under dif-

ferent working conditions, and the stress variation law is an-

alyzed. Based on the existing empirical formula for symmet-

ric gears, the pressure angle influence coefficient of the 

tooth root bending stress of asymmetric gears is proposed. 

Combined with the regression analysis, the tooth root bend-

ing stress calculation formula suitable for asymmetric gears 

is further fitted. Finally, the simulation results of the tooth 

root bending stress of the asymmetric gear are analyzed by 

Workbench software. It is then compared with the calcula-

tion results of the formula to verify the accuracy and feasi-

bility of the derived formula. 

2. Asymmetric Helical Gear Tooth Surface Digital  

Modeling 

Compared to the standard helical gear, the tooth 

profiles with different pressure angles are designed on both 
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sides of the asymmetric helical gear. Therefore, the asym-

metric helical gear cutter is also designed with a double 

pressure angle based on the standard rack cutter. Fig. 1 is the 

schematic diagram of the standard rack cutter. 

The coordinate system S1 and S2 are rigidly fixed 

to the rack cutter. S3 is the auxiliary coordinate system fixed 

to the rack. αn1 and αn2 are the normal pressure angles of the 

two tooth profiles, respectively. p is pitch; s is tooth thick-

ness; e is the slot width; am is the half-groove width; mn is 

the normal modulus; han is the tooth root height; hfn is the 

addendum height; Or1 and Or2 are the center of the adden-

dum fillet; ρ is the radius of the fillet; c is the top gap; β is 
the helix angle. When the tool is used to process the gear, 

the tool and the gear are pure rolling on the pitch line, the 

line segments b1c1 and b2c2 process the gear tooth profile 

part, and the arc segments c1d1 and c2d2 process the gear 

transition part. 
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Fig. 1 Asymmetric rack cutter schematic diagram 

The potential vectors of two tooth profiles ∑b1c1 

and ∑b2c2 of rack cutter in coordinate system Si (i = 1, 2) 

and coordinate system S3 are 
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where li and ui (i = 1, 2) are four independent parameters of 

the rack cutter; ui is the axial parameter; M31 and M32 are the 

4×4 transformation matrix from coordinate system S1, S2 

to coordinate system S3 respectively, that is 
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The unit normal vector of the rack cutter tooth pro-

file in the coordinate system S3 is 
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The profile of an asymmetric involute helical gear 

with profile shift is enveloped by a rack cutter, as illustrated 

in Fig. 2. The coordinate system S4 is rigidly attached to the 

asymmetric involute profile-shifted helical gear, while Sd 

serves as an auxiliary coordinate system. Here, 𝜃  repre-

sents the rotation angle of the gear, and rpθ denotes the dis-

placement of the rack cutter. rp is the pitch circle radius of 

the gear, and xn is the specified normal profile shift coeffi-

cient. 
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Fig. 2 Coordinate system for rack cutter and asymmetric 

modified helical gear generation 

Therefore, the tooth surface position vector and the 

unit normal vector of the meshing part of the tooth profile 

of the asymmetric involute modified helical gear in the co-

ordinate system S4 are respectively 
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where fi is the meshing equation; R3ix and R3iy are two coor-

dinate components of rack cutter tooth surface normal vec-

tor n3i; R3ix and R3iy are the two coordinate components of 

the rack cutter tooth surface vector R3i, respectively. M43 is 

the 4×4 coordinate transformation matrix from coordinate 

system S3 to coordinate system S4, as followed 
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3. Calculation Method for Tooth Root Bending Stress of 

Asymmetric Gear 

In the calculation of the bending strength of the in-

volute helical cylindrical gear, the flat section method or the 

broken section method is usually used for numerical analy-

sis. The dangerous section in the flat section method is usu-

ally cut on the tooth root transition curve formed by the tip 

fillet of the tool according to the 30° tangent method. How-

ever, due to the different pressure angles on both sides of the 

working and the non-working tooth profile of the asymmet-

ric gear, the 30° tangent method cannot accurately deter-

mine the position of its dangerous section. Therefore, the 

stress concentration area in the root transition zone of the 

working side tooth profile is used as the dangerous section 

position of the asymmetric gear tooth root, and the bending 

strength of the tooth root is evaluated by this method.  

It is assumed that the force on the gear teeth is uni-

form in the direction of the tooth width, so the force of the 

gear teeth can be simplified into a two-dimensional plane 

problem for analysis. Taking the end face of the gear tooth 

as a two-dimensional coordinate plane, the plane where the 

end face of the gear intersects with the center of the end face 

formed by the gear shaft is the center of the circle, and the 

connection between the midpoint of the arc of the gear tooth 

dividing circle and the center of the circle is set as the Y axis, 

and a two-dimensional rectangular coordinate system is es-

tablished as shown in Fig. 3. At a certain moment during the 

meshing of the two gear teeth, the tooth profile is meshed at 

the M point. Ignoring the friction between the tooth surfaces, 

the gear teeth are subjected to the normal load. The action 

line of the force is perpendicular to the working tooth profile 

and intersects with the Y axis at the G point. At this moment, 

the load angle is the angle between the force line and the 

horizontal line perpendicular to the Y axis, and the load an-

gle can be decomposed into tangential force and radial force. 

The tangential force produces bending stress on the danger-

ous section of the tooth root, and the gear is regarded as a 

cantilever beam with a width of b, and the dangerous section 

is often the key part of the failure. 

According to the idea of plane section method, the 

dangerous section at the root of the tooth is set to AB, the 

bending force arm is h, the thickness of the dangerous sec-

tion at the root of the tooth is, the nominal circumferential 

force on the end surface of the dividing circle is F, the mod-

ulus is mn, and the pressure angle of the dividing circle on 

the active side is αd, where the subscript a of the physical 

quantity represents the addendum circle, b represents the 

base circle, c represents the driven side of the gear, and d 

represents the active side of the gear. Through derivation, 

the tooth root bending stress formula of asymmetric involute 

helical cylindrical gear is 
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In the formula, YF is the tooth shape coefficient 

when the load acts on the external point of the single pair of 

teeth meshing area, YS is the stress correction coefficient, Yβ 

is the spiral angle coefficient, and Yα is the pressure angle 

influence coefficient. 
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In the formula, εβ is the longitudinal coincidence 

degree, L is the ratio of the thickness of the dangerous sec-

tion of the tooth root to the bending force arm, L = sFn / h, qs 
is the tooth root fillet parameter, its value is qs = sFn / 2ρF,  
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Fig. 3 Schematic diagram of the bending stress analysis of 

the tooth root: a – profile of the transverse tooth,  

b – dangerous section diagram of asymmetric gear 
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ρF is the curvature radius at the intersection of the dangerous 

section and the tooth root transition curve, αM1 is the invo-

lute pressure angle at the meshing point.
 

According to the theoretical model of the tooth root 

bending stress of the asymmetric gear, the program is writ-

ten and the parameter values of YF, YS are obtained. At the 

same time, to obtain the bending stress of the asymmetric 

gear and the accuracy of the solution results without the fi-

nite element method, the regression analysis method is used 

to fit the pressure angle influence coefficient of the actual 

tooth root bending stress. 

4. Analysis of Tooth Root Bending Stress of Asymmetric 

Gear  

4.1. Accurate modeling and analysis of asymmetric gears 

The geometric parameters of the asymmetric gear 

are comprehensively selected, and the key parameters such 

as pressure angle, addendum height and root radius of the 

working and non-working tooth surfaces are accurately de-

fined in the geometric setting of MASTA, and the asymmet-

ric gear pair model is established (Fig. 4). The material prop-

erties and boundary conditions are set, and external load 

conditions such as torque and speed are defined to determine 

the correct power flow direction in the model. In the ad-

vanced LTCA module of MASTA software, a high-precision 

finite element model of the gear is created according to cus-

tom mesh control (Fig. 5), and the loading contact charac-

teristics of the asymmetric gear are evaluated in detail. 

based on the results of finite element analysis, the bending 

stress of asymmetric helical gear is obtained. The results of 

the analysis are shown in Table 2. 

Table 2 shows that the bending stress of the tooth 

root increases with the increase of the working torque. Tak-

ing the working torque of 450 N·m as an example, Fig. 6 

shows that the bending stress decreases with the increase of 

the pressure angle of the working tooth surface when the in-

put torque of the motor is constant. The bending stress in-

creases with the pressure angle of the non-working tooth 

surface. 

Through analysis, it is observed that the pressure 

Table 1 

Basic geometric parameters 

Parameter Number 

Number of pinion teeth z1 21 

Number of big gear teeth z1 53 

Normal module mn, mm 2.25 

Working tooth surface pressure angle αd, ° 18-25 

Non-working tooth surface pressure angle αc, ° 15-17 

Helix angle β, ° 28 

Tooth height coefficient ha
* 1 

Dedendum coefficient hf
* 1.25 

Modification coefficient of pinion xn1, mm 0.13 

Modification coefficient of large gear xn2, mm - 0.13 

Tooth width b, mm 30 

Revolution speed n1, r/min 3000 

Torque T, N·m 
150, 300, 

450 

angle of the working and the non-working tooth surface, the 

input torque and the bending stress in the same gear interact 

with each other and have complicated variation rules. The 

 

Fig. 4 The gear pair model established in MASTA 

 

Fig. 5 Gear finite element model established in MASTA 

Table 2 

Bending stress results of asymmetric helical gear tooth root 

Bending 

stress  

σF, 

N/mm2 

Working tooth 

surface pres-

sure angle  

αd, ° 

Non-working 

tooth surface 

pressure an-

gle  

αc, ° 

Input torque 

T, N·m 

442.50 18 

15 450 

436.86 19 

431.47 20 

427.50 21 

424.04 22 

420.54 23 

417.07 24 

413.61 25 

304.01 18 

16 300 

300.12 19 

296.34 20 

292.69 21 

289.15 22 

285.73 23 

282.48 24 

280.12 25 

159.18 18 

17 150 

157.22 19 

155.33 20 

153.53 21 

151.81 22 

150.16 23 

148.56 24 

147.00 25 
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Fig. 6 Curve diagram of bending stress with pressure angle 

change 

bending stress is linearly related to the pressure angle of the 

working face, the non-working pressure angle and the input 

torque. Based on the interaction between these parameters, 

the design and optimization process must consider their 

combined effect on bending stress. In the design, under the 

corresponding working conditions, the pressure angle of the 

working face should be maximized while reducing the pres-

sure angle of the non-working face, while ensuring the per-

formance and reliability of the system. 

5. Calculation of Bending Stress of Asymmetric Gear 

Tooth Root  

5.1. Bending stress solution of asymmetric gear based on 

regression analysis 

In the article, a multivariate linear regression 

model is used. The basic model is as follows: 

 0
j

, 1, 2, , ; 1, 2, ,j i j iiy x i n j p  
  

= + + = =  (15)  

where: yi is the dependent variable; xij as independent varia-

bles; βj is observed value, εi is a random error term, which 

is used to represent the part that the model fails to explain.  

Since the curve's change trend is close to the expo-

nential curve, the calculation formula of bending stress is set 

to include the form of proportional correction coefficient. At 

the same time, in the same pair of gears, the bending stress 

of the tooth root is also affected by the exponential variation 

law of the two parameters of the working tooth surface pres-

sure angle and the non-working tooth surface pressure angle, 

as well as the combined effect of the macroscopic parame-

ters and the microscopic parameters of the gear. Considering 

the influence of different pressure angles on both sides on 

the bending stress, the influence coefficient Yα of the pres-

sure angle is defined in Eq. (11). Because the curve in Fig. 

6 and Fig. 7 is like the exponential curve, the mathematical 

expression of Yα is defined as: 
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where: Yα is the pressure angle influence coefficient of the 

asymmetric helical gear, t0 is the proportional coefficient 

under the change of the pressure angle when calculating the 

pressure angle influence coefficient. For the convenience of 

calculation, θd, θc is the radian corresponding to the pressure 

angle of the working tooth surface and the pressure angle of 

the non-working tooth, t1, t2 represents the index of the pres-

sure angle of the working tooth surface and the pressure an-

gle of the non-working tooth surface affected by their own 

changes. 

According to the calculation formula of the pres-

sure angle influence coefficient obtained by the above anal-

ysis and setting, there are three unknown parameters in Eq. 

(16), which are t0, t1, t2. Combined with the basic mathemat-

ical knowledge, the logarithm of 10 can be taken on both 

sides of Eq. (16), leading to the equation shown in Eq. (17): 
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regression equation was gotten: 

 1 1 2 2y b m x m x= + + . (19) 

The least squares method is used to estimate the 

regression coefficients. The goal is to minimize the sum of 

squared residuals, that is: 
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According to the extreme value condition, by 

solving the partial derivatives and setting it to zero, a sys-

tem of equations can be obtained, from which the esti-

mated value of the coefficient can be derived. �̂�0, �̂�1,…
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Solving the above formula is attainable that 

t0 = 2.1223, t1 = 0.1325, t2 = -0.2404, Therefore, using the 

least squares method, the empirical formula for the influ-

ence coefficient of the pressure angle considering the pres-

sure angle of the working face and the pressure angle of the 

non-working face is as follows: 

 

0.1325

0.2404
2.1223 c

d

Y


 −
= . (21) 

The gear macroscopic parameters, working face 

pressure angle, non-working face pressure angle and input 

torque coefficient are brought into the asymmetric helical  
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Fig. 7 The calculated value of the formula is compared with 

the simulation value of MASTA 
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Fig. 8 The linear analysis diagram of the calculated value of 

the formula and the MASTA simulation value 

gear tooth root bending stress Eq. (10) to obtain the theoret-

ical calculation value of the bending stress, which is com-

pared with the MASTA simulation value. The results are 

shown in Fig. 7. The simulated value of tooth root bending 

stress calculated under different pressure angles has obvious 

coincidence degree with the actual value. 

The torque is set to 450 N·m, and based on this, the 

data samples of the pressure angles on both sides of the tooth 

profile are increased. Then, the theoretical calculation is car-

ried out by using the formula method, and the bending stress 

is simulated and analyzed by using MATLAB software. To 

explore the correlation between the theoretical calculation 

value and the simulation value, the least square method is 

used for curve fitting. According to the fitting results 

(Fig. 8), it can be observed that there is a good linear distri-

bution trend between the actual calculated bending stress 

(denoted by y) and the theoretical bending stress (denoted 

by x). This trend indicates that there is a significant positive 

correlation between the two. Through comparative analysis, 

the calculation results of the formula method are shown to 

be accurate. 

 

 

6. Finite Element Comparative Analysis  

6.1. Finite element example 

Based on the digital tooth surface model of the 

asymmetric involute gear tooth profile in the previous arti-

cle, the data points are calculated in MATLAB and imported 

into SolidWorks to establish an accurate asymmetric helical 

gear solid model. Based on the Workbench finite element 

software, the finite element analysis of the asymmetric gear 

model is carried out.  

The established geometric model is input into the 

Hypermesh finite element pre-processing software, and the 

gear material is set as 20 CrMnTi steel material. The elastic 

modulus is E = 2.06×1011 N/m2, the Poisson 's ratio is 

v = 0.3, and the constraint is T = 300 N·m. To ensure the ac-

curacy of the model, tetrahedral elements are selected in the 

finite element meshing. When the gear is stressed, the tooth 

stress has a large gradient of stress change at the tooth root 

transition curve and the tooth surface. To ensure the accu-

racy of the stress results, mesh refinement is performed on 

the tooth root and tooth surface, with particular focus on fur-

ther refining the tooth root region. Fig. 9 shows the mesh 

model of gear pair. 

The gear model of the set grid is imported into the 

Workbench software, and the contact surface, boundary 

conditions and working condition parameters are set and 

solved. The stress distribution and displacement changes in 

the tooth root area under load are analyzed for different pres-

sure angles. Simultaneously, the difference between the the-

oretical results obtained from the calculation formula and 

the simulation results is compared. 

 

Fig. 9 Mesh Model of Asymmetric Gear Pair 

D：Static Structural
Equivalent Stress
Type:Equivalent (von-Mises)Stress
Unit:Mpa
Time:1s

268.53Max
238.69
208.86
179.02
149.18
119.35
89.509
59.673
29.836
7.2077e-7Min

 

Fig. 10 Asymmetric helical gear finite element results stress 

cloud diagram (αd = 25°, αc = 20°) 
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D：Static Structural
Equivalent Stress
Type:Equivalent (von-Mises)Stress
Unit:Mpa
Time:1s

247.39Max
219.9
192.41
164.92
137.44
109.95
82.462
54.974
27.287
2.3002e-6Min

 

Fig. 11 Asymmetric helical gear finite element results stress 

cloud diagram (αd = 30°, αc = 20°) 

Table 3 

The results of the formula are compared with the  

Workbench simulation results 

Asymmetric gears Formula results 
Finite element 

results 

Bending stress 

(αd = 25°, αc = 20°) 
282.81 268.53 

bending stress 

(αd = 30°, αc = 20°) 
260.83 247.39 

 

By comparing the two results, the root bending 

stress calculated by the formula method is basically con-

sistent with the Workbench simulation analysis results, and 

the error is 6.52%, which verifies the feasibility of the cal-

culation formula of the root bending stress of the asymmet-

ric gear. 

7. Conclusions 

This method is based on finite element numerical 

simulation and regression analysis, which can accurately 

predict the root bending stress under different pressure an-

gles. By establishing the digital tooth surface model of 

asymmetric helical gears and using finite element software 

for simulation analysis, the average error rate of the calcu-

lated empirical formula is 6.52%, which proves that the de-

rived empirical formula meets the accuracy calculation re-

quirements. The accuracy and practicability of the derived 

tooth root bending stress calculation formula are verified.  

In this paper, the mathematical relationship be-

tween the bending stress of the tooth root and the pressure 

angle of the asymmetric gear is successfully fitted by com-

bining the stress calculation method with the regression 

analysis. The bending stress of the tooth root is negatively 

correlated with the pressure angle of the working tooth sur-

face and positively correlated with the pressure angle of the 

non-working tooth surface. The results show that increasing 

the pressure angle of the working tooth surface and reducing 

the pressure angle of the non-working tooth surface can ef-

fectively improve the bending strength of the gear. The pro-

posed empirical formula provides theoretical support and 

practical tools for the design of asymmetric gears, and has 

important guiding significance for the optimization of its 

bearing capacity and overall performance. 
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X. Z. Fu, Y. X. Jin, M. L. Zhao, F. Cao 

ASYMMETRIC HELICAL GEARS BENDING STRESS 

CALCULATION FORMULA  

S u m m a r y 

Aiming at the limitation that the traditional sym-

metrical gear stress calculation formula cannot be applied to 

the new asymmetric helical gear, a calculation method of 

tooth root bending stress of asymmetric involute helical gear 

is proposed in this paper. According to the meshing principle, 

the digital tooth surface model of asymmetric involute heli-

cal gear is established. The distribution characteristics of 

tooth root bending stress are analyzed by finite element 

method, and the relationship between tooth root bending 

stress and pressure angle is studied. On this basis, the influ-

ence coefficient of pressure angle is proposed. Combined 

with multiple regression analysis, an analytical formula for 

calculating the bending stress of tooth root without finite el-

ement method is proposed. By comparing with the calcu-

lated values of the finite element method, the error rate of 

the theoretical formula is 6.52%, which verifies its accuracy. 

The research results show that the asymmetric helical gear 

exhibits excellent tooth root bending bearing capacity under 

high pressure angle conditions, which provides key theoret-

ical support and calculation tools for the design of high-per-

formance asymmetric gears. 

Keywords: asymmetric gear, bending stress, regression 

analysis, pressure angle influence coefficient. 
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