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1. Introduction 

In mechanical equipment, bearings not only play 

the role of support and positioning, but also have many 

important functions such as reducing friction and wear, 

transferring load, realizing motion transmission, damping 

and buffering [1, 2]. Bearing performance not only directly 

affects the performance and life of the equipment, but also 

plays a key role in the entire production process and prod-

uct quality. However, with the development of technical 

equipment requirements, the importance of service per-

formance indicators of rolling bearings has exceeded the 

fatigue life. Accurately sensing and predicting the perfor-

mance degradation trend of bearings can effectively pre-

vent fault escalation, and is of great significance for re-

ducing the maintenance cost of bearings [3, 4]. 

The degradation process of bearings is a gradual 

evolution process. When the operating state of bearings 

changes, its performance parameters will also show corre-

sponding changes [5, 6]. Common performance parameters 

of rolling bearings include vibration acceleration value, 

friction torque, temperature and runout during bearing 

operation, etc. Compared with friction torque, temperature 

and runout, vibration acceleration not only has higher 

accuracy, sensitivity, real-time and response speed, but also 

can quickly adapt to complex working environments. A 

large number of state evolution data obtained from vibra-

tion monitoring also provide sufficient data sources for 

bearing performance evolution and fault prediction based 

on vibration. Gustafsson [7, 8] first proposed the method of 

analyzing bearing vibration signals collected by accelera-

tion sensors in 1962, and vibration monitoring was subse-

quently widely used in the monitoring of operating condi-

tions of rotary machinery. Xia X T [8] proposed that the 

vibration performance of rolling bearings directly affects 

the running condition of the working machine. This study 

correctly pointed out that there is a significant correlation 

between the vibration performance of bearings and the 

overall performance. However, its analysis mainly re-

mained at the level of phenomenon description and corre-

lation, lacking quantitative modeling and analysis. 

However, in reality, the performance degradation 

of bearings is not a stable process; it involves multiple 

stages such as normal service, early deterioration, and 

accelerated deterioration. The vibration feature evolution 

patterns vary across these stages, especially the transition 

point from the healthy stage to the deterioration stage is 

difficult to be accurately captured by traditional 

steady-state models. Therefore, how to achieve sensitive 

identification of the deterioration stages, particularly the 

early signs, has become the key to improving prediction 

accuracy and practical engineering application. Shao L. D 

[9] proposed a series dynamic prediction model of bearing 

vibration performance based on self-service least square 

linear fitting to improve the accuracy of bearing perfor-

mance analysis. Ye L, SUN F, Liu, Z. [10, 11, 12]. Realiz-

ing the limitations of existing analysis models in bearing 

performance analysis, the maximum entropy principle is 

utilized to model the uncertainty of vibration signals, ena-

bling more sensitive capture of the probability distribution 

changes in the early stage of degradation. Meanwhile, 

machine learning methods are widely applied to mine the 

nonlinear degradation patterns and stage characteristics in 

high-dimensional vibration data. These studies aim to go 

beyond the steady-state assumption and construct perfor-

mance evaluation models that can dynamically adapt to 

different degradation stages through intelligent analysis of 

the entire life cycle data of bearings, thus providing a new 

path for solving the problems of early warning and precise 

prediction. Xia X. T. [13] Used the vibration signals of 

rolling bearings to extract indicators to measure bearing 

degradation performance, and built data-driven reliability 

and life prediction models respectively. Serhat [14] uses 

statistical analysis and spectrum analysis techniques to 

detect motor vibration signals, takes the standard deviation 

value of vibration signals as the statistical parameter of 

bearing performance degradation, and establishes the 

standard deviation index model of motor bearing perfor-

mance degradation. The basis of these methods is to as-

sume that the degradation process is stable. However, 

bearing failure usually goes through different stages such 

as normal operation, early degradation, accelerated degra-

dation, and critical failure, and the evolution patterns of 

vibration characteristics in each stage are completely dif-

ferent from the failure physical mechanism. The most 

crucial issue is that it is impossible to effectively capture 

the turning point from the healthy period to the degradation 

period, which leads to the inability to be flexibly applied in 

failure prediction in engineering. 

Weibull distribution based on statistical principle 

is widely used in the study of bearing life and performance. 

Ma [15] proposed a bearing performance degradation 

evaluation method based on Weibull distribution and deep 

belief networks to effectively prevent catastrophic failures 

and reduce maintenance costs. Based on the vibration 

performance data of rolling bearings. Cheng [16] estab-
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lished the bearing performance degradation trend parame-

ter model based on Weibull distribution. The research re-

sults show that the vibration performance degradation 

parameters can accurately describe the bearing degradation 

trend. Xu [17] proposed a particle swarm optimization 

method based on chaotic simulated annealing to estimate 

Weibull parameters, and experimental analysis shows that 

this method is feasible and effective. Zaretsky [18] calcu-

lated the value of shape parameter β of the two-parameter 

Weibull distribution model with the help of a large number 

of bearing fatigue life test data accumulated by SKF for a 

long time. Shimizu S. [19] carried out fatigue life tests on 

90 samples, verified the test results by using lognormal 

distribution, two-parameter Weibull distribution and 

three-parameter Weibull distribution respectively, and gave 

the slope consistent with the test results. Poplawski [20] 

selected Weibull distribution model, Lundberg-Palmgren 

model, Ioannides-Harris model and Zaretsky model to 

analyze the fatigue life of cylindrical roller bearings, and 

obtained the difference information of different calculation 

models. However, the existing Weibull distribution re-

search focuses on the bearing life calculation and fault 

diagnosis, and does not involve the quantitative analysis of 

bearing performance degradation. 

Weibull distribution based on statistical principle 

is widely used in the study of bearing life and performance. 

Zaretsky [18] calculated the value of shape parameter β of 

the two-parameter Weibull distribution model with the help 

of a large number of bearing fatigue life test data accumu-

lated by SKF for a long time. In pursuit of higher fitting 

accuracy, scholars have been constantly optimizing distri-

bution models and algorithms. Shimizu S. [19] carried out 

fatigue life tests on 90 samples, verified the test results by 

using lognormal distribution, two-parameter Weibull dis-

tribution and three-parameter Weibull distribution respec-

tively, and gave the slope consistent with the test results. 

Poplawski [20] selected Weibull distribution model, 

Lundberg-Palmgren model, Ioannides-Harris model and 

Zaretsky model to analyze the fatigue life of cylindrical 

roller bearings, and obtained the difference information of 

different calculation models. Xu [17] proposed a particle 

swarm optimization method based on chaotic simulated 

annealing to estimate Weibull parameters, and experi-

mental analysis shows that this method is feasible and 

effective. These works jointly solidified the statistical 

foundation of the Weibull distribution in bearing reliability 

engineering, but their conclusions are essentially 

group-oriented and difficult to reveal the specific degrada-

tion process of individual bearings in actual operation. 

To achieve the micro-dynamic of performance 

degradation during the service process of individual bear-

ings. Cheng [16] established the bearing performance deg-

radation trend parameter model based on Weibull distribu-

tion. The research results show that the vibration perfor-

mance degradation parameters can accurately describe the 

bearing degradation trend. Ma [15] proposed a bearing 

performance degradation evaluation method based on 

Weibull distribution and deep belief networks to effective-

ly prevent catastrophic failures and reduce maintenance 

costs. Based on the vibration performance data of rolling 

bearings. However, these studies have significant limita-

tions in achieving the depth of "quantitative analysis". 

They usually take a global characteristic of the vibration 

signal or a parameter from the model output as the degra-

dation indicator, ignoring the nonlinear evolution stage of 

the bearing performance degradation or the transformation 

of the failure mechanism, and thus lack practical applica-

tion value. 

In order to achieve the quantitative analysis of 

bearing performance degradation and predict bearing fail-

ure, the best method of Weibull parameter estimation is 

first selected, and then the parameter variation law corre-

sponding to different bearing operating states is analyzed 

as a whole. Finally, the vibration time series is divided into 

vibration time sub-series with the same sample size, and 

the parameters of each sub-series are calculated. The re-

sults show that the bearing vibration time series accords 

with Weibull distribution, and the degradation degree of 

bearing performance can be quantitatively analyzed by the 

change of parameters, and then the bearing fault can be 

predicted. The research results provide a new idea for 

bearing performance analysis. 

2. Test 

With the performance evolution of rolling bearing 

as the research purpose, the vibration performance param-

eters of rolling bearing are taken as the monitoring object, 

and the whole cycle life endurance test is carried out. This 

process can not only observe the bearing performance 

evolution from normal operation to failure process, but 

also obtain sufficient performance data to provide a basis 

for subsequent analysis. 

2.1. Test equipment 

The equipment used in this test is SYJ-LG-NJ 

wheel bearing durability testing machine, which is mainly 

composed of test bench, load device, speed control device, 

data acquisition system, control system and other parts. 

The test bench is a structural frame that supports and holds 

bearings and applies loads. The load device and speed 

control device are used to apply load and speed to the 

bearing to simulate the actual working condition. The data 

acquisition system is used to record and monitor various 

parameters and data in the test process, such as load, speed, 

temperature, etc. The control system is used to control and 

monitor the various parameters and devices in the test 

process to ensure the stability and accuracy of the test. 

The axial cylinder and the radial cylinder simul-

taneously apply a suitable load to the bearing, while the 

motor drives the bearing to rotate through the spindle. The 

schematic diagram of the equipment is shown in Fig. 1, the 
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Fig. 1 Schematic diagram of the equipment: 1 – axial cylin-

der, 2 – radial cylinder, 3 – test bearing, 4 – main axis,  

5 – motor 
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Fig. 2 Picture of the physical equipment 

Table 1 

Parameters of testing machine 

Project Parameter 

Maximum axial load, kN ±30 

Axial load accuracy ±1% of the set value 

Axial load loading or unloading 

speed, kN/0.8s 
15 

Axial displacement sensor 

range, mm 
100 

Maximum radial load, kN ±30 

Radial load accuracy ±1% of the set value 

Radial load loading or unloading 

speed, kN/0.8s 
15 

Radial displacement sensor 

range, mm 
100 

Range of speed, rpm 
50-2200 positive and 

negative rotation 

Speed accuracy accelerate and 

decelerate, rpm 

±1% of the set value 

400 

 

physical diagram of the equipment is shown in Fig. 2, and 

the parameters of the testing machine are shown in Table 1. 

2.2. Test subject 

The durability test subject is an automobile wheel 

hub bearing, bearing parameters are shown in Table 2. 

2.3. Test condition 

In order to simulate the actual application condi-

tion of the bearing, the design test is a constant speed and 

constant load accelerated life test. Radial load, axial load 

and speed are 7.8 kN, 4.4 kN and 350 rpm respectively.  

After the end of the test, different degrees of 

damage occurred on the raceway of the bearing inner ring, 

as shown in Fig. 3. 

Table 2 

Bearing parameters 

Projects Parameters 

Inside diameter 34 mm 

Outside diameter 83 mm 

Material GCr15 

Rolling diameter 12.7 mm 

Pitch diameter 57 mm 

Contact angle 35o 

 

Fig. 3 Bearing damage condition 

2.4. Test data 

The vibration time series of bearings throughout 

their life cycle is shown in Fig. 4. The test lasted 184 hours 

and 42 minutes. During the test, one sample (vibration 

acceleration data) was extracted every five seconds, and a 

total of 132,998 samples were extracted. The initial sample 

is 0.049 mm/s2, and the 129130th sample suddenly in-

creases to 0.076 mm/s2, which is larger than the measured 

value at any time before. This point is called the accelera-

tion mutation point, and it is considered that the bearing 

begins to fail at this time. Since then, the vibration acceler-

ation has increased rapidly, there is obvious noise during 

the test, the bearing failure degree is deepened, and the 

time experienced before the bearing failure is 179 hours 

and 20 minutes. 

3. Weibull Parameter Estimation 

The probability density function f(v) of the 

three-parameter Weibull distribution and the cumulative 

density function F(v) can be expressed as: 
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Fig. 4 Vibration time series of bearing throughout its life cycle 
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where, k is the shape parameter, c is the scale parameter,  
is a positional parameter. The shape parameter determines 

the basic shape of the function curve, the scale parameter 

determines the horizontal coordinate range of the function 

curve, and the position parameter determines the starting 

position in the function coordinate system. It can be seen 

that the position parameters have nothing to do with the 

trend of bearing performance degradation, so only the 

shape parameters and scale parameters of the Weibull dis-

tribution of the data are analyzed. When the analysis sam-

ple changes, the height and width of the Weibull distribu-

tion function curve will change, and then the shape param-

eters and scale parameters will change. Taking vibration 

time series as an example, with the deepening of bearing 

performance degradation, vibration acceleration gradually 

increases, at this time the curve width will increase, the 

height will increase, and the shape parameters and scale 

parameters will change accordingly. Weibull distribution is 

sensitive to data changes and can be used for bearing fault 

prediction.  

3.1. Parameter calculation methods 

For the two-parameter Weibull distribution [11], 

the commonly used parameter estimation methods under 

the classical probability statistical theory include maxi-

mum likelihood method (MMLM), linear regression 

method (LR), moment method (MM), etc. 

3.1.1. Linear regression method 

Because the calculation process is simple, linear 

regression method is always the best method to solve 

Weibull parameters of small samples, and it can also be 

used to judge whether the test samples conform to Weibull 

distribution. 

Take the logarithm of both sides of the cumulative 

probability density function twice, then the Eq. (2) be-

comes: 

1

1
lg lg k lg v k lg c

F( v )
= −

−
. (3) 

Let x = lg v, y = lg lg 1/(1−F(v)), then the Eq. (3) 

becomes: 

y kx k lg c= − . (4) 

Based on the principle of linear regression method, 

the fitting of vibration time series is shown in Fig. 6. The 

green points are the transverse and vertical coordinates 

corresponding to the conversion of the vibration accelera-

tion during the normal operation of the bearing. The green 

line segment is obtained by fitting the actual vibration 

acceleration with linear regression method. The blue points 

are the transverse and vertical coordinates corresponding to 

the conversion of vibration acceleration in case of bearing 

failure. The blue line segment is obtained by fitting the 

actual vibration acceleration with linear regression method. 

If the determination coefficient is greater than 

0.80, the fitting effect is good [17]. The determination 

coefficients of each stage are shown in Table 2. Since the 

determination coefficients are all above 0.8, the time series 

of vibration acceleration conforms to Weibull distribution. 

Table 3 

Determination coefficient of each stage 

Project A1 A2 

R2 0.9343 0.8315 
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Fig. 5 Vibration time series fitting 

3.1.2. Maximum likelihood method 

The maximum likelihood estimation method 

holds that the occurrence of sample data is related to the 

parameters of the population distribution. When our esti-

mates of the parameters change, the corresponding sample 

data also changes. Therefore, we determine the most rea-

sonable parameter estimation results by maximizing the 

probability that the sample data will occur. In other words, 

we find the value of the parameter that makes the observed 

sample data appear with the greatest probability as an 

estimate of the population parameter. 

Let the distribution density function of the popu-

lation be f(v, k, c), where k, c are the parameters to be es-

timated, V1, V2... Vn is the sample, the probability of v1, 

v2... vn is: 

( )
1

n

v

i

f v,k ,c dt
=

 . (5) 

Determine the parameter value to make it maxi-

mum, then the likelihood function of the parameter is: 

( ) ( )
1

n

i

L k,c f v,k ,c
=

= . (6) 

Replace the probability density function with the 

likelihood function, in order to calculate the logarithm of 

both sides of the equation: 
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Differentiate the two parameters separately: 

( )

( ) ( )

1

1

n

i

k
n

i

ln L / k n / k ln

c

v

lv / c v /

/ c

n

=

=

  = + −

−



 , (8) 

( ) ( )
1

1
n

i

k
/ln L / c n / c n k / c k v c/ c

=

  = − − − +  . (9) 

Let Eqs. (11) and (12) be equal to 0 to solve the 

shape parameters and scale parameters: 

1 1 1

1 1
n n n

i i i

k k/ k v lnv / v / n lnv
= = =

= −   , (10) 

1

1

/ k

k
n

i

c v / n
=

 
=  
 
 . (11) 

3.1.3. Method of moments 

The most basic idea of the method of moments is 

to use the moments of a sample to estimate the moments of 

a population. Let the distribution density function of the 

population V be f(v, k, c), where k, c are the parameters to 

be estimated, V1, V2... Vn is the subsample, then the first 

n moments of the population V are expressed as: 

k

ku ET= . (12) 

The j-order moment of the subsample is: 

1

1
n

j
ij

i

A / n T
=

=  . (13) 

Let: 

1

1
n

k j
ik j

i

u ET A / n T
=

= = =  . (14) 

That is, n equations with n unknown parameters 

are established, and the estimation results of parameters 

can be obtained based on these equations. 

For a two-parameter Weibull distribution, the first 

two moments are expressed as: 

1

1 1 1
n

i

i

EX c ( / k ) / n X
=

= + =  , (15) 

2 2 2

1

1 2 1
n

i

i

EX c ( / k ) / n X
=

= + =  , (16) 

1

0

a( a ) x exp( x )dx
 −= − . (17) 

The shape parameters and scale parameters can be 

obtained by Eqs. (15), (16), and (17). 

3.2. Accuracy test method 

The root mean square error, Chi-square test and 

determination coefficient are used to evaluate the Weibull 

parameter estimation method. 

3.2.1. Root mean square error 

The RMSE represents the deviation between the 

predicted value and the experimental value. The deviation 

between the predicted and experimental values is inversely 

proportional to the RMSE values. 

( )
1 2

2

1

1

/
n

i i
i

RMSE / n y x
=

 
= − 
 

 . (18) 

3.2.2. Chi-square test (2) 

Chi-square test is the degree of deviation between 

the actual observed value and the theoretical inferred value 

of the statistical sample. The degree of deviation between 

the actual observed value and the theoretical inferred value 

determines the size of the chi-square value. The larger the 

chi-square value is, the greater the degree of deviation 

between the two. On the contrary, the deviation between 

the two is smaller; If the theoretical value is exactly equal 

to the observed value, the chi-square value is 0. 

( )
22

1

n

i i i
i

y x / x
=

= − . (19) 

3.2.3. Determination coefficient (R2) 

The coefficient of determination determines the 

linear relationship between the calculated value and the 

measured data. A higher R2 represents a better fit using a 

theoretical or empirical function, and the maximum it can 

get is 1. 

( ) ( ) ( )
2 2 2

2

1 1 1

R
n n n

i i i i i i
i i i

y y y x / y y
= = =

= − − − −   , (20) 

where, yi is the actual data (measured data, observed data), 

xi is the data predicted by Weibull distribution, y̅i is the 

average yi, n is the number of samples. 

3.3. Parameter calculation method analysis results 

According to the vibration acceleration of bearing 

during normal operation and failure, the vibration fre-

quency histogram is drawn, and the probability density 

function of different parameter calculation methods is 

obtained, as shown in Fig. 6 and Fig. 7. The accuracy of 

different parameter calculation methods is shown in Ta-

ble 5 and Table 6. 

As shown in Table. 4 and Table. 5, the Weibull 

distribution goodness of fit of vibration time series is high 

when bearings are running normally, while the calculated 

value of vibration acceleration is significantly different 

from the actual value when bearings are faulty. This means 
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Fig. 6 Bearing vibration frequency histogram and probabil-

ity density function graph of different calculation 

methods during normal operation 

Table 4 

Comparison of calculation accuracy of bearing  

parameters during normal operation 

 MM LR MMLM 

k 17.2082 18.0231 15.1811 

c 0.0437 0.0439 0.0438 

RMSE 0.0170 0.0193 0.0145 

2 0.0219 0.0394 0.0203 

R2 0.9401 0.9343 0.9420 

Table 5 

Comparison of calculation accuracy of bearing  

parameters during fails 

 MM LR MMLM 

k 7.6832 7.1746 7.0215 

c 0.0529 0.0527 0.0526 

RMSE 0.0420 0.0443 0.0305 

2 0.0458 0.0367 0.0246 

R2 0.8201 0.8315 0.9110 

 

that the vibration time series is more consistent with the 

Weibull distribution when the bearing is running normally. 

The root mean square error, Chi-square test and determina-

tion coefficient are used to evaluate the vibration time 

series of bearings under normal operation and failure. The 

results show that the parameters calculated by the maxi-

mum likelihood method are closer to the real situation. 

4. Weibull Parameter Analysis 

132,998 data were divided into 20 groups. The 

first 19 groups each contain 6650 vibration data samples, 

and the 20th group contains the remaining 6648 data. The 

shape parameters and scale parameters of the 20 groups of 

data were calculated respectively. The results are shown in 

Table 6: The shape parameters and scale parameters of the 

first 19 sub-sequences fluctuated within a certain range 

without significant regularity, indicating that the bearing 

state in the first 19 sub-sequences did not change signifi-

cantly. The bearing state in the 20th subsequence has 

changed significantly. 
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Fig. 7 Bearing failure vibration frequency histogram and 

probability density function graph of different cal-

culation methods 

Table 6 

Shape parameter and scale parameter  

of different subsequences 

Serial 

number 
k c 

Serial 

number 
k c 

1 21.115 0 0.048 5 11 23.792 2 0.048 2 

2 22.156 8 0.050 2 12 25.167 0 0.047 9 

3 26.646 8 0.048 3 13 27.571 1 0.048 2 

4 23.958 9 0.048 6 14 28.326 5 0.048 0 

5 25.211 0 0.049 3 15 28.304 1 0.048 1 

6 25.260 0 0.049 2 16 27.126 2 0.048 6 

7 25.452 7 0.049 0 17 29.410 9 0.047 7 

8 25.428 9 0.048 6 18 26.068 4 0.048 6 

9 25.779 8 0.048 6 19 25.021 8 0.048 8 

10 26.537 9 0.048 9 20 7.2887 0 0.057 3 

 

According to Eqs. (1), (2) and (4), the probability 

density function image, cumulative distribution function 

image and linear equation image of each sub-sequence are 

plotted respectively. The results are shown in Fig. 4: The 

distribution of the probability density function and cumu-

lative distribution function corresponding to the first 19 

sub-sequences is relatively concentrated, and there is no 

significant change. The horizontal span of the correspond-

ing function of the 20th subsequence increases significant-

ly, and the peak value shifts to the right, indicating that the 

bearing vibration acceleration in the 20th subsequence 

increases, which is consistent with the vibration time series 

in the test. The slope and intercept of the first 19 subse-

quences did not change significantly, but the slope of the 

20th subsequence significantly decreased and the intercept 

significantly increased. 

The results (Fig. 8) show that the shape parame-

ters and scale parameters of Weibull distribution can de-

scribe the bearing state evolution process, and the statisti-

cal rules of different interval data can characterize the 

inherent properties of bearing state evolution. 

5. Fault Prediction Analysis 

The above research uses the complete life cycle  
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Fig. 8 Weibull distribution functions of different subsequences: a – probability, b – cumulative distribution, c – linear 

equation 

data of the whole fatigue life test, including the final fault 

data. In actual engineering applications, bearing faults need 

to be predicted in advance. In order to enhance the engi-

neering application value of this research, data within a 

period before the failure is selected for further analysis. 

5.1. Data grouping 

Assuming that the total amount of recorded data 

(bearing vibration value) is N, the time series V of bearing 

vibration can be expressed as: 

( ) ( ) ( )( )1 , ..., , ..., ; 1, 2, ..., V v v s v N s N = = . (21) 

In Eq. (21), v is the vibration value recorded in the test, s is 

the data serial number, and the total amount of data is N. 

Each subsequence contains 1000 vibration data. 

According to the time sequence relationship of the overall 

sample, the vibration time series is divided into I groups, 

and the serial number of each sub-sequence is Vi. The 

sub-sequence is expressed as: 

( ) ( )( ), ..., 999 ; 9  , 1 ..., 99iV v Nv i i i= −+ = . (22) 

5.2. Analysis results 

The whole life cycle of bearing contains 132,998 

vibration acceleration values, and the 129,130 acceleration 

is abrupt, so only Weibull parameters of the pre-128130 

subsequence are analyzed. The shape parameters and scale 

parameters are drawn into line charts respectively, as 

shown in the figure and figure. 

As can be seen from the line chart, with the pas-

sage of time, the change trend of shape parameters and 

scale parameters is the same, and the two parameters con-

tinue to fluctuate within a certain range during normal 

operation of the bearing, until a short period of time before 

the fault begins to change dramatically.  The time expe-

rienced before the bearing failure was 179 hours and 20 

minutes, the shape parameter of the 127595 subsequences 

began to plummet, and the scale parameter began to in-

crease sharply. The total time before the parameter change 

was 178 hours and 36 minutes, and the bearing failure was 

predicted 44 minutes in advance. 

As the service time of the bearings accumulates, 

their performance shows a clear degradation trend, which 

can be quantitatively characterized by the evolution of the 

statistical characteristics of the vibration acceleration sig-

nals. By establishing a time-varying  Weibull distribution 
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Fig. 10 Scale parameter line chart 

model based on the vibration data throughout the entire life 

cycle, it was found that the shape parameter increases 

monotonically with the operating time, while the scale 

parameter decreases accordingly. This statistical evolution 

process is highly consistent with the observable physical 

degradation mechanism inside the bearings. From a mac-

roscopic perspective, the most obvious phenomenon is the 

significant increase in the noise pressure level of operation 

and the roughening of sound quality. The fundamental 

microscopic physical mechanism lies in the emergence and 

expansion of fatigue damage on the contact surface of the 

raceways. Specifically, under the action of cyclic contact 

stress, microscopic cracks are generated sub-surface of the 

material and gradually extend to the surface to form pitting; 

as the operation continues, the size of individual pitting 

pits and their distribution area on the raceway will system-

atically expand. The state of the bearing raceways after the 

experiment is shown in Fig. 3. Indeed, large areas of con-

centrated peeling zones have appeared on the raceway 

surface, verifying the correctness of the inference. 

6. Conclusion and Prospect 

1. When the vibration time series is used as the 

analysis sample, the accuracy of Weibull parameters ob-

tained by maximum likelihood method is the highest and 

the theoretical values are closer to the measured values. 
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2. Weibull parameters can be used as characteris-

tic values to effectively characterize the evolution of bear-

ing performance. 

3. Weibull parameter analysis based on vibration 

time series can predict bearing failure 44 minutes in ad-

vance, but this situation will only occur when the number 

of subsequences containing samples is 1000. When the 

number of subsequences containing samples changes, the 

fault prediction time will also change. 

4. Firstly, the method proposed in this study is 

centered on capturing the universal laws of how the statis-

tical distribution characteristics of vibration signals evolve 

with physical degradation. The Weibull distribution, as a 

powerful statistical tool for describing material fatigue and 

failure times, and vibration signals as direct reflections of 

the dynamic state of bearings, when combined, are theo-

retically applicable to various rolling bearings (such as ball 

bearings, cylindrical roller bearings, and conical roller 

bearings). The differences among different bearing types 

mainly lie in their characteristic frequencies and dynamic 

responses, but this can be addressed by adjusting the focus 

frequency band of spectral analysis and establishing a 

type-specific mapping relationship between it and the 

Weibull parameters. This study verified the feasibility of 

the method using deep groove ball bearings as an example. 

Additionally, according to changes in the research objec-

tives, the collected signals can include torque signals, 

temperature signals, acoustic emission signals, etc. 

5. Regarding the extension to different operating 

environments (such as variable loads, variable speeds, and 

different lubrication conditions), we acknowledge that this 

is a key challenge in engineering applications and the nec-

essary path for this method to become practical. This study 

verified the effectiveness of the proposed method under 

constant operating conditions, but the operating conditions 

in actual applications are variable. The core advantage of 

this method lies in its focus on the temporal evolution laws 

of the statistical distribution characteristics of signals, 

rather than absolute characteristic values under specific 

operating conditions. Therefore, by introducing mature 

preprocessing techniques, this method can naturally be 

extended to variable operating scenarios. 
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X. Lu, C. Yang, D. Bu, Y. Li  

FAULT PREDICTION OF AUTOMOTIVE BEARINGS 

BASED ON WEIBULL DISTRIBUTION 

S u m m a r y 

The existing prediction of automotive bearing 

faults has problems such as short prediction time and large 

errors. This paper takes Weibull distribution as the theo-

retical basis. Firstly, Weibull parameters of under different 

operating states are calculated, and the optimal parameter 

estimation method is determined by goodness of fit analy-

sis. Secondly, each sub-series are calculated to determine 

the feasibility of Weibull parameters to characterize the 

evolution of performance. Finally, the vibration time sub-

series in the stable interval of the test is analyzed, and the 

bearing fault prediction is realized by parameter change. 

The results show that the maximum likelihood method has 

the highest accuracy. There is a high goodness of fit be-

tween Weibull probability density function and the actual 

vibration time series when the bearing is running normally. 

Bearing performance evolution is consistent with Weibull 

parameter change, and bearing performance evolution can 

be analyzed by Weibull parameter change. In this way, 

bearing faults can be detected 44 minutes in advance.  

Keywords: vibration time series, Weibull distribution, 

two-parameter Weibull, failure prediction. 

Received February 7, 2025 

Accepted December 15, 2025 

 

 

This article is an Open Access article distributed under the terms and conditions of the Creative Commons 

Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).  

 

https://doi.org/10.1080/10402000802011786.
http://creativecommons.org/licenses/by/4.0/

