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1. Introduction

In mechanical equipment, bearings not only play
the role of support and positioning, but also have many
important functions such as reducing friction and wear,
transferring load, realizing motion transmission, damping
and buffering [1, 2]. Bearing performance not only directly
affects the performance and life of the equipment, but also
plays a key role in the entire production process and prod-
uct quality. However, with the development of technical
equipment requirements, the importance of service per-
formance indicators of rolling bearings has exceeded the
fatigue life. Accurately sensing and predicting the perfor-
mance degradation trend of bearings can effectively pre-
vent fault escalation, and is of great significance for re-
ducing the maintenance cost of bearings [3, 4].

The degradation process of bearings is a gradual
evolution process. When the operating state of bearings
changes, its performance parameters will also show corre-
sponding changes [5, 6]. Common performance parameters
of rolling bearings include vibration acceleration value,
friction torque, temperature and runout during bearing
operation, etc. Compared with friction torque, temperature
and runout, vibration acceleration not only has higher
accuracy, sensitivity, real-time and response speed, but also
can quickly adapt to complex working environments. A
large number of state evolution data obtained from vibra-
tion monitoring also provide sufficient data sources for
bearing performance evolution and fault prediction based
on vibration. Gustafsson [7, 8] first proposed the method of
analyzing bearing vibration signals collected by accelera-
tion sensors in 1962, and vibration monitoring was subse-
quently widely used in the monitoring of operating condi-
tions of rotary machinery. Xia X T [8] proposed that the
vibration performance of rolling bearings directly affects
the running condition of the working machine. This study
correctly pointed out that there is a significant correlation
between the vibration performance of bearings and the
overall performance. However, its analysis mainly re-
mained at the level of phenomenon description and corre-
lation, lacking quantitative modeling and analysis.

However, in reality, the performance degradation
of bearings is not a stable process; it involves multiple
stages such as normal service, early deterioration, and
accelerated deterioration. The vibration feature evolution
patterns vary across these stages, especially the transition
point from the healthy stage to the deterioration stage is
difficult to be accurately captured by traditional

steady-state models. Therefore, how to achieve sensitive
identification of the deterioration stages, particularly the
early signs, has become the key to improving prediction
accuracy and practical engineering application. Shao L. D
[9] proposed a series dynamic prediction model of bearing
vibration performance based on self-service least square
linear fitting to improve the accuracy of bearing perfor-
mance analysis. Ye L, SUN F, Liu, Z. [10, 11, 12]. Realiz-
ing the limitations of existing analysis models in bearing
performance analysis, the maximum entropy principle is
utilized to model the uncertainty of vibration signals, ena-
bling more sensitive capture of the probability distribution
changes in the early stage of degradation. Meanwhile,
machine learning methods are widely applied to mine the
nonlinear degradation patterns and stage characteristics in
high-dimensional vibration data. These studies aim to go
beyond the steady-state assumption and construct perfor-
mance evaluation models that can dynamically adapt to
different degradation stages through intelligent analysis of
the entire life cycle data of bearings, thus providing a new
path for solving the problems of early warning and precise
prediction. Xia X. T. [13] Used the vibration signals of
rolling bearings to extract indicators to measure bearing
degradation performance, and built data-driven reliability
and life prediction models respectively. Serhat [14] uses
statistical analysis and spectrum analysis techniques to
detect motor vibration signals, takes the standard deviation
value of vibration signals as the statistical parameter of
bearing performance degradation, and establishes the
standard deviation index model of motor bearing perfor-
mance degradation. The basis of these methods is to as-
sume that the degradation process is stable. However,
bearing failure usually goes through different stages such
as normal operation, early degradation, accelerated degra-
dation, and critical failure, and the evolution patterns of
vibration characteristics in each stage are completely dif-
ferent from the failure physical mechanism. The most
crucial issue is that it is impossible to effectively capture
the turning point from the healthy period to the degradation
period, which leads to the inability to be flexibly applied in
failure prediction in engineering.

Weibull distribution based on statistical principle
is widely used in the study of bearing life and performance.
Ma [15] proposed a bearing performance degradation
evaluation method based on Weibull distribution and deep
belief networks to effectively prevent catastrophic failures
and reduce maintenance costs. Based on the vibration
performance data of rolling bearings. Cheng [16] estab-



lished the bearing performance degradation trend parame-
ter model based on Weibull distribution. The research re-
sults show that the vibration performance degradation
parameters can accurately describe the bearing degradation
trend. Xu [17] proposed a particle swarm optimization
method based on chaotic simulated annealing to estimate
Weibull parameters, and experimental analysis shows that
this method is feasible and effective. Zaretsky [18] calcu-
lated the value of shape parameter § of the two-parameter
Weibull distribution model with the help of a large number
of bearing fatigue life test data accumulated by SKF for a
long time. Shimizu S. [19] carried out fatigue life tests on
90 samples, verified the test results by using lognormal
distribution, two-parameter Weibull distribution and
three-parameter Weibull distribution respectively, and gave
the slope consistent with the test results. Poplawski [20]
selected Weibull distribution model, Lundberg-Palmgren
model, Toannides-Harris model and Zaretsky model to
analyze the fatigue life of cylindrical roller bearings, and
obtained the difference information of different calculation
models. However, the existing Weibull distribution re-
search focuses on the bearing life calculation and fault
diagnosis, and does not involve the quantitative analysis of
bearing performance degradation.

Weibull distribution based on statistical principle
is widely used in the study of bearing life and performance.
Zaretsky [18] calculated the value of shape parameter § of
the two-parameter Weibull distribution model with the help
of a large number of bearing fatigue life test data accumu-
lated by SKF for a long time. In pursuit of higher fitting
accuracy, scholars have been constantly optimizing distri-
bution models and algorithms. Shimizu S. [19] carried out
fatigue life tests on 90 samples, verified the test results by
using lognormal distribution, two-parameter Weibull dis-
tribution and three-parameter Weibull distribution respec-
tively, and gave the slope consistent with the test results.
Poplawski [20] selected Weibull distribution model,
Lundberg-Palmgren model, loannides-Harris model and
Zaretsky model to analyze the fatigue life of cylindrical
roller bearings, and obtained the difference information of
different calculation models. Xu [17] proposed a particle
swarm optimization method based on chaotic simulated
annealing to estimate Weibull parameters, and experi-
mental analysis shows that this method is feasible and
effective. These works jointly solidified the statistical
foundation of the Weibull distribution in bearing reliability
engineering, but their conclusions are essentially
group-oriented and difficult to reveal the specific degrada-
tion process of individual bearings in actual operation.

To achieve the micro-dynamic of performance
degradation during the service process of individual bear-
ings. Cheng [16] established the bearing performance deg-
radation trend parameter model based on Weibull distribu-
tion. The research results show that the vibration perfor-
mance degradation parameters can accurately describe the
bearing degradation trend. Ma [15] proposed a bearing
performance degradation evaluation method based on
Weibull distribution and deep belief networks to effective-
ly prevent catastrophic failures and reduce maintenance
costs. Based on the vibration performance data of rolling
bearings. However, these studies have significant limita-
tions in achieving the depth of "quantitative analysis".
They usually take a global characteristic of the vibration
signal or a parameter from the model output as the degra-
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dation indicator, ignoring the nonlinear evolution stage of
the bearing performance degradation or the transformation
of the failure mechanism, and thus lack practical applica-
tion value.

In order to achieve the quantitative analysis of
bearing performance degradation and predict bearing fail-
ure, the best method of Weibull parameter estimation is
first selected, and then the parameter variation law corre-
sponding to different bearing operating states is analyzed
as a whole. Finally, the vibration time series is divided into
vibration time sub-series with the same sample size, and
the parameters of each sub-series are calculated. The re-
sults show that the bearing vibration time series accords
with Weibull distribution, and the degradation degree of
bearing performance can be quantitatively analyzed by the
change of parameters, and then the bearing fault can be
predicted. The research results provide a new idea for
bearing performance analysis.

2. Test

With the performance evolution of rolling bearing
as the research purpose, the vibration performance param-
eters of rolling bearing are taken as the monitoring object,
and the whole cycle life endurance test is carried out. This
process can not only observe the bearing performance
evolution from normal operation to failure process, but
also obtain sufficient performance data to provide a basis
for subsequent analysis.

2.1. Test equipment

The equipment used in this test is SYJ-LG-NJ
wheel bearing durability testing machine, which is mainly
composed of test bench, load device, speed control device,
data acquisition system, control system and other parts.
The test bench is a structural frame that supports and holds
bearings and applies loads. The load device and speed
control device are used to apply load and speed to the
bearing to simulate the actual working condition. The data
acquisition system is used to record and monitor various
parameters and data in the test process, such as load, speed,
temperature, etc. The control system is used to control and
monitor the various parameters and devices in the test
process to ensure the stability and accuracy of the test.

The axial cylinder and the radial cylinder simul-
taneously apply a suitable load to the bearing, while the
motor drives the bearing to rotate through the spindle. The
schematic diagram of the equipment is shown in Fig. 1, the
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Fig. 1 Schematic diagram of the equipment: / — axial cylin-
der, 2 — radial cylinder, 3 — test bearing, 4 — main axis,
5 — motor




Fig. 2 Picture of the physical equipment

Table 1
Parameters of testing machine
Project Parameter
Maximum axial load, kN +30

Axial load accuracy +1% of the set value

Axial load loading or unloading

speed, kN/0.8s 15
Axial displacement sensor 100
range, mm
Maximum radial load, kN +30

Radial load accuracy +1% of the set value

Radial load loading or unloading

speed, kN/0.8s 15

Radial displacement sensor
range, mm

100

50-2200 positive and

R f . .
ange of speed, rpm negative rotation

Speed accuracy accelerate and +1% of the set value

decelerate, rpm 400

physical diagram of the equipment is shown in Fig. 2, and
the parameters of the testing machine are shown in Table 1.

2.2. Test subject

The durability test subject is an automobile wheel
hub bearing, bearing parameters are shown in Table 2.

2.3. Test condition

In order to simulate the actual application condi-
tion of the bearing, the design test is a constant speed and
constant load accelerated life test. Radial load, axial load
and speed are 7.8 kN, 4.4 kN and 350 rpm respectively.

o
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0097 Maximum acceleration

008t 7.uing normal operation

initial failure

After the end of the test, different degrees of
damage occurred on the raceway of the bearing inner ring,
as shown in Fig. 3.

Table 2
Bearing parameters
Projects Parameters
Inside diameter 34 mm
Outside diameter 83 mm
Material GCrl5
Rolling diameter 12.7 mm
Pitch diameter 57 mm
Contact angle 35°

Fig. 3 Bearing damage condition

2.4. Test data

The vibration time series of bearings throughout
their life cycle is shown in Fig. 4. The test lasted 184 hours
and 42 minutes. During the test, one sample (vibration
acceleration data) was extracted every five seconds, and a
total of 132,998 samples were extracted. The initial sample
is 0.049 mm/s?, and the 129130th sample suddenly in-
creases to 0.076 mm/s?, which is larger than the measured
value at any time before. This point is called the accelera-
tion mutation point, and it is considered that the bearing
begins to fail at this time. Since then, the vibration acceler-
ation has increased rapidly, there is obvious noise during
the test, the bearing failure degree is deepened, and the
time experienced before the bearing failure is 179 hours
and 20 minutes.

3. Weibull Parameter Estimation

The probability density function f{v) of the
three-parameter Weibull distribution and the cumulative
density function F(v) can be expressed as:

major failure

vibration acceleration/(mmny/s?)

0.07

0.06

0.05

0.04

0.03 0 ‘2 4‘1 g é 1‘0 1‘2 1‘4=
Time series x10*

Fig. 4 Vibration time series of bearing throughout its life cycle
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f(v)%(vﬂk_l exp{—(vzyﬂ, D)

F(v)zl—exp{—(vzyjk} @)

where, k is the shape parameter, c is the scale parameter, y
is a positional parameter. The shape parameter determines
the basic shape of the function curve, the scale parameter
determines the horizontal coordinate range of the function
curve, and the position parameter determines the starting
position in the function coordinate system. It can be seen
that the position parameters have nothing to do with the
trend of bearing performance degradation, so only the
shape parameters and scale parameters of the Weibull dis-
tribution of the data are analyzed. When the analysis sam-
ple changes, the height and width of the Weibull distribu-
tion function curve will change, and then the shape param-
eters and scale parameters will change. Taking vibration
time series as an example, with the deepening of bearing
performance degradation, vibration acceleration gradually
increases, at this time the curve width will increase, the
height will increase, and the shape parameters and scale
parameters will change accordingly. Weibull distribution is
sensitive to data changes and can be used for bearing fault
prediction.

3.1. Parameter calculation methods

For the two-parameter Weibull distribution [11],
the commonly used parameter estimation methods under
the classical probability statistical theory include maxi-
mum likelihood method (MMLM), linear regression
method (LR), moment method (MM)), etc.

3.1.1. Linear regression method

Because the calculation process is simple, linear
regression method is always the best method to solve
Weibull parameters of small samples, and it can also be
used to judge whether the test samples conform to Weibull
distribution.

Take the logarithm of both sides of the cumulative
probability density function twice, then the Eq. (2) be-
comes:

Iglg =klgv-kligc. 3)

1-F(v)

Let x =lgv, y=Iglg1/(1-F(v)), then the Eq. (3)
becomes:

yv=kx—klgc. @)

Based on the principle of linear regression method,
the fitting of vibration time series is shown in Fig. 6. The
green points are the transverse and vertical coordinates
corresponding to the conversion of the vibration accelera-
tion during the normal operation of the bearing. The green
line segment is obtained by fitting the actual vibration
acceleration with linear regression method. The blue points

are the transverse and vertical coordinates corresponding to
the conversion of vibration acceleration in case of bearing
failure. The blue line segment is obtained by fitting the
actual vibration acceleration with linear regression method.
If the determination coefficient is greater than
0.80, the fitting effect is good [17]. The determination
coefficients of each stage are shown in Table 2. Since the
determination coefficients are all above 0.8, the time series
of vibration acceleration conforms to Weibull distribution.

Table 3
Determination coefficient of each stage
Project Al A2
R2? 0.9343 0.8315

In(-In(1-cumFreq(v)))

y=
&
T

-34 -33 -32 -31 -30 -29 -28 -27 -26 -25 -24
x = In(v)

Fig. 5 Vibration time series fitting
3.1.2. Maximum likelihood method

The maximum likelihood estimation method
holds that the occurrence of sample data is related to the
parameters of the population distribution. When our esti-
mates of the parameters change, the corresponding sample
data also changes. Therefore, we determine the most rea-
sonable parameter estimation results by maximizing the
probability that the sample data will occur. In other words,
we find the value of the parameter that makes the observed
sample data appear with the greatest probability as an
estimate of the population parameter.

Let the distribution density function of the popu-
lation be f(v, k, ¢), where k, ¢ are the parameters to be es-
timated, V1, V2... Vn is the sample, the probability of vi,
Va... Vp IS

f[f(v,k,c)dtv. (5)

Determine the parameter value to make it maxi-
mum, then the likelihood function of the parameter is:

L(k.c) =H f(vkc). ©)

Replace the probability density function with the
likelihood function, in order to calculate the logarithm of
both sides of the equation:



lnL(k,c) = ”ln(k/c)+zn:ln(v/c)(k*“ _

i=l1

S (v/e) ™
i=1
Differentiate the two parameters separately:
dInL/ok=n/k+Y In(v/c)-
i=1
_i(v/c)k In(v/c) , (8)
i=1
OlnL/0oc= —n/c—n(k—l)/c—i—k/czn:(v/c)k NC))

i=1

Let Egs. (11) and (12) be equal to 0 to solve the
shape parameters and scale parameters:

k=S inv/ v —1/nY v, (10)
i=1 i=1 i=1

., 1k
k
c= (Zv‘ /nj .
i=1

3.1.3. Method of moments

an

The most basic idea of the method of moments is
to use the moments of a sample to estimate the moments of
a population. Let the distribution density function of the
population V be f(v, k, c), where k, ¢ are the parameters to
be estimated, V1, V2... Vn is the subsample, then the first
n moments of the population V are expressed as:

u, =ET". (12)
The j-order moment of the subsample is:
A,:I/nZT/. (13)
i=1
Let:
w,=ET" =4,=1/n) T/ . (14)
i=1

That is, n equations with » unknown parameters
are established, and the estimation results of parameters
can be obtained based on these equations.

For a two-parameter Weibull distribution, the first
two moments are expressed as:

EX =cl(1+1/k)=1/n3 X, (15)
i=1
EX? =c2r(1+2/k)=1/nﬁxﬁ, (16)
i=1
F(a):j:x”_l exp(—x)dx . (17)
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The shape parameters and scale parameters can be
obtained by Egs. (15), (16), and (17).

3.2. Accuracy test method

The root mean square error, Chi-square test and
determination coefficient are used to evaluate the Weibull
parameter estimation method.

3.2.1. Root mean square error

The RMSE represents the deviation between the
predicted value and the experimental value. The deviation
between the predicted and experimental values is inversely
proportional to the RMSE values.

n 1/2
RMSE:{I/nZ(yi—xi)z} : (18)

3.2.2. Chi-square test (%?)

Chi-square test is the degree of deviation between
the actual observed value and the theoretical inferred value
of the statistical sample. The degree of deviation between
the actual observed value and the theoretical inferred value
determines the size of the chi-square value. The larger the
chi-square value is, the greater the degree of deviation
between the two. On the contrary, the deviation between
the two is smaller; If the theoretical value is exactly equal
to the observed value, the chi-square value is 0.

2= -x) /% (19)
i=1

3.2.3. Determination coefficient (R?)

The coefficient of determination determines the
linear relationship between the calculated value and the
measured data. A higher R? represents a better fit using a
theoretical or empirical function, and the maximum it can
getis 1.

n

(n=2) -2 (3-x)

i=1

Rzzg 2/g(y,._y_,.)z, (20)

where, y; is the actual data (measured data, observed data),
x; is the data predicted by Weibull distribution, j; is the
average y;, n is the number of samples.

3.3. Parameter calculation method analysis results

According to the vibration acceleration of bearing
during normal operation and failure, the vibration fre-
quency histogram is drawn, and the probability density
function of different parameter calculation methods is
obtained, as shown in Fig. 6 and Fig. 7. The accuracy of
different parameter calculation methods is shown in Ta-
ble 5 and Table 6.

As shown in Table. 4 and Table. 5, the Weibull
distribution goodness of fit of vibration time series is high
when bearings are running normally, while the calculated
value of vibration acceleration is significantly different
from the actual value when bearings are faulty. This means
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Fig. 6 Bearing vibration frequency histogram and probabil-
ity density function graph of different calculation
methods during normal operation
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Fig. 7 Bearing failure vibration frequency histogram and
probability density function graph of different cal-
culation methods

Table 4 Table 6
Comparison of calculation accuracy of bearing Shape parameter and scale parameter
parameters during normal operation of different subsequences
MM LR MMLM . .
Serial Serial
k 17.2082 18.0231 15.1811 number k ¢ | qumber k ¢
c 0.0437 0.0439 0.0438
RMSE 0.0170 0.0193 0.0145 1 21.1150 | 0.0485 11 23.7922 | 0.0482
7 0.0219 0.0394 0.0203 2 22.156 8 | 0.0502 12 25.1670 | 0.0479
R 0.9401 0.9343 0.9420 3 26.646 8 | 0.048 3 13 275711 | 0.0482
4 239589 | 0.0486 14 28.3265 | 0.0480
Table 5 5 | 252110 | 00493 | 15 | 283041 | 0.048 1
Comparison of calculation accuracy of bearing 6 252600 | 0.0492 16 27.1262 | 0.048 6
parameters during fails 7 254527 | 0.0490 17 294109 | 0.0477
MM LR MMLM 8 254289 | 0.048 6 18 26.0684 | 0.048 6
k 7.6832 7.1746 7.0215 9 25.7798 | 0.048 6 19 25.021 8 | 0.048 8
c 0.0529 0.0527 0.0526 10 26.5379 | 0.0489 20 7.28870 | 0.0573
RMSE 0.0420 0.0443 0.0305
e 0.0458 0.0367 0.0246 According to Egs. (1), (2) and (4), the probability
R2 0.8201 0.8315 09110 density function image, cumulative distribution function

that the vibration time series is more consistent with the
Weibull distribution when the bearing is running normally.
The root mean square error, Chi-square test and determina-
tion coefficient are used to evaluate the vibration time
series of bearings under normal operation and failure. The
results show that the parameters calculated by the maxi-
mum likelihood method are closer to the real situation.

4. Weibull Parameter Analysis

132,998 data were divided into 20 groups. The
first 19 groups each contain 6650 vibration data samples,
and the 20th group contains the remaining 6648 data. The
shape parameters and scale parameters of the 20 groups of
data were calculated respectively. The results are shown in
Table 6: The shape parameters and scale parameters of the
first 19 sub-sequences fluctuated within a certain range
without significant regularity, indicating that the bearing
state in the first 19 sub-sequences did not change signifi-
cantly. The bearing state in the 20th subsequence has
changed significantly.

image and linear equation image of each sub-sequence are
plotted respectively. The results are shown in Fig. 4: The
distribution of the probability density function and cumu-
lative distribution function corresponding to the first 19
sub-sequences is relatively concentrated, and there is no
significant change. The horizontal span of the correspond-
ing function of the 20th subsequence increases significant-
ly, and the peak value shifts to the right, indicating that the
bearing vibration acceleration in the 20th subsequence
increases, which is consistent with the vibration time series
in the test. The slope and intercept of the first 19 subse-
quences did not change significantly, but the slope of the
20th subsequence significantly decreased and the intercept
significantly increased.

The results (Fig. 8) show that the shape parame-
ters and scale parameters of Weibull distribution can de-
scribe the bearing state evolution process, and the statisti-
cal rules of different interval data can characterize the
inherent properties of bearing state evolution.

5. Fault Prediction Analysis

The above research uses the complete life cycle
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Fig. 8 Weibull distribution functions of different subsequences: a - probability, b - cumulative distribution, ¢ - linear

equation

data of the whole fatigue life test, including the final fault
data. In actual engineering applications, bearing faults need
to be predicted in advance. In order to enhance the engi-
neering application value of this research, data within a
period before the failure is selected for further analysis.

5.1. Data grouping

Assuming that the total amount of recorded data
(bearing vibration value) is &, the time series V" of bearing
vibration can be expressed as:

V= (v(l), e v(s), ey V(N)); s=1,2,..,N. (21)
In Eq. (21), v is the vibration value recorded in the test, s is
the data serial number, and the total amount of data is N.

Each subsequence contains 1000 vibration data.
According to the time sequence relationship of the overall
sample, the vibration time series is divided into I groups,
and the serial number of each sub-sequence is Vi. The
sub-sequence is expressed as:

v, =

(v(i)s r v(i+999)); i=1,..,N=999.  (22)

5.2. Analysis results

The whole life cycle of bearing contains 132,998
vibration acceleration values, and the 129,130 acceleration
is abrupt, so only Weibull parameters of the pre-128130
subsequence are analyzed. The shape parameters and scale
parameters are drawn into line charts respectively, as
shown in the figure and figure.

As can be seen from the line chart, with the pas-
sage of time, the change trend of shape parameters and
scale parameters is the same, and the two parameters con-
tinue to fluctuate within a certain range during normal
operation of the bearing, until a short period of time before
the fault begins to change dramatically. The time expe-
rienced before the bearing failure was 179 hours and 20
minutes, the shape parameter of the 127595 subsequences
began to plummet, and the scale parameter began to in-
crease sharply. The total time before the parameter change
was 178 hours and 36 minutes, and the bearing failure was
predicted 44 minutes in advance.

As the service time of the bearings accumulates,
their performance shows a clear degradation trend, which
can be quantitatively characterized by the evolution of the
statistical characteristics of the vibration acceleration sig-
nals. By establishing a time-varying Weibull distribution

A
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Fig. 9 Shape parameter line chart
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0.068F |
0.064r J
¢ 006 Mwﬁﬁ\ Mutgtion
. ” region
Z.Z; \ ’ WMWMM‘W”\WN«WMM@/ i
0 2 4 6§ 0 12
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Fig. 10 Scale parameter line chart

model based on the vibration data throughout the entire life
cycle, it was found that the shape parameter increases
monotonically with the operating time, while the scale
parameter decreases accordingly. This statistical evolution
process is highly consistent with the observable physical
degradation mechanism inside the bearings. From a mac-
roscopic perspective, the most obvious phenomenon is the
significant increase in the noise pressure level of operation
and the roughening of sound quality. The fundamental
microscopic physical mechanism lies in the emergence and
expansion of fatigue damage on the contact surface of the
raceways. Specifically, under the action of cyclic contact
stress, microscopic cracks are generated sub-surface of the
material and gradually extend to the surface to form pitting;
as the operation continues, the size of individual pitting
pits and their distribution area on the raceway will system-
atically expand. The state of the bearing raceways after the
experiment is shown in Fig. 3. Indeed, large areas of con-
centrated peeling zones have appeared on the raceway
surface, verifying the correctness of the inference.

6. Conclusion and Prospect

1. When the vibration time series is used as the
analysis sample, the accuracy of Weibull parameters ob-
tained by maximum likelihood method is the highest and
the theoretical values are closer to the measured values.



2. Weibull parameters can be used as characteris-
tic values to effectively characterize the evolution of bear-
ing performance.

3. Weibull parameter analysis based on vibration
time series can predict bearing failure 44 minutes in ad-
vance, but this situation will only occur when the number
of subsequences containing samples is 1000. When the
number of subsequences containing samples changes, the
fault prediction time will also change.

4. Firstly, the method proposed in this study is
centered on capturing the universal laws of how the statis-
tical distribution characteristics of vibration signals evolve
with physical degradation. The Weibull distribution, as a
powerful statistical tool for describing material fatigue and
failure times, and vibration signals as direct reflections of
the dynamic state of bearings, when combined, are theo-
retically applicable to various rolling bearings (such as ball
bearings, cylindrical roller bearings, and conical roller
bearings). The differences among different bearing types
mainly lie in their characteristic frequencies and dynamic
responses, but this can be addressed by adjusting the focus
frequency band of spectral analysis and establishing a
type-specific mapping relationship between it and the
Weibull parameters. This study verified the feasibility of
the method using deep groove ball bearings as an example.
Additionally, according to changes in the research objec-
tives, the collected signals can include torque signals,
temperature signals, acoustic emission signals, etc.

5. Regarding the extension to different operating
environments (such as variable loads, variable speeds, and
different lubrication conditions), we acknowledge that this
is a key challenge in engineering applications and the nec-
essary path for this method to become practical. This study
verified the effectiveness of the proposed method under
constant operating conditions, but the operating conditions
in actual applications are variable. The core advantage of
this method lies in its focus on the temporal evolution laws
of the statistical distribution characteristics of signals,
rather than absolute characteristic values under specific
operating conditions. Therefore, by introducing mature
preprocessing techniques, this method can naturally be
extended to variable operating scenarios.
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FAULT PREDICTION OF AUTOMOTIVE BEARINGS
BASED ON WEIBULL DISTRIBUTION

Summary

The existing prediction of automotive bearing
faults has problems such as short prediction time and large
errors. This paper takes Weibull distribution as the theo-
retical basis. Firstly, Weibull parameters of under different
operating states are calculated, and the optimal parameter
estimation method is determined by goodness of fit analy-
sis. Secondly, each sub-series are calculated to determine
the feasibility of Weibull parameters to characterize the
evolution of performance. Finally, the vibration time sub-
series in the stable interval of the test is analyzed, and the
bearing fault prediction is realized by parameter change.
The results show that the maximum likelihood method has
the highest accuracy. There is a high goodness of fit be-
tween Weibull probability density function and the actual
vibration time series when the bearing is running normally.
Bearing performance evolution is consistent with Weibull
parameter change, and bearing performance evolution can
be analyzed by Weibull parameter change. In this way,
bearing faults can be detected 44 minutes in advance.

Keywords: vibration time series, Weibull distribution,
two-parameter Weibull, failure prediction.

Received February 7, 2025
Accepted December 15, 2025

This article is an Open Access article distributed under the terms and conditions of the Creative Commons
Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.1080/10402000802011786.
http://creativecommons.org/licenses/by/4.0/

