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1. Introduction 

The integration of Artificial Intelligence (AI) with 

wearable devices is revolutionizing various fields, parti-

cularly in the realm of health monitoring and sports [1]. 

Wearable devices offer valuable insights into the human 

body, continuously collecting data, while AI methods en-

hance the ability to analyze this data efficiently and accura-

tely [2]. This combination has been widely applied in areas 

such as disease diagnosis [3], continuous health monitoring 

[4], emotion sensing [5], and sports monitoring [6, 7]. 

However, despite the growing adoption of AI and wearables 

in health, their use in sports monitoring remains underdeve-

loped. 

One of the challenges faced in sports monitoring 

lies in the limitations of the number of detectable points, 

which impacts the precision of data collection [8]. Achie-

ving accurate measurements typically requires information 

from more detection points, necessitating the placement of 

additional sensors at these positions [9]. However, current 

detection technologies are constrained by the need to asso-

ciate each detection point with a transmission channel [10]. 

This requires scaling up hardware, complicating the system 

and integration efforts. Furthermore, as the demand for 

more detailed information increases, the need to incorporate 

a variety of sensors into wearable devices grows, which pla-

ces further strain on the system’s signal channels [11]. Thus, 

there is a growing need for strategies that can reduce the 

number of signal pathways while maintaining the quality of 

data collection[12]. 

On the other hand, during sports, particularly in ac-

tivities like table tennis, understanding the fatigue state of 

muscles is crucial for both physical and cognitive perfor-

mance [13, 14]. Muscle fatigue is often linked to a decline 

in movement velocity or skill level during extended periods 

of activity, increasing the likelihood of injury. Monitoring 

muscle state provides valuable insights into exercise inten-

sity, enabling athletes and trainers to adjust training loads, 

repetitions, and rest periods accordingly [15]. Real-time 

feedback on muscle fatigue can also enhance performance 

and reduce injury rates [16]. Traditional methods of 

assessing muscle status, such as biochemical tests or neuro-

muscular function assessments (e.g., EMG), are typically 

cumbersome and not ideal for continuous, real-time moni-

toring [17]. To address these limitations, wearable devices 

that track player movement are increasingly being utilized 

for non-contact, real-time monitoring of muscle fatigue [18]. 

Moreover, in table tennis, monitoring only the ball velocity 

does not offer a complete picture of an athlete's fatigue level. 

Techniques in table tennis rely not only on the ball’s velo-

city but also on its rotation [19]. Wearable devices are 

capable of detecting the pressure variations on the racket 

caused by both ball velocity and rotation, providing a more 

comprehensive understanding of player performance and 

muscle fatigue [20]. 

This paper aims to explore these two aspects within 

the context of table tennis. Firstly, we propose a novel ap-

proach to reducing the number of signal channels required 

for measurement by using a soft piezoelectric device. This 

device, which converts kinetic energy into electrical energy, 

is used to measure the hitting force and ball contact points 

[21, 22]. By decomposing the sensing matrix into rows and 

columns, we reduce the signal channels from the traditional 

m×n to m+n, allowing for more efficient data collection. 

Secondly, we investigate the potential of using electro-

myography (EMG) signals to analyze the relationship 

between hitting force and muscle fatigue. A k-Nearest 

Neighbors (kNN) algorithm is employed to build a model 

that distinguishes whether data was collected at the be-

ginning or after two hours of play, providing deeper insights 

into muscle fatigue and performance monitoring in sports. 

In the first section, the background and motivation 

of this work are introduced. Then, the design, structures, and 

investigation of the fabricated on-racket sensing are shown 

in section 2. In section 3, the collected data from the racket 

in the real table tennis game can be found. To collect enough 

data for building a kNN training, EMG tests are conducted 

to form the status marker of the player. In section 4, the re-

sults of EMG tests are shown. The conclusion of the paper 

can be found in the final part. Overall, this work provides a 

method to reduce the number of signal channels in the pie-

zoelectric sensing array, as well as build a system to detect 

the status of table tennis players using the system on the 

racket. 

2. Design and Fabrication of the On-Racket Sensing 

System 

When a table tennis hit the racket, the racket pro-

vides a force to the ball as well as collects the energy during 

the hitting. The fatigue of player leads to a decline in sport-

ing performance, where this decline is manifested through 

the pressure exerted on the racket during gameplay [14]. By 

analyzing the collected pressure data on the racket, we aim 

to obtain not only the hitting information but also to get the 

further information about the players. In Fig. 1, a, this sens-

ing concept is illustrated, while the structure of existed hit-

ting measuring system and proposed system are in Fig. 1, b. 

If a 3×3 sensor array is employed in measurement, with each 

position housing a position to be monitored [23], most of the 

existing designs relies on an individual signal channel for 

each sensor, which will connect the communication module 

and transmit the information out. Then, hardware for 9 in-

formation traces is needed [24].  For the proposed less signal 

channel designs, the hitting position is searched by its row 
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and column coordinates. Each row and column are con-

nected together and only 6 output channels are needed by 

using the new design. The conceptual design can also be 

scall up, where the needed information transmission hard-

ware for building m×n sensing units will drop from m×n to 

m+n. 

Along with the designing method,  the  on-racket 

 

a 

 

b 

Fig. 1 Demonstration of the less channel on-racket table ten-

nis monitoring: a – racket hitting force for players’ 

fatigue quantification, b – comparation of the existing 

point-to-point measurement system and proposed 

less signal channel measurement system 

 

a 

 

b 

Fig. 2 Structure and design of the on-racket table tennis 

monitoring system: a – picture of the fabricated sys-

tem, b – circuit design 

sensing system is fabricated using a standard table tennis 

racket as the framework. Six cross-arranged sensors are af-

fixed to its surface to form a 3×3 sensing array, where each 

sensing position has two lines to connect the interface cir-

cuit: one for the row and one for the column. A picture of 

the fabricated system is shown in Fig. 2, a. Given the light-

weight nature of the table tennis ball, the impact of the 

racket alone is insufficient to power the circuit. Therefore, 

two commercial 1.5 V AAA batteries are employed to sup-

ply the necessary power. Six PVDF striped sensors (from 

LOXGO company, shown in the insert depicts in Fig. 2, a) 

are used, where three of them are arranged as horizontal 

sensing elements at the bottom (sensor 1-3) and the others 

are vertical sensing elements on the top (sensor 4-6). The 

sensors with size of 1 cm wide and 8 cm long, are crossly 

sited, where the distance of 2.5 cm with each other to cover 

the enough racket surface. These sensors are affixed to the 

surface of the racket rubber film and shielded with a protec-

tive layer. The circuit details are illustrated in Fig. 2, b. All 

six sensors are connected in parallel to the sensing circuit 

chip, which comprises a CC1350 Bluetooth Micro Control 

Unit (MCU) with an RF-IC antenna. Voltage changes from 

all six sensing channels are transmitted to a personal com-

puter (PC).  The primary circuit operates on power from the 

battery. The sampling frequency is set at 128 kHz, with a 

transmitting frequency of 1 GHz.  

After all the elements for the whole system are pre-

pared, we did the final assembling carefully: the battery 

were embed into the wood handle of the racket by a proper 

 

a 
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Fig. 3 Measurements of the hit force stimulated voltage sig-

nal on the on-racket flexible sensors: a – signal 

caused by different force pulses, b – peak voltage 

with increased hitting force 
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size laser-cut cave; the interface circuit were assembled par-

allel with the wood handle, which is also covered by a finely 

cut silicone rubber to filling the space and made as a flat 

cylinder; a thin layer of soft polyvinyl chloride film was 

then laid over the sensor surface and the racket handle, 

which would protect the PVDF sensor and make the han-

dling more comfortable. The total weight of the racket and 

monitoring system is ~250 g, while the raw racket has a 

weight of 167 g. The width of handle reached 32mm, which 

was wider than its original width of 25 mm. However, these 

parameters are still in the range for the normal table tennis 

racket and can be optimized in future production. Although 

integrated into a single board, there exists potential for fur-

ther integration of the lines, circuitry, and battery into an ul-

trathin form factor, particularly with the use of a specially 

designed racket [25]. Additionally, the battery module could 

potentially be replaced by a piezoelectric device to harness 

energy from the racket's movement. 

To measure the kinetic energy of the table tennis 

ball, it's imperative to establish the relationship between hit-

ting force and the generated electric voltage. The results of 

this force-electric potential relationship are depicted in 

Fig. 3, a. In this test, a force meter (HP-100) is employed to 

administer a designed force to the sensor. The force is ap-

plied in a pulse lasting 0.1 seconds, with a resolution of 

0.01 N. Forces of varying intensities ranging from 1 N to 

5 N are applied to one of the sensors, and the collected volt-

age over time is plotted. Despite potential influences from 

the sensor’s surrounding environment, such as buffering ef-

fects altering the generated voltage, a discernible linear re-

lationship between force and peak voltage is observed (as 

illustrated in Fig. 3, b. A linear function is fitted to the data, 

revealing a slope of 1.1 V/m. This relationship underscores 

the capability of sensor to measure different forces. Given 

that these forces stem from the kinetic power of the table 

tennis ball, it follows that the system can effectively meas-

ure the velocity of table tennis ball, which can in turn be 

utilized in fatigue status assessment. 

3. Hitting Position Measurement and EMG Test 

 

Fig. 4 Illustration of the sensor array structure (top row) and 

its ability for multipixel detection 

The real table tennis hitting experiments was con-

ducted using the fabricated measurement system to verify 

the system, and the resulting signals were recorded. The 

measured signals from four hits, along with the illustration 

of the hitting sensing, are shown in Fig. 4. During each hit, 

signals are generated from both the top and bottom sensor 

layers, allowing the hitting position to be determined at the 

intersection of the maximum voltage signals from both lay-

ers. Taking the first hit in Fig. 4 as an example, the maxi-

mum voltage from the bottom layer occurs at sensor 2, while 

the maximum voltage from the bottom layer occurs at sensor 

5. The hitting position is then identified as the sensor at the 

intersection of column two and row two, as illustrated in 

Fig. 4. The other hitting positions can also be traced by the 

same analysis. Besides the positions, it can also be found 

that the sensors at the bottom layer will always generate a 

smaller signal than the top, of which the reason is the energy 

will be lost during the hitting force transmission. Both those 

information will be useful during the training of the kNN 

algorithm and the muscle status analysis [26, 27]. 

 

a 

 

b 

Fig. 5 EMG measurement for kNN training: a – the time-

line for EMG measurement in data collection;  

b – change of the measured peak voltage and MPF 

data of EMG signal with playing times (error bars 

represent standard deviation) 

Monitoring and drawing a conclusion for the mus-

cle statute is not easy, while EMG-measured electrical ac-

tivity of the muscle has been proven effective in demonstrat-

ing it [17]. As a result, we also conducted an EMG test to 

collect the data for the training. The decrease of mean power 

frequency (MPF) value in EMG test has been proved show-

ing a higher fatigue of the muscle [18]. As we applied the 

designed pressure monitoring system in table tennis train-

ing, in the comparison stage, an EMG test for the arm mus-

cle was also applied to investigate their status. At the first 

stage, we recruited two volunteers for the test. One male 

volunteer aged 27 was using the racket with a monitoring 

system, while another 28-year-old male used a normal 

racket. All the data are collected from the 27-year-old vol-

unteer, while his competitor is always another volunteer. 

During the table tennis playing, we measured the EMG sig-

nal of the 27-year-old volunteer after each 10 minutes of 
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playing (the procedure is shown in Fig. 5, a). For the EMG 

test, the measurement frequency is set as 1kHz and eight 

distributed channels are fixed on the arm. A mean power 

frequency (MPF) number was shown on the instrument 

(TeleMyo™ 2400T G2, PPB FusionLab Corp.) and rec-

orded during every measurement. After 2 hours playing, the 

collected MPF value drops apparently and the 0.7 normal-

ized value is chosen at the threshold of muscle statue. As for 

the pressure sensing, the maximum voltages from six sens-

ing channels from each hitting are utilized as the record volt-

age signal. As the example for the used data, Table I dis-

plays the 12 examples. Only the maximum value in each 

hitting is used at the algorithm input. For example, in the 

first hitting, only values at the 2nd and 4th sensors are used in 

training. This pickup process represents a post-processing 

step for the collect data to build the kNN classification al-

gorithm. 

A notable observation from the data is that higher 

ball velocities correspond to larger voltage outputs. The 

measured peak voltages and the MPF values are shown in 

Fig. 5, b. It is clearly shown that with a longer playing time, 

the MPF and voltage decrease at the same time. Combining 

the results shown in Fig. 3, b, a clear conclusion shows up, 

that the smaller voltage is caused by the smaller hitting pres-

sure of the ball, demonstrating the change of player statue 

from natural to fatigue. It is also hard to establish a strict 

linear relation between MPF value and the generated volt-

age from the real experiment data. One reason is during the 

playing, not only the velocity but also the rotation of the ball 

is influenced by the player status, where the latter is difficult 

to quantified. Another reason is the player status is not line-

arly dropped, where the general trend does down but may 

not be reflected in every test. 

Table 1 

Response voltage peaks of each sensor at 12 hits and the measured MPF in EMG test 

Hitting number 
Number of sensors Sensing positions 

(bottom row, top column) 

Normalized MPF in 

EMG test after hitting 

data collection 1 2 3 4 5 6 

1 0 4.2 0 5.3 0 0 (2, 4) 1 

2 3.2 0 0 4.9 0 0 (1, 4) 1 

3 2.9 0 0 0 5.6 0 (1, 5) 1 

4 0 1.8 0 0 5.3 0 (2, 5) 0.9 

5 0 1.6 0 0 4.6 0 (2, 5) 0.9 

6 2.1 0 0 0 0 4.6 (1, 6) 0.9 

7 0 0 1.5 0 0 3.5 (3, 6) 0.8 

8 0 0.9 0 2.2 0 0 (2, 4) 0.8 

9 0 1.6 0 0 0 2.5 (2, 6) 0.7 

10 0 0 1.3 2.6 0 0 (3, 4) 0.6 

11 0 0.3 0 0 1.3 0 (2, 5) 0.5 

12 0 0 1.2 0 0 1.9 (3, 6) 0.6 

Table 2 

kNN algorithm table 

Data: peak voltage of the top layer sensors (xn), peak voltage of the bottom layer sensors (ym), 

          training label (kn = 0 when MPF<0.7, kn = 1 when MPF<0.7) 

Result: threshold voltage x0, y0 

Start x0 = x1; y0 = y1; 

δ = ( )( ) ( )( )
2 2

0 01 1
0 1

n n

i n i ni i
x x k x x y

= =
− = + − =  ; η = ( )( ) ( )( )

2 2

0 01 1
0 1

m m

i m i mj j
y y k y y k

= =
− = + − =    

for i = 2 to i=n, j = 2 to j=m 

  ( )( ) ( )( ) ( )( ) ( )( )
2 2 2 2

01 1 1 1
0 0 0 1

n n m m

i l n i j n j g m g ml j g g
x x k x x y y y k y y k

= = = =
 = − = + − = + − = + − =     

    While   < δ+ η, 

    do x0 = xi, y0 = yi; 

end 

 

4. kNN Method for Muscle Status Analysis 

With the obtained voltage changes serving as in-

puts to the fatigue system, we proceed to implement the 

kNN algorithm. The training process of the kNN algorithm 

is outlined in Table II. This method categorizes input data 

into different groups based on their proximity to the training 

data. Although more sophisticated machine learning tech-

niques have been developed, the kNN method suffices for 

our primary research and yields promising results [28, 29]. 

We collected 500 times hits from stage 1 test and labelled 

them as 0 when MPF < 0.7 and 1 when MPF > 1. The data 

set is then divided as two groups: 80% of them are used for 

training of the model and 20% of them are used in the test. 

During the training process, voltage threshold values for top 

and bottom layer are the output of the model, which are used 

to distinguish the fatigue status of them in the testing proce-

dure. In the test of the classification, the accuracy and pre-

cision are calculated to evaluate the method. On the other 

hand, it should be noted that the embedded monitoring sys-

tem will change the properties of the table tennis racket, 

hence changing the playing activity. But our analysis is 

based on the data measured by the designed racket. The 

method can also be migrated to other different or personal-

ized data sets. Hence, the change of the racket because of 

the integration of the monitoring system will not influence 

the analysis results. 
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In Fig. 6, a, the classification results for 25 hits in 

testing group are displayed. Only top layer data xn is plotted 

and the data points are labelled by their MPF value and ar-

ranged according to their respective sensing positions. Al-

gorithm output threshold value x0 is also marked as a dashed 

line. It is shown that kNN algorithm can effectively separate 

the obtained data for energetic (at the begin of the playing, 

normalized MPF>0.7) and fatigue (after 2 hours playing, 

normalized MPF<0.7) statues, underscoring the efficacy of 

using wearable devices with kNN method in discriminating 

fatigue levels. Furthermore, the distribution of hitting posi-

tions, where the maximum voltage is obtained from the sys-

tem, varies across the racket surface. Central middle sen-

sors, such as (2, 4), (2, 5) and (2, 6), register more hits com-

pared to others, indicating that players predominantly utilize 

the center area of the racket during gameplay. These data 

can also be used in the future algorithm to do the further 

analysis of table tennis playing. To verify the system more 

accurately, we repeated the stage 1 tests on 20 volunteers, 

including both table tennis game and the EMG test. During 

the test, all the variables are kept same with only change of 

playing time. After going through the same data processing, 

different threshold values for different volunteers are ob-

tained, where these thresholds are used to discriminate the 

status of players. Compared with the MPF measurement re-

sults measuring during the playing, the 500×20 date points 

can be used to calculate the accuracy and precision of the 

system using the equation [28]: 

100
TP TN

Accuracy %
TP TN FP FN

+
= 

+ + +
, (1) 

100
TN

Pr ecision _ N %
TN FN

= 
+

, (2) 

100
TP

Pr ecision _ P %
TP FP

= 
+

, (3) 

where TP, TN, FN, FP are true positive, true negative, false 

negative, and false positive values, respectively, which is 

the number for true classification for MPF < 0.7, true clas-

sification for MPF > 0.7, false classification for MPF>0.7, 

false classification MPF<0.7 in this work. By applying this 

equation, it is determined that the system achieves an accu-

racy of 95%. Precision_N is for the right classification for 

the data measured at the beginning of the measurement and 

Precision_P is for the classification for after two hours of 

playing. The calculated precision value is shown in Fig. 6, 

b, which shows the prediction precision are both higher than 

90%. Besides the prediction for playing time, the method 

also holds further potential for applications such as player 

identification by using the threshold boundary information 

or training guidance using the real-time monitoring feature 

of the system [30, 31]. 

5. Conclusions 

In conclusion, the table tennis monitoring system 

is integrated directly into the racket, utilizing a kNN algo-

rithm for data process to know the player’s status. This mon-

itoring system incorporates a flexible piezoelectric sensing 

array to capture hitting position and pressure. One position 

on the racket is decomposed into row and column axes, with  

 

a 

 

b 

Fig. 6 kNN classification and results: a – measured volt-

ages from top layer sensors and kNN algorithm re-

sult, the errors are also marked in the figure, b – cal-

culated precision chart for the true prediction using 

all the data 

only one single striped PVDF (Polyvinylidene fluoride) 

flexible electrode placed on each axis. By using this strategy, 

only 3+3 signal channels are needed for sensing 3×3 sensing 

array. The pressure exerted is directly proportional to the 

energy transferred from the racket to the ball, thereby re-

flecting the player's muscle status, which is also verified by 

the EMG test. Following training of a kNN algorithm using 

EMG data marked sensing voltage data, the system can de-

tect fatigue levels with high accuracy. This design verifies 

the row-column sensing method to reduce communication 

channels and the combination of hardware innovation and 

algorithm design, which will benefit various applications, 

including health monitoring, sports training, and AI-based 

data acquisition. 
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C. Hua, X. Hu, Z. Fan, W. Fei 

LESS SIGNAL CHANNEL TABLE TENNIS HITTING 

MEASUREMENT SYSTEM ENA-BLED MUSCLE 

CONDITION MONITORING 

S u m m a r y 

Sports play a crucial role in daily life, and precise 

monitoring of muscle states during sports is valuable for 

guiding training programs, preventing injuries, and detect-

ing fouls. Despite significant advancements in monitoring 

technologies, there are still unexplored areas in detecting 

various sports actions and processing the associated data. In 

this study, we present a method to reduce communication 

channels in a table tennis racket sensor array and use the 

fabricated monitoring system to detect the player's status 

through signal analysis and machine learning algorithms. 

The system includes a flexible piezoelectric PVDF sensor 

array, Bluetooth chip, and battery. Unlike conventional de-

signs that assign an individual communication channel to 

each sensor, this approach uses a single striped sensor on 

each row and column. By analyzing the axis of the sensor 

with signal, the hitting position and force are determined. 

After that, a kNN classification algorithm are built with the 

help of electromyography (EMG) test, aiming to assess the 

player's status based on their hitting input. The system ef-

fectively differentiates various player statuses with an accu-

racy exceeding 90%. The hardware innovation and signal 

processing techniques also have potential applications in 

other wearable sensing fields. 

Keywords: piezoelectric sport monitoring system, less 

communication signal channel, table tennis game, muscle 

status analysis. 
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