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1. Introduction 

With the rapid growth of demand for high-perfor-

mance alloy materials in the field of high-end equipment 

manufacturing, alloy smelting and casting production line is 

used as the core manufacturing unit. Its production schedul-

ing efficiency directly determines the market competitive-

ness and resource utilization level of enterprises. In typical 

application scenarios such as aerospace and rail transit, alloy 

melting and casting process involves multi-stage coupling 

processes such as melting, refining, casting and heat treat-

ment. These processes have the characteristics of high en-

ergy consumption, long cycle and strong coupling. Moreo-

ver, there are strict process constraints and time dependence 

between each process, which makes the production sched-

uling problem extremely complicated. These production 

characteristics have become an important bottleneck re-

stricting the improvement of production efficiency. The pur-

pose of this paper is to study the production scheduling 

problem of alloy casting production line and provide theo-

retical support and practical guidance for optimizing pro-

duction scheduling.  

At present, the production scheduling of alloy cast-

ing production line mainly relies on the traditional methods 

driven by experience, such as rule-based scheduling strategy 

and manual scheduling. Although these methods can meet 

the production demand to a certain extent, they often show 

problems such as low efficiency, serious waste of resources 

and slow response speed when facing the multi-variety, 

small-batch and highly customized production mode. In ad-

dition, with the rise of intelligent manufacturing technology, 

traditional scheduling methods are difficult to achieve effi-

cient integration with advanced information systems (such 

as MES, ERP, etc.), which further limits the optimization 

space of production scheduling. Academia and industrial 

community have begun to explore scheduling methods 

based on optimization algorithms and intelligent technolo-

gies. For example, genetic algorithms, particle swarm opti-

mization, deep reinforcement learning and other technolo-

gies are applied to solve complex production scheduling 

problems. These methods improve the flexibility and effi-

ciency of scheduling, but they still face challenges such as 

high complexity of the model, high computational cost and 

unstable effect in practical application. 

The production scheduling optimization of alloy 

smelting and casting production line presents significant 

challenges in intelligent manufacturing systems, with two 

primary complexities requiring resolution: 1. many-objec-

tive optimization problem. Production scheduling often re-

quires trade-offs between multiple goals, such as minimiz-

ing production cycles, maximizing equipment utilization, 

reducing energy consumption, and reducing inventory. 

There is often a conflict between these goals. For example, 

improving equipment utilization may lead to increased en-

ergy consumption, while shortening production cycles may 

increase production costs. How to find the optimal balance 

point among multiple objectives is a difficult problem in 

production scheduling. 2. Complexity of process con-

straints. The production of alloy materials involves complex 

process constraints such as temperature control, time win-

dow limits, equipment compatibility, and so on. These con-

straints not only increase the complexity of scheduling prob-

lems, but also put forward higher requirements for the ro-

bustness and adaptability of scheduling algorithms. 

To address high-dimensional many-objective opti-

mization challenges, researchers have developed various 

computational methodologies. Niu et al. [1] studied the pro-

duction scheduling problem of steelmaking continuous cast-

ing with uncertain process time, and obtained a more robust 

mathematical programming model by using indicators such 

as support set, mean value and covariance to describe uncer-

tain process time. Huang et al. [2] studied integrated pro-

duction scheduling with flexible flow shop as the object and 

multi-pass heterogeneous vehicle path planning in the soft 

time window, and proposed a hybrid collaboration frame-

work based on hybrid algorithms. Yagmur et al. [3] pro-

posed the meme algorithm and iterative local search method 

to solve the integrated production and distribution schedul-

ing problem under the constraints of limited number of de-

livery vehicles and variable processing speed of processing 

machines. The optimization goal of this scheduling problem 

is to minimize the total cost. Sugianto et al. [4] proposed a 

rule-based heuristic particle swarm optimization algorithm 

to solve the integrated production and distribution schedul-

ing problem of additive manufacturing and delivery distri-

bution. The scheduling problem was optimized to minimize 

the total weighted time. Building upon foundational work in 

flow shop scheduling, Lee et al. [5] conducted a systematic 

review of existing methodologies while critically evaluating 

solution frameworks. Oujanas et al. [6] advanced the field 

through development of a mixed-integer linear program-
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ming (MILP) framework incorporating multi-constraint dy-

namics, with computational experiments demonstrating ro-

bust optimization capabilities. Advancing scheduling meth-

odologies in textile manufacturing, Li et al. [7] established 

an evolutionary optimization framework leveraging genetic 

algorithms for spinning batch dyeing processes. Su et al. [8] 

pioneered a preference-conditional graph reinforcement 

learning architecture that employs parallel computation to 

approximate Pareto frontiers in multi-objective flexible job 

shop scheduling (MOFJSP). Extending beyond conven-

tional approaches, Fan et al. [9] formulated a synergistic hy-

brid flow shop model with multiprocessor task coordination 

(HJSMT), subsequently engineering an enhanced NSGA-II 

variant for multi-objective resolution. Addressing human-

machine collaborative dynamics in distributed systems, He 

et al. [10] developed a four-phase LSRF metaheuristic inte-

grating: a – population initialization protocols, b – neighbor-

hood search operators, c – solution space reconstruction 

mechanisms, and d – adaptive feedback control loops. Dai 

et al. [11] established a flexible job shop multi-objective 

scheduling model and proposed an improved NSGA-II al-

gorithm. The artificial colony (ABC) algorithm is used for 

population initialization, and the simulated annealing (SA) 

algorithm is used for population screening. Zheng et al. [12] 

proposed a multi-objective optimization framework com-

bining grouping technology to address the production 

scheduling problem of mixed-flow prefabricated parts. The 

non-dominant sorting genetic algorithm is introduced to 

solve this problem through adaptive population initializa-

tion strategy and population technique adjustment. Chang et 

al. [13-14] used group technology and planning theory to 

establish an optimization model for group mass production 

of PCS by minimizing production cost.  

Xue et al. proposed dung beetle [15] and Vahedi-

Nouri et al. [16] proposed a hybrid algorithm of multi-mesh 

Gray Wolf algorithm and NSGA-II for integrated schedul-

ing in cloud manufacturing system. Álvarez-Gil et al. [17] 

proposed the multi-objective discrete firefly algorithm 

(MO-DFFA) to solve the job shop scheduling problem. 

At present, there is no research on the theory and 

application of the whole process production scheduling 

problem of aluminum alloy casting production line. The the-

oretical research of production scheduling in the process in-

dustry is mainly concentrated in the steel and chemical in-

dustries [18, 19]. For example, Liu et al. [20] reviewed the 

research progress of the production scheduling problem in 

steelmaking and continuous casting, and proposed a multi-

agent-based collaborative optimization method. There are 

few studies on the production scheduling problem of non-

ferrous metal processing and manufacturing. 

At present, there are still some problems in apply-

ing many-objective evolutionary algorithm to solve high-di-

mensional many-objective production scheduling problems 

of casting production line. High-dimensional many-objec-

tive production scheduling problems of casting production 

line usually involve complex constraints and large search 

space, resulting in a significant increase in computational 

costs. In high-dimensional target space, it becomes more 

difficult to maintain the diversity of the solution set, which 

tends to cause the solution set to be concentrated in the local 

region. 

In order to solve the many-objective production 

scheduling problem of the melting and casting production 

line, firstly, a multi-objective production scheduling model 

of the whole process was established according to the pro-

duction characteristics, process flow and production con-

straints. Meanwhile, a new high-dimensional multi-objec-

tive strong dominant optimization algorithm (SPEALNS) 

was proposed to solve the production scheduling model of 

high-performance alloy melting casting production line. 

The rest of the paper is arranged as follows: Sec-

tion 2 introduces the problem and model description. Sec-

tion 3 introduces the SPEALNS algorithm. Section 4 intro-

duces the experimental results and discussion. Section 5 in-

troduces the conclusions and the future work. 

2. The Production Scheduling Model of Alloy Melting 

and Casting Production Line 

The production scheduling problem of high perfor-

mance casting and melting production line is considered to 

optimize four objective functions at the same time, namely, 

maximum completion time, delivery delay time, equipment 

utilization rate and adjustment time. f1 ~ f4 represents the 

four optimization objectives respectively. Therefore, the 

whole-process production scheduling model of high-perfor-

mance alloy melting and casting production line containing 

four optimization objectives is established, which is specif-

ically defined as follows: 

The whole-process production scheduling model 

of the creep aging forming production line including the five 

optimization objectives is established, and its specific defi-

nition is as follows: 

 ( )1 2 3 4min F f , f , f , f= . (1) 

Eq. (2) presents the adjustment time of equipments 

f1. 
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where Txi and Tti represent the furnace washing time and 

mold adjustment time of the casting machine for the order i. 

Eq. (3) presents the completion time f2.  

( )2 1, 2, 3... if max C i n= = , (3) 

where Ci represents the completion time of the last opera-

tion of the i-th workpiece. 

Eq. (4) presents the delivery delay time f3.  
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where DDi represents the delivery date of workpiece i. 

Eq. (5) presents the equipment idle time f4.  
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where Tk is the stop time after the k-th equipment completes 

processing, a
k
ij indicates whether the process O

k
ij is carried 

out on machine Mk, t
k
ij represents the processing time of the 

process O
k
ij on machine Mk. 
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During the scheduling process, there are some fun-

damental assumptions. 1. Static scheduling assumption: All 

orders (workpieces) are fully known before the scheduling 

process begins, and there are no subsequent urgent orders 

that are dynamically inserted. 2. No abnormal interference 

assumption: During the scheduling execution process, there 

are no sudden situations such as equipment failures, raw ma-

terial shortages, or staff absences. 

The constraints of multi-objective production 

scheduling problem of high performance alloy casting pro-

duction line are as follows: 

1. Process constraints. 

Process constraint refers to the process specifica-

tion that alloy needs to comply with in order to obtain qual-

ified high-performance products in the production process. 

Eq. (6) indicates that there is a sequential constraint rela-

tionship between all processes of each workpiece, and the 

processing of the next process can only begin after the com-

pletion of the previous process 

ijk 1ijk ij pS T S ++  . (6) 

2. Device constraints. 

Equipment constraint refers to the operation speci-

fications that all equipment in the high performance alumi-

num alloy melting casting line should comply with in order 

to ensure the efficient production of the production line. 

Eq. (7) represents that the same machine can only process 

one workpiece at the same time 

( )1

ij ijk jk jk

ij ijk jk jk

S M F S T

S M F S T

+   +

+  −  +
. (7) 

Eq. (8) represents that a workpiece can only be 

processed on one device at a time 

1

1
m

ijk
k

X
=

= . (8) 

Eq. (9) represents a positive constraint 

10, 0, 0ijk ijk i , j , jS T tr −   . (9) 

3. The Strength Pareto Evolutionary Algorithm Based 

on Large Neighborhood Search (SPEALNS) 

A new high-dimensional multi-objective optimiza-

tion algorithm (SPEALNS) was proposed to solve the pro-

duction scheduling model of high performance alloy casting 

production line. SPEALNS is based on the strength Pareto 

evolutionary algorithm (SPEA). Because of the production 

scheduling problem of aluminum alloy casting production 

line, a new coding method is needed. 

3.1. Overview of the proposed method 

Firstly, the coding method of the production sched-

uling problem is defined for the casting line. The parent pop-

ulation with size N was initialized. The fitness of the indi-

vidual population was calculated. The genetic selection op-

eration was carried out using the tournament method, and 

then the crossover and mutation genetic operators were used 

to operate the parent population to obtain an offspring pop-

ulation Qt with size N. According to the neighborhood 

search probability, the individual neighborhood search of 

the offspring population is carried out. A population Ut with 

size 2N is obtained by mixing the parent population Pt with 

the offspring population Qt. Then the fitness of the com-

bined population Ut was calculated. In order to select N in-

dividuals from the population Ut, an environmental selec-

tion operation is required. First, individuals with fitness 

value less than 1 are selected. If the total number of individ-

uals whose fitness value less than 1 is less than N, individu-

als with smaller fitness value of the combined population 

are entered into the next generation population. If the total 

number of individuals whose fitness less than 1 is greater 

than N, individuals need to be selected successively and de-

leted from the individuals whose fitness less than 1 accord-

ing to the pruning process. This process continues to cycle 

until the maximum number of iterations is met. Finally, a set 

of scheduling solution set is obtained, and a high quality 

scheduling scheme is selected from the solution set by fuzzy 

decision method. The flowchart of SPEALNS is shown in 

Fig. 1. 

  

Fig. 1 The flowchart of SPEALNS method 

3.2. Large neighborhood search 

Large Neighborhood Search (LNS) is a kind of 

meta-heuristic algorithm based on destruction-repair mech-

anism. Its core idea is to achieve the balance between global 

exploration and local optimization by dynamically adjusting 

the neighborhood structure of the solution. In the destruc-
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tion phase, adaptive rules are designed to remove some ele-

ments of the current solution. In the repair stage, the dam-

aged part of the solution is completed into a feasible solution. 

The algorithm steps of large neighborhood search 

are as follows. The number of genetic genes p to be stripped 

in deconstruction operation is set, and the baseline fitness 

evaluation value of initial individual i is obtained. In the ex-

ecution phase of the destructor function, the random permu-

tation sequence of the global task index is generated first. 

The first p genetic markers in this arrangement were ex-

tracted. Through the genetic coding mapping mechanism, 

the corresponding task identifiers in the current solution 

structure are located and the task set to be deconstructed is 

formed. The undeconstructed genetic fragments constitute 

the recombination base sequence. 

The retained genetic sequences were reconstructed. 

In the recombination stage, the initially stripped genes are 

preferentially attempted to embed at different sites of the re-

sidual sequence, and a new gene combination is generated 

for each candidate location. The information was analyzed 

and the fitness was evaluated by non-inferior ranking rule. 

The optimal insertion site of the first gene in the remaining 

gene chain was determined, and then the basic sequence was 

reconstructed. All stripped genetic units are integrated ac-

cording to the sequence of this iteration rule. Finally, a new 

candidate solution is constructed. Based on the Pareto dom-

inance principle, if the new solution is superior to the exist-

ing solution in the target space, the new genetic code is used 

to replace the original structure. If no dominance is formed, 

the original genetic structure remains unchanged. 

LNS implements deep exploration of solution 

space through cyclic destruction-repair operation. Its dy-

namic neighborhood characteristics can effectively escape 

the local optimal. Compared with traditional neighborhood 

search, large-scale destruction enhances global search, and 

intelligent repair mechanisms ensure refined and improved 

understanding. 

3.3. The encoding and decoding method 

To ensure that SPEALNS high-dimensional multi-

objective optimization algorithm can effectively optimize 

and solve the production scheduling problem of high-per-

formance alloy casting production line, the new encoding 

and decoding method of the SPEALNS is defined. One-di-

mensional real number encoding method is designed in this 

way. The random full arrangement method of job numbers 

is adopted for coding. Chromosomes represent the pro-

cessing sequence of alloy batches. The number of chromo-

some sequences represents the serial number of alloy 

batches. The number of alloy batches to be processed is the 

length of chromosomes, and the code represents the pro-

cessing priority of the workpiece. 

If a chromosome sequence is [1 2 4 6 5 7 3 8 9 10], 

it means that there are 10 alloy batches that need to be pro-

cessed, and the first alloy batch is processed in the first pro-

cess, and then the next batches processed in sequence are 2. 

Fig. 2 shows the encoding method of the production sched-

uling problem in the melting and casting production line. 

Decoding is to convert chromosomes into a sched-

uling scheme according to encoding information and encod-

ing rules. The scheduling scheme is generally represented 

by Gantt diagram. Decoding is not a simple inverse opera- 

 
Fig. 2 The encoding method 

tion of encoding, and different decoding methods will pro-

duce different scheduling solutions. Because the casting 

process is the key process that determines the production ca-

pacity of the high-performance alloy melting and casting 

production line, this paper adopts the positive and negative 

hybrid decoding method. The reverse decoding method is 

adopted in the blocking continuous production stage. Firstly, 

the processing start and stop time of each batch is arranged 

from the casting machine to the melting furnace in accord-

ance with the sequence in the code. In the discrete produc-

tion stage of the melting and casting production line, the for-

ward decoding method is used to arrange the production, 

where the decoding is carried out according to the process 

stage. After all batches have completed the processing start 

and end time of the current process, the scheduling arrange-

ment of the next process is arranged. Based on the above 

decoding method, the encoding chromosome can be con-

verted into the production scheduling scheme of high per-

formance alloy casting production line. 

3.4. Fitness calculation method 

The fitness calculation method combines the Pa-

reto dominance relationship and density information to en-

sure that the algorithm can converge to the Pareto frontier 

effectively and maintain the diversity of the population.  

Fitness calculation is divided into two main parts. 

Strength represents the measure of an individual's domi-

nance in a population. Density: Estimates the distribution 

density of an individual in the target space. The Density 

value estimates the distribution density of an individual in 

the target space. 

Dominance relation: For each individual x in the 

population, Eq. (10) presents the number of other individu-

als that it dominates is counted 

( ) S i j j P Q i j=  +  . (10) 

Eq. (11) represents the strength value R(x) of indi-

vidual x 

( ) ( )
j Pop

R i S j


=  . (11) 

Eq. (12) represents density values D(i). D(i) are 

used to assess the distribution density of individuals in the 

target space to avoid the population falling into local areas. 

For each individual x, its distance to other individuals in the 

target space is calculated and the k-th nearest neighbor dis-

tance k
i is found 

( )
1

2k

i

D i


=
+

. (12) 

Eq. (13) represents the fitness value F(i) of an in-

dividual. F(i) is the weighted sum of the strength value and 

the density value 
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( ) ( ) ( )F i R i D i= + . (13) 

To enhance the applicability of conventional Pa-

reto-dominated MOEAs in high-dimensional multi-objec-

tive optimization, Li et al. engineered a shift-based density 

estimation (SDE) mechanism. Diverging from conventional 

approaches, this methodology incorporates dual-dimen-

sional assessments of solution distribution patterns and con-

vergence characteristics. The computational workflow in-

volves: 1. pairwise displacement measurement between 

candidate solutions, 2. systematic aggregation of popula-

tion-wide proximity metrics organized in ascending order, 

and, 3 iterative density quantification through adaptive dis-

tance thresholds. For minimization objectives, population 

density quantification is mathematically defined as: 

( ) ( ) ( ) ( )( )1 2 1, ... ND p,P D dist p,q dist p,q dist p,q −
   = , 

where N represents the size of P, and dist(p,qi) represents 

the similarity between individual p and individual pi. 

3.5. Genetic operator 

In this paper, the two-point crossover method is se-

lected for genetic crossover operation. Firstly, the two par-

ent chromosomes are paired. If the random number is less 

than the crossover probability, the two paired parent chro-

mosomes are crossed. Two intersections are arbitrarily se-

lected on the coding chromosome, and then part of the gene 

segment is exchanged. The cross segment of parent 2 is 

placed before the encoding string of parent 1. Duplicate al-

loy batch numbers are checked from the starting gene, and 

the second alloy batch number appearing is deleted. In the 

same way, the cross segment of parent 1 is placed in front 

of the coding string of parent 2, and the genes of parent 2 

chromosome are sequentially deleted. Finally, two progeny 

were formed. The two-point crossover method for the pro-

duction scheduling problem of alloy casting production line 

is shown in Fig. 3. 

 

Fig. 3 The two-point crossover method 

4. Experiment Results and Analysis 

At present, there is no standard test example to test 

the production scheduling problem of alloy melting casting 

production line. Therefore, in order to verify the efficiency 

and feasibility of the proposed high-dimensional many-ob-

jective alloy melting casting production scheduling model 

and many-objective decision optimization method, six 

benchmark examples (Rz01~Rz06) were constructed. The 

feasibility and efficiency of the proposed whole-process 

production scheduling model and high-dimensional many-

objective optimization decision-making method for high 

performance alloy casting production line were verified by 

the constructed industrial data set. 

4.1. Computational experiment of benchmarks 

Table 1 lists the number of orders for each bench-

mark calculation example. Table 2 lists the process param-

eters of all alloys used in the melting and casting data set. 

Table 1 

The constructed benchmarks 

Benchmarks The number of orders 

RZ01 12 

RZ 02 17 

RZ 03 15 

RZ 04 18 

RZ 05 16 

RZ 06 20 

 

Six standardized test cases (Rz01-Rz06) were em-

ployed to comprehensively assess the operational viability 

and computational performance of the proposed whole-pro-

cess production scheduling model and high-dimensional 

multi-objective optimization decision-making method for 

high-performance alloy casting production line. In order to 

more accurately evaluate the performance of each multi-ob-

jective scheduling optimization method in solving different 

benchmark examples, each optimization method was re-

peated for 30 times when solving each benchmark example. 

Wilcoxon rank sum test with significance level of 0.05 was 

performed for 30 performance indicators. 

Table 2 

The processing time 

Operation Type 1# Type 2# 

smelting 9 h 9 h 

heat preservation 2 h 2 h 

casting 2 h 2.5 h 

soaking 19 h 0 h 

Cooling operation 2.5 h 0 h 

Machining operation 5 h 5 h 

NSGA-Ⅱ-RPD and MOEA/D were selected as 

comparison algorithms to prove the feasibility and superior-

ity of SPEADLNS. Table 3 lists the parameters of the 

SPEADLNS algorithm. 

IGD(Inverted Generational Distance) index was 

used to evaluate the performance of each optimization deci-

sion-making method. IGD represents the average distance 

from each reference point to the nearest solution, which can 

evaluate convergence and diversity at the same time. The 

smaller the IGD value, the better the comprehensive perfor-

mance of the algorithm. 

Eq. (14) presents the calculation formulas of IGD. 

( )
( )** x P

*

min dis x,P
IGD P ,P

P

=


, (14) 

where P* represents non-dominated solution set and the so-

lution set P represents Pareto Front. 

Eq. (15) presents the calculation formulas of HV. 
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( )1

S

i iHV v ==  , (15) 

where S represents number of individuals in the non-

dominated solution set. 

Table 4 shows the average IGD value and the P-

value of the rank sum test after each algorithm is run 30 

times on all the benchmark instances. In the experimental 

results, values that are significantly better than other algo-

rithms are shown in bold. The IGD index value of 

SPEALNS optimization method is better than other algo-

rithms in all test cases. According to the above results, the 

efficiency and feasibility of the whole process production 

scheduling model and SPEALNS optimization decision-

making method are verified for high performance alloy cast-

ing production line. 

Table 3 

Parameters setting 

Parameters Value 

Population size 120 

Number of iterations 50 

Mating probability 0.75 

Mutation probability 0.1 

Destructive gene number 3 

 

Table 4 

Statistical values of IGD 

Problems 
NSGA-Ⅱ-RPD MOEA/D-THE SPEALNS 

Mean p-value Mean p-value Mean 

Rz01 28.2864 2.6099e-10 19.2511 1.1567e-07 8.6814 

Rz02 29.5472 3.3519e-08 27.4417 2.5721e-07 17.7158 

Rz03 29.4991 4.3106e-08 22.9083 2.2780e-05 16.6754 

Rz04 50.9465 5.4617e-09 37.1772 6.3560e-05 26.2069 

Rz05 22.4323 1.0232e-07 17.5071 3.5914e-05 9.3528 

Rz06 47.0332 2.3884e-04 44.6391 6.5277e-08 30.4315 

 

SPEALNS optimization method introduces the in-

dividual fitness calculation method in the process of multi-

objective scheduling optimization. In order to distinguish 

individuals with the same original fitness value, a new 

method for calculating individual density value is intro-

duced. This method combines a movement-based density 

estimation strategy. Different from other density estimation 

strategies, the SDE method includes individual distribution 

information and convergence information. These strategies 

improve the convergence and diversity of decision optimi-

zation methods. In order to accelerate population conver-

gence and avoid local optimization, the SPEALNS method 

carries out large neighborhood search for progeny according 

to neighborhood search probability. The large neighborhood 

search method uses the destroy and repair functions to 

search the neighborhood of the current solution. This search 

strategy can find a better solution. 

The feasibility of the whole process production 

scheduling model and SPEALNS decision optimization 

method are analyzed in detail by using Rz01 as an example.  

We apply SPEALNS decision optimization 

method to solve the whole process production energy sched-

uling model, and obtain a set of non-dominated solutions. 

Fuzzy decision method is used to obtain the best compro-

mise solution, which is the production scheduling scheme of 

Rz01 benchmark example. 

Table 5 

The best compromise solution 

optimization method completion time delay time 
the equipment idle 

time 

the adjustment time of 

equipments 

NSGA-Ⅱ-RPD 364 0 883.5 44 

MOEA/D-THE 366 0 877 42 

SPEALNS 367 0 849.5 39 

 

Table 5 shows the optimal compromise solutions 

of the three decision optimization methods. In the table 5, 

the best function values are shown in bold. As can be seen 

from Table 5, the optimal compromise solution obtained by 

SPEALNS is superior to other methods, only the completion 

time is slightly lower. The scheduling scheme obtained by 

SPEALNS can improve the utilization rate of equipment, re-

duce the adjustment time, reduce the production cost, and 

guide the production practice better. The results above prove 

the feasibility, effectiveness and superiority of the many-ob-

jective production scheduling model and SPEALNS method 

for high performance alloy casting production line. But, The 

key parameters involved in the proposed algorithm need to 

be manually tuned, resulting in poor robustness. There is no 

universal optimal value for the key parameters, and they 

need to be adjusted according to specific problems. 

5. Conclusions  

For the many-objective production scheduling 

problem of high performance aluminum alloy casting line, 

a multi-objective production scheduling model was estab-

lished, and a new high-dimensional multi-objective optimi-

zation method (SPEALNS) was designed. The SPEALNS 

method was used to solve the production scheduling model. 

The encoding and decoding method and the corresponding 

genetic operator are designed in the optimization decision 

method, and the large neighborhood search strategy is added, 
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which ensures the feasibility and efficiency of the optimiza-

tion decision method. The feasibility and superiority of the 

whole process production scheduling model and optimiza-

tion decision method were verified by using industrial data 

set in alloy casting production line. 

For the future research, the production scheduling 

problem of the aluminum alloy casting production line stud-

ied in this paper belongs to static scheduling. During the ac-

tual production process of an intelligent factory, disturbance 

events (such as the insertion of urgent orders, equipment 

failures, etc.) often occur, which cause the initial scheduling 

plan to be disrupted. It is necessary to re-arrange the sched-

uling plan to ensure the stability and efficiency of the pro-

duction system. Dynamic adjustment is more complex. It is 

necessary to study the high-dimensional many-objective dy-

namic scheduling problem to quickly and dynamically han-

dle various disturbance events in the production process. 
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Y. Sang, Y. Xu, C. Zhang, L. Liang, Z. Zhu, W. Fang, Q. 

Xu 

RESEARCH ON MANY-OBJECTIVE SCHEDULING 

OPTIMIZATION METHOD FOR THE LARGE-SCALE 

HYBRID SYSTEM 

S u m m a r y 

For the many-objective collaborative optimization 

problem of high performance alloy casting manufacturing 

process, how to achieve high efficiency, low energy con-

sumption and intelligent scheduling process is an urgent 

problem to be solved. Firstly, a multi-objective pro-duction 

scheduling model of the whole process was established ac-

cording to the production characteristics, process flow and 

production constraints. Meanwhile, a new high-dimensional 

multi-objective strong dominant optimization algorithm 

was proposed to solve the production scheduling model of 

high-performance alloy melting casting production line. 

The proposed algorithm is designed by combining strong 

domination algorithm and large neighborhood search algo-

rithm. The proposed algorithm method implements deep ex-

ploration of solution space through cyclic destruction-repair 

operation. Its dynamic neighborhood characteristics can ef-

fectively escape the local optimal. Based on the industrial 

data set of alloy casting production line, the performance of 

the model and the proposed algorithm are tested. Experi-

mental results substantiate the effectiveness and compara-

tive advantages of the many-objective scheduling model and 

the proposed algorithm method. 

Keywords: the large-scale hybrid system, large neighbor-

hood search, many-objective optimization, production 

scheduling. 
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