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1. Introduction 

Cable-driven parallel robots (CDPRs) are a special 

type of parallel robot that uses cables instead of joints. 

CDPRs have several advantages over traditional rigid-link 

parallel robots, including a larger workspace, a higher pay-

load-to-weight ratio, and lower manufacturing cost. The 

end-effector of CDPRs is connected by several flexible ca-

bles, which take the place of rigid links in traditional parallel 

robots. CDPRs can be classified into three groups based on 

the relationship between the number of cables and the de-

gree of freedom (DOF): under-constrained, completely con-

strained, and redundantly constrained. They can also be 

classified into two types based on the dimension of the 

workspace: planar and spatial. The end-effector in a planar 

CDPR moves in a plane and has two or three DOFs, whereas 

the end-effector in a spatial CDPR operates in three dimen-

sions and has more than three DOFs. The end-effector in 

spatial CDPRs can be suspended or non-suspended, depend-

ing on the location of the end-effector relative to the driving 

cables. If all driving cables are located above the end-effec-

tor position and gravity acts as an imaginary vertical cable 

to maintain balance, then the end-effector is called sus-

pended. If at least one driving cable is below the end-effec-

tor position, then the end-effector is called non-suspended. 

Tension in cables of opposite directions in the non-sus-

pended type can provide the action of push and pull to the 

end-effector. Given that gravity in the suspended type is a 

passive force, controlling a suspended CDPR is more chal-

lenging than controlling a non-suspended one [1], [2], [3], 

[4]. 

Suspended CDPRs have several advantages over 

non-suspended ones. The cables do not affect the workspace 

of the end-effector, and the payload is evenly distributed 

across the cables, resulting in high load capacity. Therefore, 

cable camera systems and lifting and moving loads are 

widely used applications in suspended CDPRs. On the other 

hand, they have some disadvantages, such as low rigidity in 

the vertical direction and susceptibility to instability under 

variable external disturbances. Suspended CDPRs can work 

with different DOFs depending on the structure design and 

the number of cables attached to the end-effector. In this pa-

per, a 3D translational (3T) suspended CDPR is considered. 

In this type, the end-effector is a point mass without rota-

tional motion. The position of the end-effector is where the 

cables’ tension vectors intersect (usually at the center of 

mass of the end-effector) [1], [4]. 

Because of the proneness of suspended CDPRs to 

external disturbances that affect their stability, robust con-

trol is necessary when dealing with such CDPRs. Several 

studies have dealt with this problem, and a sliding mode 

controller (SMC) has been used in combination with other 

methods. SMC is a type of variable structure controller that 

has been proven to be robust to perturbations and external 

disturbances. In [5], a pick-and-place suspended CDPR was 

controlled using an adaptive control scheme via terminal 

sliding mode. An adaptive fuzzy system coupled with slid-

ing mode was used in [6] and [7] to analyze suspended 

CDPR applications. Exponential sliding mode [8], dynamic 

sliding mode [9], adaptive fast terminal sliding mode [3], 

linear algorithms, and sliding mode control [10], have been 

studied and shown stability and acceptable performance 

when applied to suspended CDPRs. In [11], an optimized 

fuzzy proportional–integral–derivative (PID) control strat-

egy was used in a suspended CDPR, in which a PID con-

troller was optimized by fuzzy logic and an adaptive whale 

optimization algorithm. While these approaches demon-

strated robustness and performance, the potential for unex-

plored control schemes to yield enhanced results warrants 

further investigation. Our previous work [12] on controlling 

a suspended CDPR using an adaptive fuzzy synergetic con-

troller that was optimized using Dragonfly Algorithm (DA) 

produced promising robustness and accuracy results. The 

controller outperformed the one used in [7] on the same sys-

tem. Although the real-time application requirements were 

satisfied, the algorithm was relatively demanding compared 

with simpler control schemes, motivating the need for a 

more computationally efficient design.  

This work presents a new approach for 3T sus-

pended CDPRs, in which the classical SMC is incorporated 

with an optimized fuzzy PID controller to achieve a combi-

nation of robustness and performance. In this approach, the 

equivalent control input is replaced with an optimized fuzzy 

PID controller. This method makes the controller minimally 

complicated and useful when the exact structure or parame-

ters of the robot are uncertain. Reducing complexity is fa-

vorable if the controller is hybrid. DA, as a sort of swarm 

optimization algorithm that is suitable for engineering prob-

lems and has good convergence and minimum parameter 

tuning [13], is used to optimize the parameters of fuzzy PID 

and SMC. 

This paper is structured as follows: Sections 2 and 

3 develop the kinematic and dynamic models of the 3T sus-

pended CDPR system. Sections 4 and 5 introduce the design 

of fuzzy PID and SMC controllers. A general introduction 

to DA is presented in section 6. Section 7 presents the results 

and discussions of simulation studies evaluating the control-

ler's performance. 
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2. Kinematic Modeling of a 3T Suspended CDPR 

Manuscript The workspace field of the suspended 

CDPR is surrounded by four pillars, where the cable pulleys 

are fixed on top. Four actuators with attached winches are 

located at the base of each pillar. The cables are the medium 

for conducting tension from the actuators to the end-effector 

and are guided by winches and pulleys. Fig. 1 represents the 

Cartesian coordinate system. The origin, O(0, 0, 0), is lo-

cated at one of the corners of the base. The location of the 

end-effector is denoted by P(x, y, z) The corners of the top 

plane (Ai(xAi, yAi, zAi), i = 1, 2, 3, 4) are the locations of the 

pulleys, and they represent the anchors of the cables. 

i, i = 1, 2, 3, 4 indicates the lengths of the cables, and 

dj, j = 1, 2, 3 represents the dimensions of the frame. 

Applying the method of loop closure for the ith ca-

ble leads to the inverse geometric transformation [3], [14], 

as shown below. 

 

Fig. 1 Schematic of a suspended CDPR 
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where i, and ui  ℝ4 are the cable length and the unit vec-
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where ||•|| is the Euclidean norm. The time derivative of 

Eq. (1) gives the inverse kinematics of the CDPR. 

ii i i + =u u P  , i = 1, 2, 3, 4. (3) 

Multiplying both sides by 
T
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T
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or 
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where Λ  ℝ4 and J  ℝ4×3. J is expressed as: 

i
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That is the Jacobian matrix of the system. 

3. Dynamic Modeling of a 3T Suspended CDPR 

A dynamic mathematical model is crucial for de-

signing the controller because it exposes the system’s be-

havior. The method employed here involves using Lagran-

gian mechanics to obtain the motion equation [15]. The sys-

tem is treated as a rigid body for this purpose. The mass and 

dynamics of the cables are overlooked because they are mi-

nor compared with the end-effector’s mass. Typically, the 

motion equation is derived on the basis of the joint coordi-

nates (in this case, the cable length), but this approach re-

quires calculating the forward kinematic equations, which is 

not a straightforward task for CDPRs unless the structure is 

simple, such as planar or translational CDPRs. The use of 

task coordinates is more practical. The end-effector poten-

tial and kinetic energies ( and , respectively) can be ex-

pressed as follows in Cartesian coordinates [6]: 

1

2

T    = P MP , (8) 

mgz = − . (9) 

The partial derivatives of the Lagrangian ( = −) with re-

spect to P and their time derivatives Ṗ yield to the dynamic 

terms that are governing the system: 
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, (10) 

where  3 3 , 0 0 , 
T

m   mg= = −M I G m is the end point 

mass, g is the acceleration of gravity, and τ  ℝ3 is the gen-

eralized force vector in task space. 
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 (11) 

Given that dealing with the generalized forces in 

the joint space (represented by cable tensions) rather than 

those in the task space is easier, a transformation between 

the two coordinate frames is needed. The transformation 

stems from the fact that the change in virtual work is the 

same in both coordinates [16], i.e., 

T Td d = =W τ P T Λ , (12) 

where W is the virtual work, and T  ℝ4 is the tension vector 

in joint space. According to Eq. (6), the rates of change are: 

d d=Λ J P . (13) 
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Taking Eq. (13) into account, Eq. (12) can be writ-

ten as: 

T Td d=τ P T J P . (14) 

so that the transformation from forces in the task space to 

the joint space is given by 

T .=τ J T  (15) 

Now, Eq. (10) can be written as  

T = + +J T MP G d , (16) 

where d represents all the disturbances and uncertainties in 

, and it is assumed to be bounded by a scalar value d, i.e., 

||d|| ≤ d. 

4. Fuzzy PID Controller 

This section introduces the structure of the fuzzy 

PID controller. PID controllers are the most used in indus-

trial control processes owing to their straightforward design 

and accepted performance under various operating condi-

tions. However, a significant drawback of PID controllers is 

their sensitivity to noise and measurement inaccuracies be-

cause they can intensify input signal variations, leading to 

instability or oscillations. This issue is particularly true for 

CDPRs because they use cables, which are less rigid than 

those in other robot types. One strategy to enhance the per-

formance of a PID controller is to integrate it with fuzzy 

logic [17], [18]. Fuzzy logic controllers (FLCs) operate 

based on the expertise of professionals, which means that 

they might not need a well-defined control plant model with 

explicitly known parameters, devoid of nonlinearities and 

uncertainties. The general architecture of an FLC includes a 

fuzzifier component, an inference engine component that 

combines fuzzified inputs with IF–THEN rules to derive the 

firing strength for each rule, and a defuzzifier component, 

which is a fuzzy-to-crisp output converter [19], [20], [21]. 

Many types of fuzzy logic systems exist, defined 

by their choice of membership functions (MFs) and the type 

of inference system. In this work, Gaussian MFs were cho-

sen for their simple design, ease of representation and opti-

mization, and computational efficiency with small rule ba-

ses. These characteristics are essential for real-time systems, 

such as robotics [22]. For the same reason, the product in-

ference system is used. For xi, i = 1, 2,…, p inputs, 

yj, j = 1, 2,…, q outputs, L rules, k
iF

  input MFs, and k
jG

  

output MFs (k = 1, 2, …, L), the jth fuzzy output can be ex-

pressed as [7]: 
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1 1
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 

 
. (17) 

A fuzzy PID controller is built by feeding the error, 

its integral, and its derivative as clear inputs to the FLC. 

These signals are normalized by PID gains, similar to a 

standard PID controller. However, a three-input FLC re-

quires a 3D rule base, which can be challenging to create 

because of several reasons [23]:  

1. When using the rate of change in error, a human 

expert hardly perceives the third dimension of information, 

making it difficult to establish control rules.  

2. When the sum of error is used, its linguistic val-

ues are challenging to quantify because different plants re-

quire different integral gains and steady-state values of the 

sum of error.  

3. A 3D rule base can become extremely complex 

as the number of quantization levels (i.e., the number of 

MFs for each variable) for each dimension increases, caus-

ing the number of control rules to increase cubically with 

the number of quantization levels. Instead of a typical three-

input fuzzy PID, an alternative fuzzy PID controller is used; 

it has two inputs (PD and scaling by Kp and Kd), the output 

of fuzzy logic is summed with its scaled integration (I) by 

Ki and the final sum is scaled by the output gain Ko (see 

Fig. 2). The overall structure keeps the actuation of PID of 

the input signal, in addition to the fuzzy rules. Using in-

put/output scaling helps keep the fuzzy MFs within the nor-

malized range of (−1, 1). 

The fuzzy PD controller alone is a widely used 

controller for its stability, though its performance, especially 

in tracking error, is not optimum. The incorporation of an 

integrative action improves the steady-state error but leads 

to an overshoot in plant output, a well-known problem re-

lated to the integrative action [24], [25]. 

For solving the mentioned problem, a fuzzy PID 

controller is needed with an optimal set of gains. For obtain-

ing these sets of optimal parameters, metaheuristic optimi-

zation algorithms are known for their efficiency. DA is one 

of these optimization methods, which is known to be fast 

and reliable. 

5. Robust Controller Design 

CDPR systems, in general, inherently encompass 

uncertainties in their parameters and are vulnerable to exter-

nal disturbance. If the dynamic system is 

 = J
T
T = M

*
P̈ + G

*
 + f + , where  is the generalized ten-

sion vector, T is the generalized tension vector in joint 

space, P̈ is the end-effector acceleration vector, 

M
*
 = M + M is the mass matrix, G

*
 = G + G is the grav-

ity vector, f is the viscous and Coulomb friction vector, and 

 is the tension external disturbance vector, then the dy-

namic system can be written as  = MP̈ + G
*
 + d, where 

d = MP̈ + G
*
 + f +  is the generalized vector of all un-

certainties and disturbances [7]; d is assumed to be bounded 

(||d|| ≤ d). An optimized fuzzy PID controller can guarantee 

performance; however, with this range of uncertainties and 

disturbances, the next step is to improve the controller to be 

a robust controller. SMC is a widely used robust controller 

in robotics, and literature has shown its effectiveness in re-

jecting disturbances and eliminating the effect of uncertain-

ties in parameters. Nonetheless, chattering is one of the side 

effects of using such a controller. Performance is an issue 

without using an optimal equivalent control action in addi-

tion to the switching control action.  

The proposed controller deals with these issues by 

using a fuzzy PID controller as an equivalent control action. 

The proposed controller is a hybrid one where both the 

fuzzy PID controller and the SMC are working together to 

improve the performance and eliminate the disturbance. In-

stead of using the traditional method to design the SMC, the 
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proposed method does not need the parameters of the plant 

to compensate for them, i.e., a model-free design approach 

and a less complicated design. For ensuring the stability and 

robustness of the proposed controller, a Lyapunov-based 

proof is considered. The sliding mode surface is defined as 

follows: 

= +σ e ce , (18) 

where e = Pd − P, c  ℝ3 is a constant positive definite ma-

trix, and Pd is the desired position trajectory. The derivative 

of the sliding surface is obtained as: 

( )1 T

d

−= + = − − + − +σ ce eM Te P G J d c . (19) 

The candidate Lyapunov’s function is defined as a 

positive definite one as follows: 

1

2

TV = σ Mσ , (20) 

then its time derivative becomes 

T=V σ Mσ  , (21) 

( )T T

d -= + + +V σ MP G J T d Mce  . (22) 

Considering ( ) ( )
†

T

eq s ,= +T J u u  where ( )
†

T
J is 

the pseudoinverse of J
T
, ueq is the equivalent control signal 

that keeps the system state on the sliding surface, and 

us = Kssign() is the switching control signal that handles 

the uncertainties and ensures that the system state converges 

to the sliding surface, yielding: 

( )T

d eq s= − − + +V σ u u u d Mce  , (23) 

where ud = MP̈d + G is the desired control signal. Knowing 

that ueq is the control signal that makes ̇ from Eq. (19) 

equals to zero, it can be introduced as ueq = ud + Mcė. 

The control action provided by the optimized 

Fuzzy PID controller (ufuzzy) is one component of the final 

control action u, which also includes ueq and us. It is plausi-

ble to incorporate ufuzzy within ueq to make the overall con-

troller less complicated. Since ufuzzy can be considered as a 

close value to ud, that leads to || ||d fuzzy− u u ε , where ɛ is 

the maximum tracking error using the optimized fuzzy PID 

controller via DA. Now, ueq = ufuzzy + Mcė makes Eq. (23) 

to be: 

( )( )T

sV sign − +σ ε K σ d , (24) 

( )( )T

sV sign − +σ K σ d , (25) 

( )|| || || ||sV  − +σ K d , (26) 

( ) ( )( )
†

T

fuzzy s sign= + +T J u K σ Mce . (27) 

Inequality (26) follows by applying standard norm 

inequalities to bound the terms in (25). The term d̃ is defined 

as d ̃ = d + . 
Fig. 2 shows the block diagram of the proposed 

controller. As long as || ||s , K d the system is stable accord-

ing to (26). It should be noticed that these stability criteria 

are not restricted because the fuzzy PID controller can com-

pensate for the limitations of the SMC to some extent. 

 

Fig. 2 Block diagram of Robust Fuzzy PID controller 

 

Fig. 3 Block diagram of the system with the proposed controller 

First, DA is applied to optimize the gains of the 

fuzzy PID controller until ɛ is small enough not to affect the 

boundness of d̃. Then, it is employed to optimize the value 

of c to ensure that the sliding mode is working properly, as 

shown in Fig. 3. 

6. DA 

DA is fundamentally inspired by the static and dy-

namic swarm behavior of dragonflies in nature. It models 

the social interactions of dragonflies during navigation, food 
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search, and enemy evasion, whether they are swarming stat-

ically or dynamically. DA emulates such static and dynamic 

swarm behavior, which closely resembles the two primary 

phases of metaheuristic optimization: exploration and ex-

ploitation. In the exploration phase, dragonflies form small 

subswarms and traverse various areas, akin to a static 

swarm. Conversely, in the exploitation phase, dragonflies 

swarm in large groups and move in a single direction, typi-

cal of a static swarm. These two phases are mathematically 

represented in the subsequent section [26]. 

DA has shown notable advantages in optimizing 

PID controllers [27], [28], particularly in achieving mini-

mum fitness values and faster convergence rates when com-

pared to algorithms like particle swarm optimization (PSO), 

differential evolution, biogeography-based optimization, 

teaching learning-based optimization, krill-herd algorithm, 

and grey wolf optimization [29]. These studies highlighted 

DA's ability to enhance dynamic response, reduce peak 

overshoot, and minimize settling time. Additionally, DA has 

proven effective in several other applications, showing sig-

nificant improvement in execution times compared to PSO 

and honeybee behavior-inspired load balancing [30]. While 

DA has demonstrated strong capabilities in solving complex 

real-world problems, it also faces challenges like getting 

stuck in local optima due to its focus on exploitation more 

than exploration [31]. The "no free lunch" theorem further 

implies that no single algorithm can solve all optimization 

problems with the same effectiveness [32]. 

For mimicking the swarming behavior of dragon-

flies, five key concepts are employed: separation, align-

ment, cohesion, attraction to food sources, and distraction 

from enemies. These concepts enable the simulation of 

dragonfly behavior in dynamic and static swarms. DA is 

built upon the particle swarm optimization algorithm frame-

work, and it primarily uses two vectors: the step vector and 

the position vector. These vectors record the direction/speed 

of movement and the position of the dragonflies. The pri-

mary equations for these vectors are as follows [26]:  

( )1k i i i i i ks a c f e   + = + + + + +X S A C F E X
 

. (28) 

In this context,
kX


is the step vector of the posi-

tion of the dragonfly at iteration k, and 


is the inertia 

weight. , , , , and s a c f e


represent the weights of separation, 

alignment, cohesion, food factor, and enemy factor, respec-

tively. ,, , ,  a d  n i i i iS A C F E
 

 denote the separation, align-

ment, cohesion, food source, and position of the enemy of 

the ith individual, respectively. They are calculated as fol-

lows: 

( )1
,

N

i jj=
= − X XS


 (29) 

1

1
,

N

i jjN =
= A X


 (30) 

( )1

1
,

N

i jjN =
= − X XC

 
 (31) 

,i

+= −F X X


 (32) 

Initialize SuspendedCDPR with Kinematic and Dynamic parameters. 

Phase 1 

Initialize DA with MaxIteration, PopulationSize, and other DA pa-

rameters. 

Define objective function as: 

    ITAE = ObjectiveFunction (Kp, Ki, Kd, Ko). 

While k < MaxIteration do: 

    For each agent in PopulationSize do: 

        For each t in MaxTime do: 

            error = DesiredTrajectory(t) –  

System (SuspendedCDPR(t), FuzzyPID (t, Kp, Ki, Kd, Ko)). 

            ITAE = Function (t, error). 

        End For 

        Update FuzzyPID parameters Kp, Ki, Kd, Ko for each agent using 

DA optimization. 

    End For 

    Select the best Kp, Ki, Kd, Ko values using DA optimization. 

End While 

 

Phase 2 

Reinitialize DA with MaxIteration, PopulationSize, and other DA pa-

rameters. 

Define objective function as: 

    ITAE = ObjectiveFunction(c). 

While k < MaxIteration do: 

    For each agent in PopulationSize do: 

        For each t in MaxTime do: 

            error = DesiredTrajectory(t) – 

System (SuspendedCDPR(t), optimized Fuzzy PID(t), SMC (t, Ks, c)). 

            ITAE = Function (t, error). 

        End For 

        Update SMC parameters c for each agent using DA optimization. 

    End For 

    Select the best SMC parameter c based on DA optimization. 

End While. 

Fig. 4 Pseudocode for DA parameter optimization of the 

robust fuzzy-PID controller 

,i

−= +E X X


 (33) 

where X


is the position of the current dragonfly, jX


indi-

cates the position of the jth neighboring solution, 
+

X


shows 

the position of a food source, 
−

X


is the position of an en-

emy, N is the number of neighboring dragonflies, and jX


indicates the position of the jth neighboring solution. 

If an adjacent solution exists, the position vector is 

calculated as: 

1 1k k k .+ += +X X X


 (34) 

Otherwise, a random walk is needed to explore a new area, 

as shown below: 

1k k s kZ+ = +X X X


 (35) 

with 
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( ) ( )

( )
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1

1 1
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1 ! 1
2

0 01

1 ! 2
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s b
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b
s b sin

a
.

a s b

Z



− 
 
 

  
−  +     

   =
   

−    
 


, (36) 

where a1 and a2 are random walk variables in the range 

[0, 1], b is a constant, and s is the dimension of X


 

DA is used to optimize the 3×4 gains of the fuzzy 

PID controller, then the sliding surface parameter c of the 

total dimension of X


 equals to 12 and 3. The objective 

function is selected to minimize the integral time absolute 

error (ITAE) performance index [33]: 

( )
0

ITAE t e t dt


=  . (37) 

Using this index leads to controllers that maintain 

the robustness of the system, minimize the overshoot in the 

response, and exhibit high load disturbance rejection [34]. 

The pseudocode of the overall system, where two phases of 

optimization occur, is shown in Fig. 4. 

7. Results and Discussion 

The suspended CDPR system was modeled using 

MATLAB code. The kinematic and dynamic parameters of 

the CDPR were set as follows: mass of the end-effector 

m = 5 kg, acceleration of gravity g = 9.81 m/s2 and dimen-

sions of the frame d1 = d2 = 4 m and d3 = 3 m. For demon-

strating the effectiveness of the proposed controller, its per-

formance was evaluated, and the corresponding results are 

illustrated. Then, the robustness was tested assuming a 

bounded disturbance and normal parameter uncertainty. The 

criteria that were utilized during the test were three error in-

dices used in four tests. 

The trajectory of the desired input to the system 

 
T

d d d    dP x  y z= was chosen to be a circle following [6] and 

[7], as presented below: 

xd = 0.8cos(0.1t) + 1.8, 

yd = 0.8sin(0.1t) + 2, 

zd = 1.5. 

The initial value of the end-effector position 

 0 0 0 0

T

  x  y z=P  was chosen to be on the path of the trajec-

tory as [2.6, 2.0, 1.5]
T
. The initial end-effector velocity 

 0 0 0 0

T

  x  y z=P    was set to [0, 0, 0]
T
. 

Initially, only the fuzzy PID controller was used. 

MFs were chosen to be five Gaussian functions (Fig.5, a) 

for each input and singleton functions for the output 

(Fig.5, b). The standard deviation of each MF was set to 0.1 

and the mean vector to [−0.6, −0.3, 0, 0.3, 0.6]. This range 

is chosen to cover the span of [−1, 1] and scale the input to 

work within this interval. These MFs represent five fuzzy 

values: negative large (NL), negative small (NS), zero (Z), 

positive small (PS), and positive large (PL). The rule base is 

set as shown in Table 1 [35], [36]. When the error and its 

change are low, then the output is low, and when the error 

and its change are high, the output is high. The output in-

creases faster with the increment of the change of error and 

slower with the increment of error. 

For 250 iterations, DA, with a population size of 

120 agents, was used to optimize 12 fuzzy PID gains for the 

Table 1 

Rule base of the PD fuzzy system  

e/  NL NS Z PS PL 

NL NL NL NL NS Z 

NS NL NL NS Z PS 

Z NL NS Z PS PL 

PS NS Z PS PL PL 

PL Z PS PL PL PL 

 

a 

 

b 

Fig. 5 MFs: a – Gaussian MFs used for fuzzification,  

b –Singleton MFs used at the output stage 

best ITAE value. The number of agents was chosen to be 10 

times the number of variables to add enough diversity in 

each swarm of dragonflies. To exchange between explora-

tion and exploitation phases, the neighborhood radius r was 

expanded in proportion to the number of iterations. Addi-

tionally, adjusting the DA weight factors and the inertia fac-

tor ( and s ,a,c , f ,e , 
 

) during optimization can help 

achieve a balance between these two phases [26]. The upper 

limit of the gains is set to 100 by and the lower limit is set 

to just a small value above zero (to avoid zero and the result 

of overfitting by dropping one of the gains), by trial and er-

ror. The rest of the DA parameters were set as shown in Ta-

ble 2 (case 1) following [37]. 

The optimized gains were as follows: 

 2 3813 0 8393  3 500  diag . ,  . , .=pK , 

 39 4577 36 7564  77 0781  diag . ,  . , .=iK , 

 1 5320 1 750  6 0350diag . ,  . , .=dK , 

 80 7500 88 0161 79 0690diag . ,  . ,  .=oK . 

With ITAE 0 1077,.= the actual and desired posi-

tions of the end-effector are shown in Fig. 6. 

Fig. 7 illustrates tracking errors in each axis. This 

shows the performance of the process when the system is 

disturbance-free.  

A simulation of a disturbance and uncertainty sig-

nal was used to evaluate the robustness of the fuzzy PID 

controller. This signal is bounded and can be expressed as a 

vector, d = [4sin(10t), 2sin(10t), 4sin(10t)]
T
. This signal 

was added to the vector. The tracking signal is illustrated 
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in Fig. 8. The system stability is maintained, but the perfor-

mance is directly affected by the value of d.  

 

Fig. 6 Desired and actual positions of the end-effector when 

the fuzzy PID controller is applied 

 

Fig. 7 Tracking errors in x,y,z axes when the fuzzy PID con-

troller is applied 

 

Fig. 8 Desired and actual positions of the end-effector when 

the fuzzy PID controller is applied, and the model of 

disturbance and uncertainties is added 

Fig. 9 illustrates tracking errors in each axis. This 

shows the effect of the disturbance and uncertainties on the 

process. 

Although ITAE is a good performance index in the 

optimization phase, it does not deliver the best depiction of 

 

Fig. 9 Tracking errors in x, y, z axes when the fuzzy PID 

controller is applied, and the model of disturbance 

and uncertainties is added 

 

Fig. 10 Desired and actual positions of the end-effector 

when the robust fuzzy PID controller is applied, and 

the model of disturbance and uncertainties is added 

 

Fig. 11 Tracking errors in x,y,z axes when the robust fuzzy 

PID controller is applied, and the model of disturb-

ance and uncertainties is added 

error signal behavior. Two popular indices were used to 

show the error signal: root-mean-square error (RMSE) and 

maximum absolute error (MAE). They are expressed as [7]: 

( )
2

1

1
RMSE

N

t

e t
N =

=   and ( )
1

MAE max
t N

e t
= →

= . 

Table 3 compares the system responses integrating  
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a b c 

Fig. 12 Phase planes of the reaching phase and sliding phase: a – errors/change of error of x-axis, b – errors/change of error 

of y-axis,  c – errors/change of error of z-axis 

Table 2 

DA parameter setting when used to optimize the sliding surface parameter 

Parameter Symbol Value (case 1) Value (case 2) 

Number of variables to be optimized  12 3 

Lower bound of variables  0.1 0.001 

Upper bound of variables  100 10 

Nationhood hypersphere radius  
( ) 0 25 2

250

k
ub lb . ·

 

 
− + 

 
 ( ) 0 25 2

50

k
ub lb . ·

 

 
− + 

 
 

Inertia weight 


 
0 9 0 5

250

k
. . ·

 
+  0 9 0 5

50

k
. . ·

 
+  

Weight of separation s


 
2 rand 0 1 0 2

250

k
. . ·

 

 
  + 

 
 2 rand 0 1 0 2

50

k
. . ·

 

 
  + 

 
 

Weight of alignment a


 
2 rand 0 1 0 2

250

k
. . ·

 

 
  + 

 
  2 rand 0 1 0 2

50

k
. . ·

 

 
  + 

 
 

Weight of cohesion c


 
2 rand 0 1 0 2

250

k
. . ·

 

 
  + 

 
 2 rand 0 1 0 2

50

k
. . ·

 

 
  + 

 
 

Weight of food factor f


 2 rand  2 rand  

Weight of enemy factor e


 
0 1 0 2

250

k
. . ·

 
+  0 1 0 2

50

k
. . ·

 
+  

Random walk parameters [ 1 2a ,a ,b ]  rand rand 1 5,  ,  .   rand rand 1 5,  ,  .  

k is the iteration counter,  

rand is a random number in [0,1) 

   

 

Table 3 

Error indices of the controllers 

System ITAE RMSE MAE 

Fuzzy PID controller 0.1077 2.271110−4 m 0.0028 m 

Fuzzy PID controller with added disturbance and uncertainty model 2.4148 0.0017 m 0.0043 m 

Robust fuzzy PID controller 0.1085 1.742810−4 m 0.0025 m 

Robust fuzzy PID controller with added disturbance and uncertainty model 0.3096 3.097410−4 m 0.0026 m 

 

the optimized fuzzy PID controller without/with added dis-

turbance and uncertainty model. 

To add robustness to the system, this study used the 

proposed controller combining fuzzy PID and SMC. Ks val-

ues were chosen to be larger than the maximum bound of 

the added model of disturbance and uncertainties. The con-

trol signal was given by Eq. (27). 

The values of the c vector play a crucial role in the 

controller performance; therefore, DA was used to optimize 

c values with ITAE as the performance index. DA was run 

for 50 iterations with a population size of 30 agents. The 

upper limit of the gains is set to 10, and the lower limit is set 

to just a small value above zero, by trial and error. The rest 

of the parameter settings are shown in Table 2 (case 2) fol-

lowing [37]. 

With ITAE 0 1085,.= c was found to be: 

c = diag[1.4356, 0.7418, 0.4811]. 

The values of Ks were critical for stability with the 

presence of disturbance and uncertainties. They should be 

large enough to exceed the value of ||d|| to guarantee stabil-

ity, but not large enough to cause high chattering effects. 

The value of ||d|| is 6, Therefor, Ks were selected to be: 

Ks = diag[7, 7, 7] 
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Fig. 10 shows the tracking response of the pro-

posed controller with added disturbance and uncertainty 

model. Clearly, it is less affected than the one with the fuzzy 

PID controller, while Fig. 11 illustrates tracking errors in 

each axis. 

Table 3 shows that the proposed controller is better 

than the fuzzy PID controller alone in dealing with the re-

jection of disturbance and uncertainties. Similarly, the re-

sults are shown to be better than those of the adaptive fuzzy 

controller used in [7].  

Their controller applied to the same system, with 

the same trajectory and disturbance signal. In their work, the 

RMSE was 8.986710−4 m, and the MAE was 210−2 m; by 

contrast, in the proposed controller, they were 

3.097410−4 m and 2.610−3 m, respectively. 

Fig. 12 shows the phase plane of the SMC within 

the proposed controller and the presence of disturbance and 

uncertainties. The initial values of P0 were set to 

[2.55, 1.95, 1.45]
T
. The reason behind this choice of initial 

position is to show the reaching phase and sliding phase in 

a clear way in the graph. 

While the adaptive fuzzy synergetic controller 

from [12] showed superior tracking performance (topping 

both the robust fuzzy PID controller proposed here and the 

adaptive fuzzy controller from [7]), this enhanced precision 

comes at a high computational cost. When tested on identi-

cal hardware, the run-time of the adaptive fuzzy synergetic 

approach was 11.186 s. In contrast, the proposed robust 

fuzzy PID controller achieves highly acceptable tracking 

performance with a significantly reduced computational 

load. Its run-time was found to be 1.184 s, representing a 

marked improvement of 89.41%. This substantial reduction 

in execution time is critical for real-time applications and 

demonstrates that the proposed scheme offers a better com-

putationally efficient solution, making it highly practical for 

implementation on limited hardware resources without sac-

rificing stability and tracking quality. 

8. Conclusions 

A suspended CDPR is modeled and controlled us-

ing a robust fuzzy PID controller, which is an incorporation 

of fuzzy PID and SMC. Fuzzy PID combines the simple 

structure of a PID controller and the intelligence of an FLC. 

It is optimized using DA to be close enough to replace the 

equivalent control action of sliding mode control. Owing to 

the assumed uncertainties in the model parameters, this 

method is more practical than using conventional equivalent 

control. Moreover, DA is used to optimize the parameters of 

the sliding surface of SMC. The controller is tested mathe-

matically and in simulation on disturbed and undisturbed 

suspended CDPRs. It realizes a balance between perfor-

mance and robustness. The positive simulation results vali-

date the controller's design and motivate the future work of 

implementing the controller on a physical CDPR for real-

world experimental validation. 
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Y. H. Alwan, A. A. Oglah, M. S. Croock 

OPTIMIZED ROBUST FUZZY PID CONTROLLER FOR 

SUSPENDED CABLE-DRIVEN PARALLEL ROBOTS 

VIA DRAGONFLY ALGORITHM 

S u m m a r y 

The kinematics and dynamics of a suspended ca-

ble-driven parallel robot with spatial of three degrees of 

freedom are presented. This robot has many applications, 

though, because of its structure, it is vulnerable to disturb-

ance and uncertainties. This paper presents a proposed ro-

bust controller to deal with this issue. First, a fuzzy propor-

tional–integral–derivative (PID) controller, which combines 

the merits of a fuzzy logic controller and the conventional 

widely used PID controller, is chosen as the main controller. 

Dragonfly algorithm (DA), as a relatively new metaheuristic 

algorithm, is known to have advantages over other classical 

ones. It is utilized to optimize PID gains until the required 

tracking error is achieved. Then, the chosen controller is in-

corporated with the robust classical sliding mode controller 

(SMC) in a way that balances the performance and robust-

ness. DA is further exploited to optimize the parameters of 

SMC. Mathematical stability calculations and code model-

ing show the effectiveness of the proposed controller in per-

formance and robustness.  

Keywords: cable-driven parallel robot, suspended fuzzy 

logic controller, proportional–integral–derivative control-

ler, dragonfly algorithm, sliding mode controller. 
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