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1. Introduction

Cable-driven parallel robots (CDPRs) are a special
type of parallel robot that uses cables instead of joints.
CDPRs have several advantages over traditional rigid-link
parallel robots, including a larger workspace, a higher pay-
load-to-weight ratio, and lower manufacturing cost. The
end-effector of CDPRs is connected by several flexible ca-
bles, which take the place of rigid links in traditional parallel
robots. CDPRs can be classified into three groups based on
the relationship between the number of cables and the de-
gree of freedom (DOF): under-constrained, completely con-
strained, and redundantly constrained. They can also be
classified into two types based on the dimension of the
workspace: planar and spatial. The end-effector in a planar
CDPR moves in a plane and has two or three DOFs, whereas
the end-effector in a spatial CDPR operates in three dimen-
sions and has more than three DOFs. The end-effector in
spatial CDPRs can be suspended or non-suspended, depend-
ing on the location of the end-effector relative to the driving
cables. If all driving cables are located above the end-effec-
tor position and gravity acts as an imaginary vertical cable
to maintain balance, then the end-effector is called sus-
pended. If at least one driving cable is below the end-effec-
tor position, then the end-effector is called non-suspended.
Tension in cables of opposite directions in the non-sus-
pended type can provide the action of push and pull to the
end-effector. Given that gravity in the suspended type is a
passive force, controlling a suspended CDPR is more chal-
lenging than controlling a non-suspended one [1], [2], [3],
[4].

Suspended CDPRs have several advantages over
non-suspended ones. The cables do not affect the workspace
of the end-effector, and the payload is evenly distributed
across the cables, resulting in high load capacity. Therefore,
cable camera systems and lifting and moving loads are
widely used applications in suspended CDPRs. On the other
hand, they have some disadvantages, such as low rigidity in
the vertical direction and susceptibility to instability under
variable external disturbances. Suspended CDPRs can work
with different DOFs depending on the structure design and
the number of cables attached to the end-effector. In this pa-
per, a 3D translational (3T) suspended CDPR is considered.
In this type, the end-effector is a point mass without rota-
tional motion. The position of the end-effector is where the
cables’ tension vectors intersect (usually at the center of
mass of the end-effector) [1], [4].

Because of the proneness of suspended CDPRs to
external disturbances that affect their stability, robust con-
trol is necessary when dealing with such CDPRs. Several

studies have dealt with this problem, and a sliding mode
controller (SMC) has been used in combination with other
methods. SMC is a type of variable structure controller that
has been proven to be robust to perturbations and external
disturbances. In [5], a pick-and-place suspended CDPR was
controlled using an adaptive control scheme via terminal
sliding mode. An adaptive fuzzy system coupled with slid-
ing mode was used in [6] and [7] to analyze suspended
CDPR applications. Exponential sliding mode [8], dynamic
sliding mode [9], adaptive fast terminal sliding mode [3],
linear algorithms, and sliding mode control [10], have been
studied and shown stability and acceptable performance
when applied to suspended CDPRs. In [11], an optimized
fuzzy proportional—integral-derivative (PID) control strat-
egy was used in a suspended CDPR, in which a PID con-
troller was optimized by fuzzy logic and an adaptive whale
optimization algorithm. While these approaches demon-
strated robustness and performance, the potential for unex-
plored control schemes to yield enhanced results warrants
further investigation. Our previous work [12] on controlling
a suspended CDPR using an adaptive fuzzy synergetic con-
troller that was optimized using Dragonfly Algorithm (DA)
produced promising robustness and accuracy results. The
controller outperformed the one used in [7] on the same sys-
tem. Although the real-time application requirements were
satisfied, the algorithm was relatively demanding compared
with simpler control schemes, motivating the need for a
more computationally efficient design.

This work presents a new approach for 3T sus-
pended CDPRs, in which the classical SMC is incorporated
with an optimized fuzzy PID controller to achieve a combi-
nation of robustness and performance. In this approach, the
equivalent control input is replaced with an optimized fuzzy
PID controller. This method makes the controller minimally
complicated and useful when the exact structure or parame-
ters of the robot are uncertain. Reducing complexity is fa-
vorable if the controller is hybrid. DA, as a sort of swarm
optimization algorithm that is suitable for engineering prob-
lems and has good convergence and minimum parameter
tuning [13], is used to optimize the parameters of fuzzy PID
and SMC.

This paper is structured as follows: Sections 2 and
3 develop the kinematic and dynamic models of the 3T sus-
pended CDPR system. Sections 4 and 5 introduce the design
of fuzzy PID and SMC controllers. A general introduction
to DA is presented in section 6. Section 7 presents the results
and discussions of simulation studies evaluating the control-
ler's performance.



2. Kinematic Modeling of a 3T Suspended CDPR

Manuscript The workspace field of the suspended
CDPR is surrounded by four pillars, where the cable pulleys
are fixed on top. Four actuators with attached winches are
located at the base of each pillar. The cables are the medium
for conducting tension from the actuators to the end-effector
and are guided by winches and pulleys. Fig. 1 represents the
Cartesian coordinate system. The origin, 0(0, 0, 0), is lo-
cated at one of the corners of the base. The location of the
end-effector is denoted by P(x, y, z) The corners of the top
plane (A(x;, Vi Z41)s i = 1, 2, 3, 4) are the locations of the
pulleys, and they represent the anchors of the cables.
A,i=1,2,3,4 indicates the lengths of the cables, and
d,, j= 1,2, 3 represents the dimensions of the frame.

Applying the method of loop closure for the i ca-
ble leads to the inverse geometric transformation [3], [14],
as shown below.

Fig. 1 Schematic of a suspended CDPR

A =P A,i=1234, (1)

where A, and u; € R*are the cable length and the unit vec-
tor of the i cable, respectively. P =[x yz]T , and
A, =[x, 7424 - They are defined as follows:

A=l P-4l u :LA,F 1,2,3,4,

IlP—al @)

where ||o|| is the Euclidean norm. The time derivative of
Eq. (1) gives the inverse kinematics of the CDPR.

A, +Au =P =123, 4. 3)
Multiplying both sides by u,” yields

Aagu + duu’ =Pu’ i=1,23,4. 4)
Because #u,” is zero, Eq. (4) becomes

A=u'P,i=1,2,34 (5)

or
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A=JP, (6)

where 4 € R*and J € R*3. J is expressed as:

2

That is the Jacobian matrix of the system.
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},i—1,2,3,4. (7)

3. Dynamic Modeling of a 3T Suspended CDPR

A dynamic mathematical model is crucial for de-
signing the controller because it exposes the system’s be-
havior. The method employed here involves using Lagran-
gian mechanics to obtain the motion equation [15]. The sys-
tem is treated as a rigid body for this purpose. The mass and
dynamics of the cables are overlooked because they are mi-
nor compared with the end-effector’s mass. Typically, the
motion equation is derived on the basis of the joint coordi-
nates (in this case, the cable length), but this approach re-
quires calculating the forward kinematic equations, which is
not a straightforward task for CDPRs unless the structure is
simple, such as planar or translational CDPRs. The use of
task coordinates is more practical. The end-effector poten-
tial and kinetic energies (x and p, respectively) can be ex-
pressed as follows in Cartesian coordinates [6]:

1

KZEPTMP, (®)

p=-mgz. 9

The partial derivatives of the Lagrangian (£ = x—p) with re-

spect to P and their time derivatives P yield to the dynamic
terms that are governing the system:

d L L

dtP P

MP+G, (10)

where M =ml

3x32

G:[O 0 —mg]T, m is the end point

mass, g is the acceleration of gravity, and 7 € R?is the gen-
eralized force vector in task space.

T, m 0 O] X 0
7, 1=|0 m O y|+ 0 (11)
T, 0 0 m|zZ -mg

Given that dealing with the generalized forces in
the joint space (represented by cable tensions) rather than
those in the task space is easier, a transformation between
the two coordinate frames is needed. The transformation
stems from the fact that the change in virtual work is the
same in both coordinates [16], i.e.,

oW =1t"dP=T"dA, (12)
where W is the virtual work, and T € R*is the tension vector
in joint space. According to Eq. (6), the rates of change are:

dA=JdP . (13)



Taking Eq. (13) into account, Eq. (12) can be writ-
ten as:

t'dP =T"JdP . (14)

so that the transformation from forces in the task space to
the joint space is given by

t=J'T. (15)
Now, Eq. (10) can be written as
J'T=MP+G+d, (16)

where d represents all the disturbances and uncertainties in

7, and it is assumed to be bounded by a scalar value d, i.e.,
lld|| < d.

4. Fuzzy PID Controller

This section introduces the structure of the fuzzy
PID controller. PID controllers are the most used in indus-
trial control processes owing to their straightforward design
and accepted performance under various operating condi-
tions. However, a significant drawback of PID controllers is
their sensitivity to noise and measurement inaccuracies be-
cause they can intensify input signal variations, leading to
instability or oscillations. This issue is particularly true for
CDPRs because they use cables, which are less rigid than
those in other robot types. One strategy to enhance the per-
formance of a PID controller is to integrate it with fuzzy
logic [17], [18]. Fuzzy logic controllers (FLCs) operate
based on the expertise of professionals, which means that
they might not need a well-defined control plant model with
explicitly known parameters, devoid of nonlinearities and
uncertainties. The general architecture of an FLC includes a
fuzzifier component, an inference engine component that
combines fuzzified inputs with IF-THEN rules to derive the
firing strength for each rule, and a defuzzifier component,
which is a fuzzy-to-crisp output converter [19], [20], [21].

Many types of fuzzy logic systems exist, defined
by their choice of membership functions (MFs) and the type
of inference system. In this work, Gaussian MFs were cho-
sen for their simple design, ease of representation and opti-
mization, and computational efficiency with small rule ba-
ses. These characteristics are essential for real-time systems,
such as robotics [22]. For the same reason, the product in-
ference system is used. For x,i=1,2,...,p inputs,

Y»j=1,2,..., q outputs, L rules, Moy input MFs, and M
i J

output MFs (k= 1, 2, ..., L), the j* fuzzy output can be ex-
pressed as [7]:

z;l/ucj (Hzil fup/f (x,))
v, = - )
LI e ()

A fuzzy PID controller is built by feeding the error,
its integral, and its derivative as clear inputs to the FLC.
These signals are normalized by PID gains, similar to a
standard PID controller. However, a three-input FLC re-
quires a 3D rule base, which can be challenging to create
because of several reasons [23]:

(17
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1. When using the rate of change in error, a human
expert hardly perceives the third dimension of information,
making it difficult to establish control rules.

2. When the sum of error is used, its linguistic val-
ues are challenging to quantify because different plants re-
quire different integral gains and steady-state values of the
sum of error.

3. A 3D rule base can become extremely complex
as the number of quantization levels (i.e., the number of
MFs for each variable) for each dimension increases, caus-
ing the number of control rules to increase cubically with
the number of quantization levels. Instead of a typical three-
input fuzzy PID, an alternative fuzzy PID controller is used;
it has two inputs (PD and scaling by K, and K,), the output
of fuzzy logic is summed with its scaled integration (I) by
K; and the final sum is scaled by the output gain K, (see
Fig. 2). The overall structure keeps the actuation of PID of
the input signal, in addition to the fuzzy rules. Using in-
put/output scaling helps keep the fuzzy MFs within the nor-
malized range of (—1, 1).

The fuzzy PD controller alone is a widely used
controller for its stability, though its performance, especially
in tracking error, is not optimum. The incorporation of an
integrative action improves the steady-state error but leads
to an overshoot in plant output, a well-known problem re-
lated to the integrative action [24], [25].

For solving the mentioned problem, a fuzzy PID
controller is needed with an optimal set of gains. For obtain-
ing these sets of optimal parameters, metaheuristic optimi-
zation algorithms are known for their efficiency. DA is one
of these optimization methods, which is known to be fast
and reliable.

5. Robust Controller Design

CDPR systems, in general, inherently encompass
uncertainties in their parameters and are vulnerable to exter-
nal  disturbance. If the dynamic system is
t=J'T=M P+ G" +f+ & where ris the generalized ten-
sion vector, T is the generalized tension vector in joint
space, P is the end-effector acceleration vector,
M’ =M + AM is the mass matrix, G = G + AG is the grav-
ity vector, f'is the viscous and Coulomb friction vector, and
J is the tension external disturbance vector, then the dy-
namic system can be written as 7=MP+ G + d, where
d=AMP + AG" + f+ & is the generalized vector of all un-
certainties and disturbances [7]; d is assumed to be bounded
(l|d]] < d). An optimized fuzzy PID controller can guarantee
performance; however, with this range of uncertainties and
disturbances, the next step is to improve the controller to be
a robust controller. SMC is a widely used robust controller
in robotics, and literature has shown its effectiveness in re-
jecting disturbances and eliminating the effect of uncertain-
ties in parameters. Nonetheless, chattering is one of the side
effects of using such a controller. Performance is an issue
without using an optimal equivalent control action in addi-
tion to the switching control action.

The proposed controller deals with these issues by
using a fuzzy PID controller as an equivalent control action.
The proposed controller is a hybrid one where both the
fuzzy PID controller and the SMC are working together to
improve the performance and eliminate the disturbance. In-
stead of using the traditional method to design the SMC, the



proposed method does not need the parameters of the plant
to compensate for them, i.e., a model-free design approach
and a less complicated design. For ensuring the stability and
robustness of the proposed controller, a Lyapunov-based
proof is considered. The sliding mode surface is defined as
follows:

6c=¢é+ce, (18)
where e = P;— P, ¢ € R*is a constant positive definite ma-
trix, and P, is the desired position trajectory. The derivative
of the sliding surface is obtained as:
G=é+ce=P -M"'(-G+J'T-d)+cé.  (19)
The candidate Lyapunov’s function is defined as a
positive definite one as follows:

V= %O’TMO' , (20)
then its time derivative becomes

V=¢"Ms, €2y

V=0 (MP,+G-J'T+d+Mcé). (22)

Considering T = (JT )T (ugq +u, ) where (JT )+ is

the pseudoinverse of J, u,, is the equivalent control signal
that keeps the system state on the sliding surface, and
u, = Ksign(o) is the switching control signal that handles
the uncertainties and ensures that the system state converges
to the sliding surface, yielding:
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V=6 (ud —u, —uS+d+Mcé), (23)
where u,= MP,+ G is the desired control signal. Knowing
that u,, is the control signal that makes o from Eq. (19)
equals to zero, it can be introduced as u,, = u, + Mcé.

The control action provided by the optimized
Fuzzy PID controller (u,.,) is one component of the final
control action u, which also includes u,, and u;. It is plausi-
ble to incorporate uy,.,, within u,, to make the overall con-
troller less complicated. Since uy,.., can be considered as a

close value to u,, that leads to |lu, —u,._ || <&, where ¢ is

the maximum tracking error using the optimized fuzzy PID
controller via DA. Now, u,, = u,., + Mcé makes Eq. (23)
to be:

V<o (e-Ksign(c)+d), (24)
V<o (-Ksign(c)+d), (25)
V <lloll(~K, +lidll) (26)
T=(J") (., + K, sign(c)+ Mcé). 7)

Inequality (26) follows by applying standard norm
inequalities to bound the terms in (25). The term d is defined
asd=d+ e

Fig. 2 shows the block diagram of the proposed
controller. As long as K, > ||d||, the system is stable accord-
ing to (26). It should be noticed that these stability criteria
are not restricted because the fuzzy PID controller can com-
pensate for the limitations of the SMC to some extent.

Fuzzy PID
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Fig. 2 Block diagram of Robust Fuzzy PID controller
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Fig. 3 Block diagram of the system with the proposed controller

First, DA is applied to optimize the gains of the
fuzzy PID controller until € is small enough not to affect the
boundness of d. Then, it is employed to optimize the value
of ¢ to ensure that the sliding mode is working properly, as
shown in Fig. 3.

6. DA

DA is fundamentally inspired by the static and dy-
namic swarm behavior of dragonflies in nature. It models
the social interactions of dragonflies during navigation, food



search, and enemy evasion, whether they are swarming stat-
ically or dynamically. DA emulates such static and dynamic
swarm behavior, which closely resembles the two primary
phases of metaheuristic optimization: exploration and ex-
ploitation. In the exploration phase, dragonflies form small
subswarms and traverse various areas, akin to a static
swarm. Conversely, in the exploitation phase, dragonflies
swarm in large groups and move in a single direction, typi-
cal of a static swarm. These two phases are mathematically
represented in the subsequent section [26].

DA has shown notable advantages in optimizing
PID controllers [27], [28], particularly in achieving mini-
mum fitness values and faster convergence rates when com-
pared to algorithms like particle swarm optimization (PSO),
differential evolution, biogeography-based optimization,
teaching learning-based optimization, krill-herd algorithm,
and grey wolf optimization [29]. These studies highlighted
DA's ability to enhance dynamic response, reduce peak
overshoot, and minimize settling time. Additionally, DA has
proven effective in several other applications, showing sig-
nificant improvement in execution times compared to PSO
and honeybee behavior-inspired load balancing [30]. While
DA has demonstrated strong capabilities in solving complex
real-world problems, it also faces challenges like getting
stuck in local optima due to its focus on exploitation more
than exploration [31]. The "no free lunch" theorem further
implies that no single algorithm can solve all optimization
problems with the same effectiveness [32].

For mimicking the swarming behavior of dragon-
flies, five key concepts are employed: separation, align-
ment, cohesion, attraction to food sources, and distraction
from enemies. These concepts enable the simulation of
dragonfly behavior in dynamic and static swarms. DA is
built upon the particle swarm optimization algorithm frame-
work, and it primarily uses two vectors: the step vector and
the position vector. These vectors record the direction/speed
of movement and the position of the dragonflies. The pri-
mary equations for these vectors are as follows [26]:

AX,,, = (58, +ad, +cC, + fF, +¢E, J+@AX, . (28)

In this context, A4X, is the step vector of the posi-
tion of the dragonfly at iteration k, and @ is the inertia
weight. §, a, ¢, f, and e represent the weights of separation,
alignment, cohesion, food factor, and enemy factor, respec-
tively. §,., ;1,., éi, F,and Ei denote the separation, align-
ment, cohesion, food source, and position of the enemy of

the i individual, respectively. They are calculated as fol-
lows:

S =%(X-X), @)
- 1 N ~
A=22% (30)
-1 N o~ _

i :N(z,,‘le/‘)_X’ (1)
F=X'-X, (32)

Initialize SuspendedCDPR with Kinematic and Dynamic parameters.
Phase 1

Initialize DA with MaxlIteration, PopulationSize, and other DA pa-
rameters.

Define objective function as:
ITAE = ObjectiveFunction (K, K, Ky, K,).
While k < MaxlIteration do:
For each agent in PopulationSize do:
For each ¢ in MaxTime do:
error = DesiredTrajectory(?) —
System (SuspendedCDPR(¢), FuzzyPID (¢, K, K, Ky, K,)).
ITAE = Function (¢, error).
End For

Update FuzzyPID parameters K,, K, Ky, K, for each agent using
DA optimization.

End For
Select the best K, Ki, K, K, values using DA optimization.
End While

Phase 2

Reinitialize DA with Maxlteration, PopulationSize, and other DA pa-
rameters.

Define objective function as:
ITAE = ObjectiveFunction(c).
While k < MaxlIteration do:
For each agent in PopulationSize do:
For each ¢ in MaxTime do:
error = DesiredTrajectory(z) —
System (SuspendedCDPR(?), optimized Fuzzy PID(¢), SMC (¢, K, ¢)).
ITAE = Function (z, error).
End For
Update SMC parameters ¢ for each agent using DA optimization.
End For
Select the best SMC parameter ¢ based on DA optimization.
End While.

Fig. 4 Pseudocode for DA parameter optimization of the
robust fuzzy-PID controller

E =X +X, (33)

i

where X is the position of the current dragonfly, X ;indi-

cates the position of the j# neighboring solution, X" shows
the position of a food source, X is the position of an en-
emy, N is the number of neighboring dragonflies, and X ;
indicates the position of the j” neighboring solution.

If an adjacent solution exists, the position vector is
calculated as:

X

k+l T Xk +4X (34)

k+1°

Otherwise, a random walk is needed to explore a new area,
as shown below:

Xku :Xk +2st (35)

with
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(s—l)!~(1+b)-sin(b;j ’
)

where a, and a, are random walk variables in the range

Z =001 -4

1
|az|b

e D

2

(s—l)!~b-2(

[0, 1], b is a constant, and s is the dimension of X
DA is used to optimize the 3x4 gains of the fuzzy
PID controller, then the sliding surface parameter ¢ of the

total dimension of X equals to 12 and 3. The objective
function is selected to minimize the integral time absolute
error (ITAE) performance index [33]:

ITAE = [ tle(¢)|dt . (37)

Using this index leads to controllers that maintain
the robustness of the system, minimize the overshoot in the
response, and exhibit high load disturbance rejection [34].
The pseudocode of the overall system, where two phases of
optimization occur, is shown in Fig. 4.

7. Results and Discussion

The suspended CDPR system was modeled using
MATLAB code. The kinematic and dynamic parameters of
the CDPR were set as follows: mass of the end-effector
m =5 kg, acceleration of gravity g =9.81 m/s?> and dimen-
sions of the frame d, =d, =4 m and d; =3 m. For demon-
strating the effectiveness of the proposed controller, its per-
formance was evaluated, and the corresponding results are
illustrated. Then, the robustness was tested assuming a
bounded disturbance and normal parameter uncertainty. The
criteria that were utilized during the test were three error in-
dices used in four tests.

The trajectory of the desired input to the system

P, =[x, 2, ]T was chosen to be a circle following [6] and

[7], as presented below:
x,;=10.8cos(0.17) + 1.8,
y,=0.8sin(0.17) + 2,
z;=1.5.

The initial value of the end-effector position
P, =[x, 2, ]T was chosen to be on the path of the trajec-
tory as [2.6,2.0, 1.5]". The initial end-effector velocity
P, =[%, 3, z,]' was setto [0, 0, 0]".

Initially, only the fuzzy PID controller was used.
MFs were chosen to be five Gaussian functions (Fig.5, a)
for each input and singleton functions for the output
(Fig.5, b). The standard deviation of each MF was set to 0.1
and the mean vector to [—0.6, —0.3, 0, 0.3, 0.6]. This range
is chosen to cover the span of [—1, 1] and scale the input to
work within this interval. These MFs represent five fuzzy
values: negative large (NL), negative small (NS), zero (Z),
positive small (PS), and positive large (PL). The rule base is
set as shown in Table 1 [35], [36]. When the error and its
change are low, then the output is low, and when the error
and its change are high, the output is high. The output in-
creases faster with the increment of the change of error and
slower with the increment of error.

For 250 iterations, DA, with a population size of
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120 agents, was used to optimize 12 fuzzy PID gains for the

Table 1
Rule base of the PD fuzzy system
elé NL NS Z PS PL
NL NL NL NL NS Z
NS NL NL NS Z PS
Z NL NS Z PS PL
PS NS Z PS PL PL
PL Z PS PL PL PL
Input Gaussian Membership Functions
% 1k Z P. P,
2
E
=
%5 0.5
]
=
a | N N A ]
u—1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
Input Variable
a
Output Singleton Membership Functions
2 | | 1 | | [ |
‘E 1+ S PS P
2
E
=
505k
8
o
g L. . . |
-1 0.8 0.6 0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Qutput Variable

Fig. 5 MFs: a — Gaussian MFs used for fuzzification,
b —Singleton MFs used at the output stage

best ITAE value. The number of agents was chosen to be 10
times the number of variables to add enough diversity in
each swarm of dragonflies. To exchange between explora-
tion and exploitation phases, the neighborhood radius » was
expanded in proportion to the number of iterations. Addi-
tionally, adjusting the DA weight factors and the inertia fac-
tor (s,a.c,f,e,and @) during optimization can help
achieve a balance between these two phases [26]. The upper
limit of the gains is set to 100 by and the lower limit is set
to just a small value above zero (to avoid zero and the result
of overfitting by dropping one of the gains), by trial and er-
ror. The rest of the DA parameters were set as shown in Ta-
ble 2 (case 1) following [37].
The optimized gains were as follows:
K, =diag [2.3813, 0.8393, 3.500] ,

K, = diag[39.4577,36.7564,77.0781],
K, = diag[1.5320,1.750, 6.0350]
K, = diag[80.7500,88.0161,79.0690] .

With ||ITAE|| =0.1077, the actual and desired posi-

tions of the end-effector are shown in Fig. 6.

Fig. 7 illustrates tracking errors in each axis. This
shows the performance of the process when the system is
disturbance-free.

A simulation of a disturbance and uncertainty sig-
nal was used to evaluate the robustness of the fuzzy PID
controller. This signal is bounded and can be expressed as a
vector, d = [4sin(107), 2sin(107), 4sin(10£)]". This signal
was added to thez vector. The tracking signal is illustrated



in Fig. 8. The system stability is maintained, but the perfor-
mance is directly affected by the value of d.

Generated Trajectory vs. Achieved Tracking Response
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Fig. 6 Desired and actual positions of the end-effector when
the fuzzy PID controller is applied
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Fig. 7 Tracking errors in X,y,z axes when the fuzzy PID con-
troller is applied
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Fig. 8 Desired and actual positions of the end-effector when
the fuzzy PID controller is applied, and the model of
disturbance and uncertainties is added

Fig. 9 illustrates tracking errors in each axis. This
shows the effect of the disturbance and uncertainties on the
process.

Although ITAE is a good performance index in the

optimization phase, it does not deliver the best depiction of
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Fig. 9 Tracking errors in x, y, z axes when the fuzzy PID
controller is applied, and the model of disturbance
and uncertainties is added
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Fig. 10 Desired and actual positions of the end-effector
when the robust fuzzy PID controller is applied, and
the model of disturbance and uncertainties is added
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Fig. 11 Tracking errors in x,y,z axes when the robust fuzzy
PID controller is applied, and the model of disturb-
ance and uncertainties is added

error signal behavior. Two popular indices were used to
show the error signal: root-mean-square error (RMSE) and
maximum absolute error (MAE). They are expressed as [7]:

1 N
RMSE = ,N§|e(t)|2 and MAE:II:rlli)](v|e(t)|.

Table 3 compares the system responses integrating
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Fig. 12 Phase planes of the reaching phase and sliding phase: a — errors/change of error of x-axis, b — errors/change of error

of y-axis, c— errors/change of error of z-axis

Table 2
DA parameter setting when used to optimize the sliding surface parameter
Parameter Symbol Value (case 1) Value (case 2)
Number of variables to be optimized s 12 3
Lower bound of variables 1b 0.1 0.001
Upper bound of variables ub 100 10
Nationhood hypersphere radius
g (ub—1b)[ 0.25 4 2 (ub—1b)[ 0.25+ 2%
250 50
Inertia weight @ k k
0.9+0.5— 0.9+0.5—
250 50
Weight of separation s k k
2-rand-| 0.1+ 0.2—— 2-rand-| 0.1+0.2—
250 50
Weight of alignment a k k
2-rand-| 0.14+0.2—— 2-rand-| 0.1+0.2—
250 50
Weight of cohesion c k k
2-rand-| 0.1+ 0.2—— 2-rand-| 0.1+0.2—
250 50
Weight of food factor J} 2.rand 2.rand
Weight of enemy factor e k k
0.1+0.2—— 0.1+0.2—
250 50
Random walk parameters [a,,a,,b] [rand, rand, 1.5] [rand, rand,1.5]
k is the iteration counter,
rand is a random number in [0,1)
Table 3
Error indices of the controllers
System ITAE RMSE MAE
Fuzzy PID controller 0.1077 22711x10* m 0.0028 m
Fuzzy PID controller with added disturbance and uncertainty model 2.4148 0.0017 m 0.0043 m
Robust fuzzy PID controller 0.1085 1.7428x10* m 0.0025 m
Robust fuzzy PID controller with added disturbance and uncertainty model 0.3096 3.0974x10* m 0.0026 m

the optimized fuzzy PID controller without/with added dis-
turbance and uncertainty model.

To add robustness to the system, this study used the
proposed controller combining fuzzy PID and SMC. K, val-
ues were chosen to be larger than the maximum bound of
the added model of disturbance and uncertainties. The con-
trol signal was given by Eq. (27).

The values of the ¢ vector play a crucial role in the
controller performance; therefore, DA was used to optimize
c values with ITAE as the performance index. DA was run
for 50 iterations with a population size of 30 agents. The
upper limit of the gains is set to 10, and the lower limit is set

to just a small value above zero, by trial and error. The rest
of the parameter settings are shown in Table 2 (case 2) fol-
lowing [37].

With ||ITAE|| =0.1085, ¢ was found to be:

¢ =diag[1.4356,0.7418, 0.4811].

The values of K, were critical for stability with the
presence of disturbance and uncertainties. They should be
large enough to exceed the value of ||d|| to guarantee stabil-
ity, but not large enough to cause high chattering effects.
The value of ||d|| is 6, Therefor, K, were selected to be:

K, =diag[7,7, 7]



Fig. 10 shows the tracking response of the pro-
posed controller with added disturbance and uncertainty
model. Clearly, it is less affected than the one with the fuzzy
PID controller, while Fig. 11 illustrates tracking errors in
each axis.

Table 3 shows that the proposed controller is better
than the fuzzy PID controller alone in dealing with the re-
jection of disturbance and uncertainties. Similarly, the re-
sults are shown to be better than those of the adaptive fuzzy
controller used in [7].

Their controller applied to the same system, with
the same trajectory and disturbance signal. In their work, the
RMSE was 8.9867x107* m, and the MAE was 2x107? m; by
contrast, in the proposed controller, they were
3.0974x10~* m and 2.6x10~3 m, respectively.

Fig. 12 shows the phase plane of the SMC within
the proposed controller and the presence of disturbance and
uncertainties. The initial values of P, were set to
[2.55, 1.95, 1.45]7. The reason behind this choice of initial
position is to show the reaching phase and sliding phase in
a clear way in the graph.

While the adaptive fuzzy synergetic controller
from [12] showed superior tracking performance (topping
both the robust fuzzy PID controller proposed here and the
adaptive fuzzy controller from [7]), this enhanced precision
comes at a high computational cost. When tested on identi-
cal hardware, the run-time of the adaptive fuzzy synergetic
approach was 11.186 s. In contrast, the proposed robust
fuzzy PID controller achieves highly acceptable tracking
performance with a significantly reduced computational
load. Its run-time was found to be 1.184 s, representing a
marked improvement of 89.41%. This substantial reduction
in execution time is critical for real-time applications and
demonstrates that the proposed scheme offers a better com-
putationally efficient solution, making it highly practical for
implementation on limited hardware resources without sac-
rificing stability and tracking quality.

8. Conclusions

A suspended CDPR is modeled and controlled us-
ing a robust fuzzy PID controller, which is an incorporation
of fuzzy PID and SMC. Fuzzy PID combines the simple
structure of a PID controller and the intelligence of an FLC.
It is optimized using DA to be close enough to replace the
equivalent control action of sliding mode control. Owing to
the assumed uncertainties in the model parameters, this
method is more practical than using conventional equivalent
control. Moreover, DA is used to optimize the parameters of
the sliding surface of SMC. The controller is tested mathe-
matically and in simulation on disturbed and undisturbed
suspended CDPRs. It realizes a balance between perfor-
mance and robustness. The positive simulation results vali-
date the controller's design and motivate the future work of
implementing the controller on a physical CDPR for real-
world experimental validation.
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Y. H. Alwan, A. A. Oglah, M. S. Croock

OPTIMIZED ROBUST FUZZY PID CONTROLLER FOR
SUSPENDED CABLE-DRIVEN PARALLEL ROBOTS
VIA DRAGONFLY ALGORITHM

Summary

The kinematics and dynamics of a suspended ca-
ble-driven parallel robot with spatial of three degrees of
freedom are presented. This robot has many applications,
though, because of its structure, it is vulnerable to disturb-
ance and uncertainties. This paper presents a proposed ro-

(CMOoM

bust controller to deal with this issue. First, a fuzzy propor-
tional-integral-derivative (PID) controller, which combines
the merits of a fuzzy logic controller and the conventional
widely used PID controller, is chosen as the main controller.
Dragonfly algorithm (DA), as a relatively new metaheuristic
algorithm, is known to have advantages over other classical
ones. It is utilized to optimize PID gains until the required
tracking error is achieved. Then, the chosen controller is in-
corporated with the robust classical sliding mode controller
(SMC) in a way that balances the performance and robust-
ness. DA is further exploited to optimize the parameters of
SMC. Mathematical stability calculations and code model-
ing show the effectiveness of the proposed controller in per-
formance and robustness.

Keywords: cable-driven parallel robot, suspended fuzzy
logic controller, proportional—integral—derivative control-
ler, dragonfly algorithm, sliding mode controller.
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