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1. Introduction 

The grasping of an object by a robotic hand is es-
sentially a contact problem that may be represented by 
several closed loops, the object constituting the passive 
chain and the fingers the active one. 

Great developments of articulated mechanical 
hands have been achieved. The Stanford-JPL hand is a 
mechanism constituted of three modular fingers that has 
not been designed for hominoid ends, but rather and main-
ly for handling purposes. Salisbury [1] reported later that 
to be more effective, the hand needs a fourth finger. The 
development of a four-finger hand has been carried out by 
the Massachusetts Institute of Technology [2] and the Uni-
versity of Utah [3]. It possesses a thumb opposing three 
long fingers, and has been the subject of interest in the 
field of teleoperation [4]. 

The present investigation focuses on both geomet-
ric models and kinematics of a four fingered robotized 
hand. Closed loop constraints are integrated whenever 
there is an object to be grasped. 

The contact points are determined using the in-
verse geometric model of the active loop. Singularities as 

well as any closed loop kinematics movement are analyzed 
by considering two fingers in any permutation. 

The achieved simulation results are presented us-
ing object models build up by means of the superquadric 
approach developed by El-Khoury [5]. 
 
2. The articulated hand 
 

The robotized hand is an articulated mechanical 
system constituted of a complex kinematics chains.  The 
considered structure consists of four fingers (three long 
fingers opposing a thumb) having each four degrees of 
freedom (Fig. 1). 
 
2.1. The direct geometrical model 
 

To represent the geometric model of the 
fingers represented in Fig. 1, the parameters developed by 
Khalil and Kleinfinger [6], namely j , j , jd , j , jr  
allowing a uniform description and presented in Table 1 
and Table 2 are adopted. 

 

Fig. 1 Four fingered mechanical hand 
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Table 1 
Geometrical parameters of the prime long finger 

 

j  ( )a j  j  j  jd
 j  jr

 
1 0 0 2  u  1  0 

2 1 0 2  0 2  0 

3 2 0 2  3d  3  0 

4 3 0 0 4d  0 0 
 

Table 2 
Geometrical parameters of the thumb 

 

j  a j j j  jd
 j  jr

 j  jb  

16 0 0 2 v  16  0 2  w  

17 16 0 2 0 17  0 0 0 

18 17 0 0 18d  18  0 0 0 

19 18 0 0 19d  19  0 0 0 

20 19 0 0 20d  0 0 0 0 
 

The different kinematics of the thumb need the 
addition of two new parameters to its description, namely 

j  and jb . They are represented in Fig. 2. 
 

 
Fig. 2 Geometrical parameters representation [6] 

 
The developed geometrical model in this paper is 

essentially based on an analysis performed earlier by 
Bouachari and Barkat [7]. Its application needs to start 
determining the antecedent of j  namely i a j  before 

computing the transformation matrices i
jT  followed by 

their product 0
jT  (i = 0 representing the center of the 

palm) to finally computing the position vectors corre-
sponding to each of transformation matrix. 

Fig. 3 shows three simulated configurations of our 
hand. They are represented by pinch grasp, normal grasp, 
and a grasp using the four fingertips. They have been 
achieved through the application of the direct geometrical 
model. 

 
Fig. 3 Simulated configurations that are specific to a hominoid hand: a - pinch grasp; b - normal grasp; c - four finger tips 

grasp 

2.2. The direct kinematical model 

The kinematical model of a finger is represented 
by the fingertip velocity as a function of its joint velocities 

jkq jkq . The basic Jacobian matrix is used to express the kin-
ematics torsor n  in the coordinate system 0R : 

n
n n

n

V
J qq . (1) 

The corresponding Jacobian matrix is noted 0
nJ  

and its column k is expressed as: 

0 0 0 0
0

0

k k k k n k
n,k

k k

a a P P
J

a

0 00 0a P0
kka Pkk . (2) 

where the elements of each column are obtained when 
calculating the direct geometrical model of the matrices 
0

kT  and vectors 0
nP  for the values of k from 1 to n. 

The Jacobian matrix for each finger (noted 
0 0 0 0

5 10 15 20, , ,J J J J ) is therefore derived. For the first fin-
ger, it is expressed as: 

11 1 5
0

5

6 1 6 5

  
      

  

, ,

, ,

j j
J

j j

1 5j11 5,1111 51

      
j6 5,66 5j

. (3) 

The joint variable for each fingertip being equal 
to zero, the above expressed Jacobian matrices become 
0 0 0

4 9 14,  ,  J J J and 0
19J . This leads to expressing the basic 

Jacobian matrix (1) for the total number of fingers. 

Zk 

Xi 

Zj 

dj 
Xj 

Zi 

Ck 
j  rj 

k  bj 

Cj 

X'i 
iC  

j  

j  

a b c 
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By expressing the Jacobian matrix of Eq. (4) as 
the product of two sub-matrices 0 0

4 4JT JR , one can com-

pute the fingertip translational velocity vector 0
5V  in the 

coordinate system 0R  linked to the hand palm through the 

sub-matrix 0
4JT  of dimensions (3×4): 

0
5

0
5 1

1 1 1 40
5 2

0
35

6 1 6 4
0 45

0
5

  
        

  

,x

,y

, ,
,z

,x
, ,

,y

,z

V

V q
j j

V q
q

j j
q

1q1q1q
1 4j11 4,1111 41

2qq
        

3q3q3q
j6 4,66 4j

4q4q

; (4) 

0 1
5

20 0 0
5 5 4

30
5

4

 
,x

,y

,z

qV
q

V V JT
q

V q

1q1q1q

2q

3q3q3q

4q4q

. (5) 

The sub-matrix 0
4JR  leads to the computation of 

the fingertip rotational velocity vector 0
5  in the coordi-

nate system 0R  linked to the hand palm and is also of di-
mensions (3×4): 

0 1
5

20 0 0
5 5 4

30
5

4

 
,x

,y

,z

q
q

JR .
q
q

1q1q1q

2q2q
.

3q3q3q

4q4q

 (6) 

The Jacobian matrix is computed under Maple us-
ing Eq. (2). 

3. Singular configurations specification 

To define the singular configurations of the hand, 
the theory of Singular Value Decomposition developed by 
Brown and Vardy [8] is applied. It implies the decomposi-
tion of the Jacobian matrix into two sub-matrices of di-
mensions (4×3) for each finger, one for the translation 
movement noted 0

j h
JT  and the other for the rotation 

movement 0
j h

JR .  Each matrix can be decomposed fur-

ther into a product of three matrices involving the singular 
values. The rotation matrix 0

j h
JR  being of dimension 

(4 3), it may be expressed as the product of three orthogo-
nal matrices U, V and Sj of dimension (4 4), (3 3) and 
(4x3) respectively. It comes: 

0 T
j j j jh h

JR U S V , (7) 

with 0j j h
S . (8) 

j h
 is a (3 3) diagonal matrix constituted by 

the non-zero singular values i of the Jacobian matrix of 
rotation arranged in decreasing order. The singular values 
of 0

j h
JR  represent in fact the square roots of the Eigen 

values of the product 0 0T

j jh h
JR JR . Therefore: 

j ih j
det . (9) 

The computation of the rotation matrix for the 
first finger under Maple gives (where S and C stand for 
sine and cosine respectively): 

1 1 2 1 2
0

2 2

1 1 2 1 2

0
1 0
0

j h

Sq Cq Sq Cq Sq
JR Cq Cq

Cq Sq Sq Sq Sq
; (10) 

with  

2
1 2

2

2
3 2

3 1 1 ;
2 2

1;

3 1 1 ,
2 2

Cq

Cq

 (11) 

leading to: 
1

2

3

    0      0
0         0
0      0     

j h

σ
σ

σ
. (12) 

The singular positions of the first finger corre-
spond to the nullification of the determinant of the matrix 

j h
 leading to 3 0  and therefore 2 0cos q . The 

same procedure is applied to all fingers. 
For the long fingers, this means: 7 0cos q  and 

11 0.cos q  For the thumb, the corresponding matrix can 
be shown to be: 

0
16 16 16

1 0 0 0
0
0 0 0 0

j h
JR Cq Cq Cq . (13) 

The computation of the corresponding singular 
positions for the thumb requires 16 0.cos q  In this case, 
the thumb does not present any singularities since these are 
usually independent of the first joint. It is noticed that a 
unique singular configuration shows up for each finger, 
and leads to a singular layout for the whole hand. 

Four different simulations have been carried out 
and are presented in Fig. 4: 

 1 2 12, , 2q q q : The long fingers are folded 
up over the palm in both directions (Fig. 4, a); 

 2 2q : The first finger folded up over the 
palm (Fig. 4, b); 

 7 2q : The second finger folded up over 
the palm in both directions (Fig. 4, c); 

 12q : The third finger folded up over the 
palm in both directions (Fig. 4, d). 
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Fig. 4 Singular configurations: a - full hand; b - first finger; c -second finger; d - third finger 

4. Hand-object kinematical movement processing 

The processing of the system hand-object in-
volves necessarily loops. When a number of N objects are 
grasped using n fingers for example, a number of (n-1) 
kinematics loops are involved as stated by El-Khoury [5] 
and Rosales et al [9]. The equation needed for the closure 
of the system and incorporating loops taken in pairs in any 
permutations, leads to a vanishing torsor. This relationship 
is obtained through expressing the velocities relation at a 
reduction station. For a vanishing torsor, this condition can 
be expressed independently of any projection coordinate 
system as shown by El-Khoury [5]: 

1

1 1
1

0
n

o o
i ,i n,

i
. (14) 

A linear relationship links the kinematics torsor 
and the derivative of the configuration vector noted i , jQi , jQi . 
Taking into account the straight path of the loop (i towards 
j, i and j indicating the fingers), this relationship may be 
obtained through expressing the kinematics torsor at sta-
tion i. This leads to: 

3       0
0    

i
i , j

ij

I
V

 J
, (15) 

where I3 and J ij refer to the identity matrix and the (3×n) 
Jacobian sub-matrix used to compute the velocity of rota-
tion respectively. 

The combination of Eqs. (14) and (15) requires 
the computation of the velocity for each contact point of 
fingers i and j. If it is traversed in the forward direction, the 
corresponding relative velocity should be computed at i 
through the application of the point switching classical 
relationship at this particular point. Eqs. (16) and (17) are 
obtained for the cases of the direct and indirect paths re-
spectively: 

3

3

      
  

0       
o ii

i , j i , j
I O

V V
 I

iV
Oi ; (16) 

3

3

      
  

0       
jo i

i , j i , j

I O
V V

 I
ijOjjjjjjOjj , (17) 

where xOxOx  represents the vector pre-product matrix. 

The first first-order approximation of the deriva-
tive of the configuration vector may be expressed as: 

, 1
, 1

i i
i i

Q
Q

t, 1i,

Q
Qi

Q
. (18) 

Introducing a Boolean variable that equals unity 
or zero if it is traversed in the forward or reverse directions 
respectively, and combining the above Eqs. (15)-(18) leads 
to the exact variational formulation of the strain relation-
ship which is linear with respect to the increment Q  
(Eq. 19). 

In addition to the Jacobian rotation sub-matrix 
J ij, the use of the sub-matrix of translation Jvij allows for 
the reformulation of the strain relationship Eq. (19): 

1
3 1 3 1 1

1
1 1 1

3 1 3 1

1 1

      
 

0      0       

        
         

0       0       

n
i i ,i i i ,i

i ,i
i i ,i i ,i

n n, n n,

n, n,

ˆ ˆI O J I O J
S S Q

 J  J

ˆ ˆI O J I O J
S

 J  J 1 0n,Q . (19) 

The factorization of the Jacobian is justified in the 
literature by diverse contact models leading to the grasping 
of objects [10]. Three basic contact types may be defined.  
Both the first and second types use the Jacobian rotation 
sub-matrix to formulate the kinematics torsor. However, 
while the first case does not allow for any fingertips slip-
ping or rolling (Eq. 20), the second one allows solely for 
fingertips rolling (Eq. 21): 

 T

 T

        0;

    0;

x y z

x z

V V V
 (20) 

 T
        0;

0
x y z

z

V V V

.
 (21) 

The third and last contact type uses the Jacobian 
translation sub-matrix, and allows for fingertips slipping 
only. The kinematics torsor is expressed as: 

 T

0;

        0

z

x y z

V

.
. (22) 

ba dc
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5. Applications to object grasping 

The closure constraint expressed by Eq. (20) may 
be applied to specific types of grips [11]. In this case, the 
objects are held between the fingertips while the thumb is 
placed in opposition. 

It has to be acknowledged that most studies in-
volving the grasping of an object imply a simplified repre-
sentation of it based on an extension of the superquadratics 
i.e. the superellipsoïdes which possess the following im-
plicit form: 

2

12 2

22 2 1

1 2 3

, , x y zf x y z
a a a

, (23) 

where a1, a2 and a3 define the scale factor on the coordi-
nates axes x, y and z respectively; ε1 and ε2 define the cur-
vature in the (x, y) and (x, z) directions; f(x, y, z) = 1 if the 
point (x, y, z) is situated on the body surface; 

, , 1f x y z 1  if the point , ,x y z  is situated inside the 

body; , , 1f x y z 1 if the point , ,x y z  is situated out-
side the body. 

The above listed conditions enable the description 
of a wide spectrum of shapes ranging from simple ellip-
soids ( 1 2 1 ), parallelepipeds ( 1 0  and 2 0 ) 
and cylinders ( 1 1 and 2 0 ). They have been utili- 

Table 3 
Diverse modeled objects to be grasped 

 

Superellipsoïdes 1  2  

 

1 1 

100  

0.1 1 

 

 
 

0.1 0.1 

 
zed to model the objects represented in Table 3. 

Moreover, when the last condition 
, , 1f x y z 1  is corroborated, the specific requirements 

to the first joint of each finger used in the inverse geomet-
ric model have to be integrated. 

Three different grasping types have been investi-
gated. They are represented in Figs. 5-9. 

The first case illustrated in Fig. 5 presents a 
sphere being grasped using fingertips while the thumb is 
placed in opposition. The data obtained through the inverse 
geometrical model used to describe this configuration as 
well as the variable joints are summarized in Table 4 (posi-
tions are expressed in mm) and Table 5 respectively. 

 
Fig. 5 Fingertips sphere grasping: a - illustration; b - graphical representation; c - results representation 

Table 4 
Inverse Geometrical Model (MGI) data for fingertips grasping of a sphere 

 

Initial positions relatively to the palm 
Finger 1 Finger 2 Finger 3 Thumb 

1xp 120.59 2xp 102.60 3xp 102.60 4xp 93.06 

1yp 0.00 2yp -15.00 3yp 15.00 4yp 7.00 

1zp 16.40 2zp -16.46 3zp -16.47 4zp -42.84 
Specific conditions relatively to 1st joint 

Finger 1 Finger 2 Finger 3 Thumb 

11p 82.02 21p 82.03 31p 82.03 41p 93.06 

12p 51.78 22p 51.77 32p 51.78 42p 7.00 

13p 0.00 23p 0.00 34p 0.00 42p -52.84 
Specific conditions relatively to 2nd joint For the thumb 

2xp 2yp 2zp
81.99 44.12 0.00 
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Table 5 
The joint variables of a sphere grasping 

 

Finger 1 Finger 2 Finger 3 
q1 = –22°28′ 
q2 = 44°58′ 
q3 = 44°58′ 
q4 = 29°59′ 

q5 = 0 

q6 = –22°28′ 
q7 = 44°58′ 

q8 = 44°58′ 

q9 = 29°59′ 

q10 = 0 

q11 = –22°28′ 
q12 = 44°58′ 
q13 = 44°58′ 

q14 = 29°59′ 

q15 = 0 

 Thumb 
q16 = 89°57′ 
q17 = 61°52′ 
q18 = 30°55′ 
q19 = 41°13′ 

q20 = 0 

 
Table 6 

The joint variables of a cylinder grasping 
 

Finger 1 Finger 2 Finger 3 
q1 = -22°29′ 
q2 = 0 
q3 = 44°57′ 
q4 = 29°59′ 
q5 = 0 

q6 = 22°23′ 
q7 = –12° 
q8 = 44°58′ 
q9 = 29°58′ 
q10 = 0 

q11 = –22°10′ 

q12 = 44°58′ 

q13 = 44°58′ 

q14 = 29°59′ 

q15 = 0 

 Thumb 
q16 = 89°57′ 
q17 = 61°52′ 
q18 = 30°55′ 
q19 = 41°13′ 

q20 = 0 

 
Table 7 

The joint variables of a parallelepiped grasping 
 

Finger 1 Finger 2 Finger 3 
q1 = –22°29′ 
q2 = 0 

q3 = 44°57′ 

q4 = 29°59′ 

q5 = 0 

q6 = 22°23′ 
q7 = –12° 
q8 = 44°58′ 

q9 = 29°58′ 

q10 = 0 

q11 = –22°10′ 
q12 = 12° 

q13 = 44°54′ 

q14 = 29°53′ 

q15 = 0 

 Thumb 
q16 = 90° 

q17 = 53°46′ 

q18 = 21°25′ 

q19 = 29°59′ 

q20 = 0 

 

 
Fig. 6 Simulation of a cylinder grasping 

The second and third cases illustrating the finger-
tips grasping of a cylinder and a parallelepiped follow the 
same procedure. For the cylinder, Table 6 summarizes the 
results of the inverse geometrical model application while 
Figs. 6 and 7 represent the grasping of this geometry using 
the tips of the fingers. For the parallelepiped, Table 7 and 
Figs. 8 and 9 present the results obtained and fingertips 
grasping respectively. 

 

 
Fig. 7 Graphical representation of a cylinder grasping 

 

 
Fig. 8 Simulation of a parallelepiped grasping 

 

 
Fig. 9 Graphical representation of parallelepiped grasping 

 
6. Conclusions 
 

The present paper investigates the theoretical ap-
proaches concerning the grasping of diverse objects using 
a robotized hand consisting of four fingers. The study of 
grasping leads us to the modeling of articulated systems 
working in closed loop. 

The inverse geometrical model is applied to de-
termining the contact points of the fingers with the object 
under consideration, while the kinematics model is used to 
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highlighting the singular configurations of the fingers. The 
problem associated to singularities is treated first for the 
case of free motion. 

The hand Jacobian matrix singular value decom-
position approach is carried out to determining the singu-
larities occurring close to the contacts considered. 

Finally, the approach developed is applied to sim-
ulating the grasping of diverse objects using the robotized 
hand and the results obtained presented. 
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A. Bouachari, H. Tebbikh 
 
GRIEBIANČIOSIOS LANKSTINĖS MECHANINĖS 
RANKOS KINEMATIKA 

 
R e z i u m ė 

 
Pateiktas tyrimas susijęs su roboto rankos 

geometrinės ir kinematinės būsenos išsišakojimų sistemos 
įvertinimu. Uždaro kontūro apribojimai integruojami prieš 
pat objekto sugriebimą. Siekiant pabrėžti ypatumus, roboto 
rankos kinematinė analizė atliekama esant laisvam bekon-
takčiam judesiui. Įvairių kinematinių apribojimų, atitinkan-
čių skirtingus kontaktavimo atvejus, analizė atliekama vė-
liau. Kontaktavimo taškai nustatomi naudojantis aktyvio-
sios grandies atvirkštiniu geometriniu modeliu. Galiausiai 
tyrimas iliustruojamas konkrečiu rankos su keturiais pirš-
tais, įgalinančiais sugriebti skirtingus objektus, taikymu. 
 
 
A. Bouachari, H. Tebbikh 
 
KINEMATICS OF A GRASPING ARTICULATED  
MECHANICAL HAND 
 
S u m m a r y 
 

The present investigation deals with the represen-
tation of the geometrical and kinematical states of a robotic 
hand constituted from an arborescent system. Closed loops 
Constraints are integrated whenever a capture of objects is 
confronted. In order to highlight the singularities, the hand 
kinematical analysis is carried out in free movement with-
out contact. The incorporation of the various kinematical 
constraints corresponding to different types of contact are 
studied afterwards. The contact points are determined 
through the application of the inverse geometric model of 
the active chain. Finally, the study is illustrated with an 
application consisting of a hand with four fingers enabling 
the grasping of diverse objects. 
 
Keywords: articulated hand, grasping, contact kinematics, 
superquadric approach. 
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