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Nomenclature 

 

cp – specific heat, J/kgK; eRMS – root mean square error, K; 

hc – thermal contact conductance, W/m
2
K; H – Hilbert 

space of square-integrable functions; I – maximum number 

of parameters; k – thermal conductivity, W/mK; L – length, 

m; N – number of sensors; q – heat flux, W/m
2
; S – objec-

tive function, K
2
; t – time, s; tf – final time, s; T – tempera-

ture, K; T0 – constant temperatures at specimens’ end, K; 

Ti – initial temperature, K; Y – measured temperatures, K; 

x – Cartesian spatial coordinate. 

Greek symbols 

α – thermal diffusivity, m
2
/s; δ – distance from the inter-

face, m; Δ – distance between two sensors, m; ΔT – tem-

perature drop, K; ρ – density, kg/m
3
. 

Subscripts 

i – i-th parameter; j – j-th sensor; k – k-th sensor. 

 

1. Introduction 

 

When two surfaces are in contact, the actual area 

of contact is much smaller than the apparent area of con-

tact. These areas of actual contact occur where the asperi-

ties of one surface are in contact with the asperities of the 

other surface. Typically, there is some material or fluid in 

the interstitial spaces between the contacting surfaces, and 

heat is transferred through this interstitial material. If there 

is no interstitial material or fluid, then most of the heat 

transferred across the interface formed by the two surfaces 

is transferred through these small contact spots. The 

amount of actual contact area is also dependent on the 

physical properties of the contacting materials. Heat is 

transferred across the interfaces through some combination 

of three paths: conduction through contacting spots, con-

duction across the interstitial space through interstitial ma-

terial, and radiation across the interstitial spaces. Heat 

transfer between surfaces of imperfect thermal contact 

occurs in numerous practical applications such as in ther-

mal supervision of space vehicles and estimation of ther-

mal contact conductance between the exhaust valve and its 

seat in an internal combustion engine. 

Some of the techniques recently developed for es-

timating the thermal contact conductance are based on ex-

perimental temperature data at one or several interior posi-

tions of the contacting solids. Theoretical and experimental 

efforts have been continued in prediction of this prior pa-

rameter. The estimation of thermal contact conductance 

has been carried out while heat transfer was either in a 

steady-state [1] or transient condition [2, 3]. Experiments 

were conducted using setups that contained two specimens 

[2, 3]. A few numbers of these researches are related to 

estimation of periodic thermal contact conductance [4-10]. 

Components in many rotary devices and in automated pro-

cesses transfer heat periodically across contact surfaces. 

Example includes heat transfer between a soldering iron 

and work piece on an assembly line. The others usually 

include constant contacting surfaces [11], especially in 

heat rejection from electronic components. 

The thermal contact conductance can neither be 

measured nor calculated directly, so an accurate and effi-

cient method for computing temperature distribution be-

comes quite important. It can be estimated from surface 

temperature and heat flux values computed using the linear 

[4] or quadratic [7-8] extrapolation method. This method 

utilizes multiple spatial temperature readings taken very 

close to each contacting surfaces. The technique of inverse 

heat conduction problem can be applied to solve this kind 

of problem. Finite difference method (FDM) and finite 

element method (FEM) are also widely used [12]. 

In this work, a linear polynomial is fitted to the 

spatial data and the value and slope of the extrapolated 

polynomial at the surface is used to estimate the time-wise 

variation of the thermal contact conductance between two 

one-dimensional solids with fixed contact. Furthermore, an 

inverse solution using the Conjugate Gradient Method 

(CGM) with adjoint problem for function estimation is 

presented. It is a very important class of methods of esti-

mating functions. It is powerful and straight forward. It 

utilizes the ideas based on perturbation principles [13-15] 

to transform the inverse problem to solution of three sim-

ple problems [13]. Finally, a steady-state analysis has been 

successfully carried out by employing the commercial 

software based essentially on the FEM approach. 

 

2. The problem definition 

 

The geometry and the coordinates for the one-

dimensional physical problem considered here is shown in 

Fig. 1. Two specimens, referred to as specimens 1 and 2, 

are contacting with a contact conductance hc(t) at the inter-

face. The non-contacting ends are kept at constant, but 

different temperatures T01 and T02. It is assumed that the 

system does not reach the steady-state condition for the 

temperature distribution in the specimens, that is, the tem-
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perature distribution in the specimens is time-varying. 
 

 

Fig. 1 Contacting specimens 
 

The mathematical formulation of the direct heat 

conduction problem is given in as: 

Specimen 1 ( 10 Lx  ): 
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2. The experiment 
 

We consider an example using actual data taken 

from a thermal contact conductance experiment conducted 

by Moses [16].  

The experimental apparatus, shown in Fig. 2, con-

sists of two test specimens – each held at one end in a 

thermal reservoir – the supporting frame, and the associat-

ed equipment required to bring the test specimens uniform-

ly into and out of contact. The specimens are in contact to 

reach steady-state condition. 

The test specimens are caused to contact and sep-

arate by driving the lower plate with a pneumatic cylinder. 

The fluid reservoirs are constant-temperature baths. Each 

reservoir circulates fluid supplied by an external bath, 

which is maintained at a specified temperature. The lateral 

surface of the test specimens is insulated with a Teflon 

sleeve. 

The experiment was run with mild steel test spec-

imens having a length of 0.1524 m and a diameter of 

0.0254 m. In each specimen, 5 copper-constantan thermo-

couples are located in centerline drillings and in corre-

sponding surface indentations at distances of 0.0064, 

0.0127, 0.0254, 0.0381 m and 0.0508 from the contact 

surface. Two additional thermocouples are located on the 

specimen centerline, at the point where the specimen enters 

the thermal reservoir in order to measure the temperature 

of circulating fluid there. 

 

 

Fig. 2 Experimental setup [16] 

 

A separate set of experiments was conducted to 

check for the presence of radial temperature gradients in 

the test specimens. These results, which are reported by 

Moses, indicated that, within the accuracy of the recording 

device, the heat flow down the rod was one-dimensional. 

Table 1 lists the characteristics of specimens [16]. 

 

Table 1 

Characteristic of the specimens [16] 
 

Characteristic Specimen 1 Specimen 2 

Material 
Mild steel 

(C = 1.5%) 

Mild steel 

(C = 1.5%) 

Thermal Conductivity, k, W/mK 36  36  

Specific Heat, cp, kJ/kgK 0.486  0.486  

Density, ρ, kg/m3 7753 7753  

Reservoir Temperature, T0, °C 52.9  18.7 

 

3. The extrapolation method 

 

The thermal contact conductance was computed 

by means of the following expression,  

ch q T , (3) 

where q is the average of the heat fluxes of the two con-

tacting specimens and T is the temperature drop at the 

interface, which is computed by extrapolating the tempera-

ture profiles of each contacting specimen to the interface. 

 

4. The inverse solution 

 

For the inverse problem, the interface thermal 

contact conductance, hc(t) is regarded as unknown, but 

everything else in the system of Eqs. (1-2) is known and 

temperature readings taken at some appropriate locations 

within the medium are available, at times ti, i = 1, 2, … , I. 

Let the temperature recordings taken with sensors to be 

denoted by jj YtY 11 )(   and kk YtY 22 )(   for specimens 1 

and 2, respectively. 

It is assumed that no prior information is available 
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on the functional form of hc(t). We are after the function 

hc(t) over the whole time domain (0, tf), with the assump-

tion that hc(t) belongs to the Hilbert space of square-

integrable functions in the time domain [13] – denoted as 

),0( ftH  – in this domain, i.e.,  
2

0

( )
ft

c
t

h t dt


  . 

The solution of the present inverse problem is to 

be obtained in such a way that the following functional is 

minimized: 
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, (4) 

where jj TtT 11 )(   and kk TtT 22 )(   are the estimated tem-

peratures at the measurement locations in specimens 1 and 

2, respectively. 

In this work, the CGM with adjoint problem for 

function estimation is used to solve the current inverse 

problem. The advantage of the present method is that no a 

priori information is needed on the variation of the un-

known quantities, since the solution automatically deter-

mines the functional form over the domain specified. In 

this method, additional equations beyond the governing 

equation must be solved. It transforms the inverse problem 

to solution of three simple problems called the direct prob-

lem, the sensitivity problem and the adjoint problem to-

gether with the gradient equation. The set of three equa-

tions is iteratively solved using the method conjugate gra-

dients for the corrections at the end of every iteration. For 

derivation of sensitivity and adjoint problem from the di-

rect problem as well as the definition of iterative procedure 

and the computational algorithm of the method, the readers 

should consult references [13, 17]. 

 

5. The numerical analysis 

 

The commercial program COMSOL Multiphysics 

4.2.0.150 has been used to create solid and FEM of the 

specimens. Following steps are comprised of creating the 

geometry and the solid model of the specimens, defining 

the mesh and boundary conditions, selection of the materi-

al properties and finally, steady-state solution procedure. 

The model of the specimens is one-dimensional 

axisymmetric. The solid model is created according to the 

geometry of the specimens defined before. 

Fine physics controlled mesh grids are used in re-

gions. During the creation of the solution domain, element 

amount are selected depending on the expectancy of the 

result and consists of 21 nodes. The process of mesh re-

finement is repeated until further mesh refinements have 

insignificant effects on the results. 

The thermo-physical properties of the specimens 

shown in Table 1 are input to the analysis.  

Both ends of the specimens are at constant tem-

perature. In COMSOL Multiphysics the thermal contact 

resistance can be modelled by applying the “thin thermally 

resistive layer” boundary condition. This is a so-called slit 

boundary condition that allows for a discontinuity in the 

temperature field across the boundary. The correct thermal 

contact conductance is specified by applying the value 

obtained from the inverse solution of the problem. Slit 

boundary conditions are only available on assembly pair 

boundaries, which requires us to set up an assembly geom-

etry to model contact resistance. 

The computer program has been extensively and 

successfully validated by comparing the calculated tem-

perature field with available experimental and analytical 

data for steady-state case. 
 

6. Results and discussion 
 

Temperature distribution at sensor locations in 

each specimen is illustrated in Fig. 3 in the scatter form. 

Note that the sensors are numbered in x direction, from 

hottest to coldest. 
 

 

Fig. 3 Temperature distribution at sensor locations in each 

specimen in the scatter form  
 

6.1. The thermal contact conductance estimation 
 

Fig. 4 shows the estimated thermal contact con-

ductance determined by using the present inverse method 

and the linear extrapolation method, both based on the ex-

perimental data supplied by Moses. 

 

 

Fig. 4 Thermal contact conductance based on linear ex-

trapolation method and CGM 
 

Since two sensors are extremely close to the con-

tact surface in each specimen, there is little extrapolation 

from the fitted curve to determine the interface tempera-

ture. So the extrapolation result appears to show damping 

and lagging similar to the result obtained from CGM. 

The overall uncertainty analysis in the experi-

mental results for the thermal contact conductance, based 

on the method of Kline and McClintock [18] indicates an 

uncertainty of 15.23% for the steel specimens.  

As discussed before, the inverse problems are 

solved by minimizing an objective function with some 
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stabilization technique used in the estimation procedure. 

The objective function that provides minimum variance 

estimates is the ordinary least squares norm i.e., the sum of 

the squared residuals. The objective function is a good 

indicator for the accuracy of the estimation. The variations 

of the objective function with time are illustrated in Fig. 5. 

Surely, the lesser the value of the objective function the 

more accurate estimation has been done. 

 

 

Fig. 5 The variations of the objective function with time 

 

6.2. The steady-state analysis 

 

The various methods used in this study can be 

validated by comparing the calculated temperature field 

with  available  experimental  data  under   the s teady-state  

condition. The temperature distribution in x direction is 

shown in Fig. 6. The results are obtained under steady-state 

condition and from using different techniques such as ex-

perimental, linear extrapolation, inverse and numerical 

methods. Note that the thermal contact conductance is an 

input to the program in the numerical analysis and must be 

defined by the user. The estimated thermal contact con-

ductance obtained from the inverse solution of the problem 

is utilized for calculating the temperature field in the nu-

merical analysis. The numerical results are acceptable as 

they cover the experimental temperatures. 

We define the Root Mean Square (RMS) error as: 

    2

1

1 N

RMS est i exp i
i

e T t T t
N 

    , (5) 

where the subscripts est and exp refer to the estimated and 

experimental values, respectively. N is the total number of 

the sensors which is equal to 10. 

Table 2 shows the values of eRMS. The RMS error 

in the estimation of the temperature at the sensor lactations 

is larger when the numerical method is applied. The error 

in the linear extrapolation results is rather negligible in 

comparison with those associated with the other methods 

as the experimental temperatures are used directly and the 

spatial measurements are extremely close to the contact 

surface. It is obviously clear in Fig. 6 as well. 
 

Table 2 

RMS error obtained by using different methods 
 

eRMS, °C Methods 

0.0706 Linear extrapolation method 

1.1549 Inverse method (CGM) 

2.9885 Numerical method 
 

 

 

Fig. 6 The steady-state temperature distribution in axial direction 

7. Conclusions 
 

In this study, an inverse method in addition to the 

linear extrapolation method was applied for estimating the 

time varying thermal contact conductance. The results ob-

tained by using data taken from an actual contact conduct-

ance experiment. The thermal contact conductance ob-

tained from the inverse solution was validated numerically 

by using COMSOL Multiphysics under steady-state condi-

tion. 

Generally, the results obtained with CGM and the 

linear extrapolation results were in good agreement. An 

error analysis showed that the overall uncertainty in the 

estimation of the thermal contact conductance by extrapo-

lation method is considered to be 15.23%. 

The steady-state analysis and its error investiga-

tion showed that the extrapolation approach is superior to 

the other methods used. The extrapolation method can be 

effective, particularly when the temperature is measured at 

points extremely close to the contact interface. It should be 

noted that the inverse solution requires experimental data; 
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this incorporation of the experimental temperature into the 

computation method prevents the inverse solution from 

providing a truly independent determination of the result. 
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LAIKUI BĖGANT KINTANČIO DVIEJŲ  

KONTAKTUOJANČIŲ PAVIRŠIŲ ŠILUMINIO 

LAIDUMO NUSTATYMAS 

 

R e z i u m ė 

 

Siekiant nustatyti laikui bėgant kintančio terminio 

kontakto laidumą, tiriamas šilumos perdavimas tarp dviejų 

kontaktuojančių bandinių. Pasiūlytas atvirkščias šilumos 

perdavimo metodas. Rezultatams gauti remiantis eksperi-

mento duomenimis taip pat taikomas gerai žinomas ekstra-

poliacijos metodas. Atvirkštinio ir tiesioginio ekstrapolia-

vimo metodais gauti rezultatai gerai sutampa. Naudojant 

komercinę programinę baigtinių elementų metodo įrangą 

ištirta nusistovėjusi būsena, o paklaidų analizė parodė, kad 

ekstrapoliavimo metodas šiuo atveju yra geresnis. 

 

 

M. H. Shojaeefard, M. Sh. Mazidi, V. Kh. Mousapour 

 

THE ESTIMATION OF TIME-VARYING THERMAL 

CONTACT CONDUCTANCE BETWEEN TWO FIXED 

CONTACTING SURFACES  

 

S u m m a r y 

 

This work examines the heat transfer between two 

fixed contacting specimens in order to estimate the time-

varying thermal contact conductance. An inverse heat con-

duction method is presented. A well-known technique 

called extrapolation method is also utilized to obtain the 

results by using data taken from an experiment. The results 

achieved by the inverse and linear extrapolation methods 

are in good agreement. In addition, a steady-state analysis 

has been performed by using the commercial software 

based on the finite element method and an error analysis 

shows that the extrapolation method is superior in this 

analysis. 

 

Keywords: thermal contact conductance, extrapolation 

method, inverse problem, COMSOL Multiphysics. 
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