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1. Introduction 

The ocean contains countless minerals and energy, 

exploration and research of marine areas have become an 

important task. However, it is difficult for humans to infil-

trate extreme environments such as higher depths or danger-

ous areas [1-3]. In such case, autonomous underwater vehi-

cle (AUV) as an advanced underwater detection robot, plays 

a vital role for such tasks nowadays. Generally, AUV needs 

to dive to a specified depth to perform exploration tasks, so 

research on AUV depth control has practical engineering 

significance [4-9]. 

AUV is a highly nonlinear system with strong cou-

pling, and the hydrodynamic derivatives are difficult to ac-

curately estimate. Therefore, AUV cannot be effectively 

controlled by traditional linear control methods. In addition, 

unpredictable disturbances may have a significant impact on 

the entire system, which increases the difficulty of controller 

design [10-13]. Aiming at the pitch control problem of 

AUV, Paper [11] presented a cascade PID controller which 

was simple to implement and had strong flexibility, but lack 

of self-adaptive ability. An adaptive fuzzy PID controller 

was proposed in [11], which can improve PID parameters 

and modeling uncertainty of AUV. A neural network-based 

adaptive controller was proposed in [12], a portion of the 

unknown dynamics of AUV was approximated by neural 

networks. Paper [13] employed radial basis functions (RBF) 

to address model uncertainties while incorporating pre-

scribed performance functions with backstepping control. 

An adaptive control law was developed based on Lyapunov 

stability theory and applied to AUV control, with simulation 

results validating the method's effectiveness. 

In this paper, an RBF neural network backstepping 

sliding mode control (RBFNN-BSSMC) algorithm is pro-

posed, under the condition that the external perturbation is 

considered and the parameters in the AUV model are uncer-

tain. The proposed method integrates three key innovations: 

Hybrid Control Architecture: The proposed 

method combines backstepping control (for systematic sta-

bility guarantees), sliding-mode control (for robustness 

against disturbances), and RBF neural networks (for adap-

tive parameter estimation). This three-fold integration ad-

dresses both parametric uncertainties and unmodeled dy-

namics comprehensively. 

Multi-RBFNN Adaptive Laws: Unlike conven-

tional schemes that rely on a single network to approximate 

system dynamics, the proposed method employs multiple 

networks for more comprehensive fitting and higher approx-

imation accuracy. 

Stability Analysis: System stability is rigorously 

proven via Lyapunov theory, explicitly accounting for neu-

ral-network approximation errors—a critical feature often 

overlooked in conventional controllers. 

Firstly, the vertical plane motion equation of the 

AUV is established by the analysis of the equation with six 

degrees of freedom (6-DOF), then the backstepping sliding 

mode controller is designed according to the second method 

of Lyapunov. In addition, the structure and algorithm of the 

RBFNN are briefly introduced, the adaptive laws of the 

multiple RBF networks are designed. Finally, the depth 

tracking and error curve are obtained through the simulation, 

which proves the availability of the control method design. 

2. AUV Dynamic Model 

To describe the AUV maneuvering motion, it is 

customary to establish a fixed coordinate system and a mov-

ing coordinate system, where the center of gravity and buoy-

ancy are both on the same vertical line, and the origin of the 

moving coordinate system coincides with the center of grav-

ity. 

Through the kinematics and dynamics analysis of 

the AUV, the 6-DOF motion equation of the AUV is estab-

lished: 

 ( ) ( ) ( )+ + + =M C D g       , (1) 

 ( )= J   , (2) 

 
T

x y z    =   , (3) 

  
T

u v w p q r= , (4) 

where M is the inertia matrix, C() is the Coriolis force and 

centripetal force matrix, D() is the damping matrix, g() is 

the gravitational buoyancy and moment vector,  is the con-

trol input vector, J() is the generalized Jacobian matrix,   

is the generalized velocity vector,  is the generalized ve-

locity vector, , ,  are the roll, pitch and yaw angle, u, v, 

w are the longitudinal, lateral and vertical speed, p, q, r are 

the roll, pitch and yaw angular velocity. 

To realize the decoupling of the vertical and hori-

zontal motion, the influence of lateral speed, roll motion and 
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yaw motion are not considered. On this basis, the following 

assumptions are adopted. 

Assumption 1:  u is a fixed value or changes gently. 

Assumption 2:   is small and sin  . 

Assumption 3:  w is small and can be ignored. 

The dynamics equation of the AUV vertical plane 

motion is obtained when the above assumptions are satis-

fied: 

 ( ) ( )y q q q q

z u

q

I M q M M q q hG





 

= −
 =
 − = + − +

, (5) 

where Mq̇ is the additional mass, Iy is the moment of inertia, 

Mq, Mq|q| are the hydrodynamic derivatives, h is the meta-

centric height, G is the gravity,  is the control inputs of the 

AUV system. 

The state equation of AUV vertical plane motion is 

obtained based on Eq. (5): 
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3. Backstepping Sliding Mode Controller Design 

The scheme of RBFNN-BSSMC and AUV system 

is shown in Fig. 1. 

 

Fig. 1 Schematic of the system 

Eq. (6) is simplified as follows: 

 

z u

q

q f g







= −


=


= +   

, (7)

 

where f, g are unknown nonlinear function. 

The depth tracking error of vertical plane motion is 

defined as e = zd − z, where zd is the expected value of depth, 

the time derivative of e is indicated as below: 

 d de z z z u= − = + . (8) 

The Lyapunov function candidate is indicated as 

below: 

 
2

1

1

2
V e= . (9) 

The derivative of Eq. (9) is indicated as below: 

 ( ) ( )1 d dV ee e z z e z u= = − = + . (10) 

To ensure that V̇1 < 0, Eq. (10) should satisfy that 

żd + u = −k1e, where k1 > 0. 

The virtual control variable is designed as follows:  

 ( )1

1
d dz k e

u
 = − − . (11) 

The error of  is defined as follows: 

 d  = − . (12) 

The following equation is obtained by substituting 

Eqs. (11) and (12) into (10): 

 ( ) 2

1 1 1V e k e u k e ue = − − = − − . (13) 

The Lyapunov function candidate is indicated as 

below: 

 
2

2 1

1

2
V V = + . (14) 

The derivative of Eq. (14) is indicated as below: 

 ( )2

2 1 1V V k e ue  = + = − + − . (15) 

To ensure that V̇2 < 0, Eq. (15) should satisfy that 

2ue k − = − , where k2 > 0. 

 ( )1

1
d dz k e q

u
  = − = − − − . (16) 

Then: 

 ( )1 2

1
due z k e q ue k

u
 − = − − − − = − . (17) 

The virtual control variable is designed as shown 

below: 

 ( )1 2

1
d dq z k e ue k

u
= − − − + . (18) 

The error of q is defined as follows:   

 dq q = − . (19) 

Eq. (15) can be rewritten as Eq. (20) based on  

Eqs. (16)-(19): 

 2 2

2 1 2V k e k  = − − + . (20) 

 In this case, if  = 0, then V̇2  0. The sliding mode 

function is designed as s = . A new Lyapunov function can-

didate is as follows: 

RBFNNs

BSSMC AUV Model

Adaptive Laws

ˆ ˆ,f g

ˆ ˆ,W V

dz z
+

−
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1

2
V V s= + . (21) 

The derivative of Eq. (21) is as follows: 

 ( ) ( )1 2

1
ds z k e ue k f g

u
  = = − − − + − + . (22) 

It is generally assumed that 0dz = , in light of  

Eqs. (20) and (22), the time derivative of Eq. (21) is obtained： 

 )

2 2

3 1 2 1 2

1
V k e k s k e ue k

u

f g .

 

 


= − − + − − + −



− − +  (23) 

To ensure that 3 0V  , an exponent approaching 

sliding mode controller is designed as shown below: 

 ( )

1 2

1 1
k e k ue f

g u

ks sgn s ,

 

 


= − + − − +



+ + +   (24) 

where k,  are the exponential reaching law parameters. 

The following equation is obtained by substituting 

Eq. (24) into Eq. (23): 

 
2 2 2

3 1 2 0V k e k s ks = − − − −  . (25) 

In addition, to reduce the vibration, the hyperbolic 

tangent function tanh is adopted instead of the sign function 

sgn. The final backstepping sliding mode control law is ob-

tained: 

 ( )

1 2

1 1
k e k ue f

g u

ks tanh s .

 

 


= − + − − +



+ + +   (26) 

4. RBF Neural Network Design 

The hydrodynamic derivatives will change with 

the AUV motion, which increase great uncertainty to the dy-

namic equations. In addition, the external perturbation, such 

as wave disturbance, will have a significant effect on the 

AUV motion. Multiple RBF networks are employed to com-

pensate for all the unknown nonlinear functions in the dy-

namic equations considering the characteristics of approxi-

mating any nonlinear function. 

The RBFNN was first proposed in 1988. In com-

parison to the feedforward BP neural network, the RBFNN 

has a simple structure and a high convergence speed, in ad-

dition, it is suitable for real-time control and can effectively 

improve the adaptability and robustness of the system [14]. 

The RBFNN is composed of three-layer networks, 

as shown in Fig. 2. 

In Fig. 2,  1 2

T

nx x x=x  is the input of 

the RBFNN, hj is the output of the j-th Gaussian basis func-

tion: 

 

2

2
1 2

2

j

j

j

h exp , j , , ,m
b

 −
 = =
 
 

x c
, (27) 

where 1 2

T

j j j njc c c =  c  is the center vector of the 

j-th Gaussian basis function, bj is the width of the j-th Gauss-

ian basis function. 

 

Fig. 2 Topology of RBFNN 

The weight vector of RBFNN can be written as 

 1 2

T

nW W W=W , the output of the RBFNN neural 

network is indicated as below: 

 1 1 2 2 m mf W h W h W h= + + + . (28) 

The output algorithms of multiple RBF networks 

are designed as follows: 

 

T

f f

T

g g

f

g




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

= +

W h

V h
, (29) 

where f, g are the ideal networks outputs, W, V are the ideal 

network approximation weight vectors, f, g are the net-

work approximation errors. 

The outputs of the RBF networks are obtained us-

ing the sliding mode functions as the inputs of networks: 

 

T

f

T

g

ˆ ˆf

ˆĝ

 =


=

W h

V h
, (30) 

where Ŵ , V̂  are the estimated values of W  and V . 

The final control law is obtained by substituting 

Eq. (30) into Eq. (26): 

 ( )

1 2

1 1 ˆk e k ue f
ĝ u

ks tanh s .

 

 


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
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The Lyapunov function candidate is indicated as 

below: 

 3

1 2

1 1

2 2

T TL V
 

= + +W W V V , (32) 

where 1 > 0, 2 > 0. 
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The time derivative of Eq. (32) is indicated as be-

low: 

 ( ) ( )

1

2 2

1 2

2

2

1

1

T

f

T

g

f g

ˆL s

ˆs k e k

ks s tanh s s .



 

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 
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 

 
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W h W

V h V

 (33) 

The adaptive laws are designed as follows: 

 
1

2

f

g

ˆ s

ˆ s



 

 = −


= −

W h

V h
. (34) 

The following equation is obtained by substituting 

Eq. (34) into Eq. (33): 

 ( )2 2 2

1 2 f gL k e k ks s s    = − − − − + − . (35) 

Considering f  and g  are very small real num-

bers, we set f gu   + , then 0L  . When 0L  , 

V3  0, in term of the LaSalle invariance principle, when 

t → , V3 → 0. 

5. Simulation and Analysis 

In this section, two simulation examples are pre-

sented. The system and controller parameters are shown in 

Table 1. 

Table 1 

Parameters of AUV 

Parameters Values 

m, kg 50 

yI , kgm2 8.89 

qM  -5.97 

qM  -26.14 

q q
M  -4.28 

1k  3 

2k  100 

k  0.01 

  85 

1  100 

2  100 

u, m / s 1 

 

To verify the effectiveness of the proposed algo-

rithm, a traditional sliding mode controller is designed for 

comparison, which 6 25 5s . e e e= + + , and the exponential 

reaching law is ṡ = 0.01s + 2tanh(s).  

Example 1: The perturbation of hydrodynamic de-

rivatives is set to 10sin(0.2t) + 10cos(0.2t), the wave dis-

turbance is set to zero, the desired depth is set to 10 m. The 

simulation results are plotted in Fig. 3 and Fig. 4. Fig. 3 

shows the depth trajectory curves of AUV. Fig. 4 represents 

the response curves of pitch angle. 

Example 2: The same perturbation of hydrody-

namic derivatives and desired depth are adopted as the ex-

ample 1, but the wave disturbance is set to sin(0.2t). Fig. 5 

and Fig. 6 depict the simulation results under the influence 

both of internal and external perturbation. 

It can be seen from Fig. 3 and Fig. 5 that the great 

trajectory tracking precision of RBFNN-BSSMC without 

any chattering phenomenon. Furthermore, the proposed 

controller has shorter response time. Fig. 4 and Fig. 6 

demonstrate the smoothness of the pitch angle of the pro-

posed controller, while traditional sliding mode controller 

contains a larger vibration. 

 

Fig. 3 Depth curves of AUV vertical plane motion 

 

Fig. 4 Pitch angle curves of AUV 

 

Fig. 5 Depth curves of AUV vertical plane motion 
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Fig. 6 Pitch angle curves of AUV 

The simulation results demonstrate the promising 

performance and effectiveness of the proposed algorithm in 

terms of adaptability and robustness enhancement of the 

AUV system, the speed improvement of response and the 

chattering reduction. 

6. Conclusions  

In this paper, a backstepping sliding mode control-

ler is proposed on the base of multiple RBF neural networks 

for AUV vertical plane motion. First, the dynamic equation 

of AUV vertical motion is established. Based on the state 

equation, a backstepping sliding mode control algorithm is 

developed, then the multiple RBF neural networks are 

adopted to compensate the modeling uncertainty and exter-

nal interference. Moreover, the stability of the system is 

proved according to the second method of Lyapunov. The 

simulation results demonstrate that the designed control al-

gorithm has better adaptability and robustness than tradi-

tional sliding mode control.  
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M. Li, M. Pang, G. Chang 

MOTION CONTROL OF AUV VERTICAL PLANE 

BASED ON RBF NEURAL NETWORK 

BACKSTEPPING SLIDING MODE 

 

S u m m a r y 

 

Aiming at the vertical plane motion issue of auton-

omous underwater vehicle (AUV) with modeling uncer-

tainty and external perturbation, a backstepping sliding 

mode control algorithm is proposed on the base of multiple 

radical basis function (RBF) neural networks. Firstly, the 

kinematics and dynamics equations of AUV are established. 

Secondly, according to the second method of Lyapunov, a 

robust sliding mode controller on the base of backstepping 

control algorithm is designed to eliminate the errors of states 

and improve the response speed. At the same time, multiple 

RBF networks are adopted to adaptively compensate for the 

uncertainty or nonlinear term in the AUV motion equation 

and external perturbation. Finally, the stability analysis for 

the AUV control system is given based upon the second 

method of Lyapunov. The simulation results demonstrate 

that: The presented controller can enable the AUV to reach 

the desired depth at a quick speed and high accuracy. In 

comparison to the traditional sliding mode controller, the 

given method possesses higher adaptability and better dy-

namics performance. 

Keywords: autonomous underwater vehicle (AUV), back-

stepping control, sliding mode control (SMC), radical basis 

function neural network (RBFNN). 
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