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1. Introduction

Rolling bearings serve as critical components in
mechanical systems, particularly in underwater operational
environments [1-5]. The intricate nature of vibration sig-
nals generated by rolling bearings presents substantial dif-
ficulties in developing reliable fault diagnosis approaches
[6, 7]. The high-dimensional characteristics of rolling bear-
ing monitoring data can adversely impact both diagnostic
precision and computational efficiency [8], thereby neces-
sitating dimensionality reduction of these features.

Due to the inherent sparsity present in many roll-
ing bearing datasets, conventional dimensionality reduc-
tion techniques demonstrate limited effectiveness when
processing such information. To overcome these limita-
tions, this paper introduces an enhanced entropy-weighted
local tangent space alignment (ELTSA) method specifical-
ly designed for dimensionality reduction of rolling bearing
data. The proposed ELTSA methodology effectively re-
solves two fundamental challenges: inaccurate distance
measurement associated with conventional Euclidean met-
rics and insufficient preservation of critical data infor-
mation during the dimensionality reduction process.

Therefore, this article proposes a novel local tan-
gent space alignment based on entropy-weighted distance
(ELTSA) to reduce the feature dimensionality of rolling
bearings data. The ELTSA algorithm can address the issue
of inaccurate Euclidean distance measurement and inabil-
ity to effectively preserve data information.

To enhance the fault diagnosis capability of tradi-
tional Extreme Learning Machine (ELM) for rolling bear-
ings [9], a Weighted Gaussian Kernel ELM (WGKELM)
algorithm is proposed, which replaces the hidden layer
with kernel functions to significantly improve nonlinear
processing capacity and robustness. However, the perfor-
mance of the WGKELM algorithm is highly sensitive to its
training parameters, necessitating the use of intelligent
optimization methods for parameter tuning. Grey Wolf
Optimization (GWO), inspired by the social hierarchy and
hunting behavior of grey wolves, exhibits strong robust-
ness [10-12]. Nevertheless, the traditional GWO algorithm
suffers from limited population diversity, often leading to
premature convergence and local optima trapping [13]. To
address this limitation, a Circle chaotic mapping strategy is
incorporated into the conventional GWO framework to
enhance global exploration capabilities. This modified ap-
proach, termed Circle chaotic mapping-based GWO
(CGWO), is employed to optimize the training parameters
of the WGKELM algorithm.

Firstly, a novel ELTSA algorithm is presented.

Secondly, a novel WGKELM with Circle chaotic map-
ping-based GWO (CGWGKELM) is presented. Thirdly,
experimental study is performed to testify the feasibility of
the proposed fault diagnosis method for rolling bearings.
Finally, conclusions are given.

2. The ELTSA Algorithm

It is widely recognized that LTSA employs Eu-
clidean distance to identify the nearest neighbors during
feature extraction [14, 15]. To overcome the limitations of
Euclidean distance this paper introduces an entropy-
weighted distance metric. This metric assigns weights to
features based on their information entropy, emphasizing
those with greater informational significance. Consequent-
ly, we propose an enhanced LTSA algorithm that inte-
grates this entropy-weighted distance to improve neigh-
borhood selection and data representation.

Given high dimensional dataset X = (x;, x,, ..., x;)
(x; is a sample with N features), calculate the information

entropy (Xx;)
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where p(x;) denotes the appearing probability.
Cosine similarity of the information entropy is em-
ployed as entropy-weighted distance in this paper.
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LTSA is a representative manifold learning tech-
nique capable of revealing low-dimensional structures hid-
den within high-dimensional observational data, enabling
the recovery of essential geometric properties while pre-
serving the critical information contained in the original
dataset. Construct the neighborhood of sampling point
based on the entropy-weighted distance between samples,
and map the neighborhood to a local low dimensional tan-
gent space by the local transformation matrix. Thus, ap-
proximate the nearby local structure of the sample points
as follows:
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where [[{ . denotes the Frobenius norm, Hj denotes the cen-

tral matrix, and A; denotes a local low dimensional descrip-
tion of X,

A =R'X I—leer , “4)
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where I denotes the identity matrix, and e denotes the col-
umn vector representing all elements equal to 1.

The objective function described by Eq. (3) can
be transformed into the optimization problem,

N
min Y |V H, =04 . 5)
i=1

where Y, denotes a X;’s global low dimensional description,
and Q; denotes the global transformation matrix given as
follows:

O =YHJA (6)

where A, denotes the A’s Moore Penrose generalized in-

VErse.

Fig. 1 Comparison of the data distribution of two classes
between ELTSA and LTSA: a — the data distribution
of two classes by using ELTSA, b — the data distri-
bution of two classes by using LTSA

Finally, the corresponding low dimensional em-
bedding datasets Y of X is shown as follows:

Y=p"XH, = ,BTX(I—eeT/k)’ (7
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where S denotes the projection matrix.

Fig. 1 illustrates the class-wise data distributions
produced by ELTSA and standard LTSA. Visibly, the
overlap between the two categories is markedly smaller
under ELTSA, yielding a higher class-separation rate. This
confirms that incorporating the entropy-weighted distance
into LTSA effectively mitigates the disturbance caused by
positional misalignment of samples.

3. The CGWO-WGKELM Algorithm

Given the hidden layer feature mapping matrix
M =[m(x;), - ,m(xy )]T and the training objective matrix

T :[tl,---,tN]T ,the mathematical model of an extreme
learning machine is expressed as follows:

() =mx)M” (1/c+mm™)'T, ®)
where C is the penalty factor.

Introducing the training error & and diagonal ma-
trix D for weighting, the optimization problem of non-
equilibrium learning used to minimize the weighted cumu-
lative error of each sample is expressed as follows:

i | + o3 | ©)
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where g denotes the weight matrix.

The Weighted Gaussian Kernel extreme learning
machine is obtained after introducing Gaussian kernel in-
stead of MM,
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where ¢ is the kernel parameter, and / is the identity matrix.

Obviously, C and ¢ need to be determined. A
Circle chaotic mapping-based GWO is used to determine
the parameters, C and ¢ of WGKELM. In wolf packs,
wolves have a strict hierarchical system. When searching
for the optimal solution, the grey wolf algorithm selects the
best leader wolf a, f, and ¢ to lead other grey wolf individ-
uals to hunt within a predetermined search range during
each iteration of the search process.

The traditional GWO algorithm is to find the op-
timal solution during the process of following the leader
wolf. However, traditional GWO algorithm restricts the
wolves to a single class, forcing the population to converge
prematurely and become trapped in local optima. In order
to address the limitation of traditional GWO algorithm in
the exploration phase where random search cannot traverse
the solution space, Circle chaotic mapping is introduced to
improve the probability of finding the global optimal solu-
tion.

The enhancement procedure that refines the GWO
algorithm via Circle chaotic mapping is presented below:
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where a, b denote the control parameters, and mod() de-
notes the modulo function.

Therefore, Circle chaotic mapping-based GWO
algorithm is employed to determine the parameters, C and
¢ of WGKELM. The processing of determining the param-
eters, C and ¢ of WGKELM by using Circle chaotic map-
ping-based grey wolf optimization algorithm is given as
follows:

Step 1. Initialize the range of the parameters, C
and ¢, and the parameters of GWO are set. The grey wolf
population’s size is set to 20, randomly generate the grey
wolf population, and impose a maximum iteration count of
100.

Step 2. Calculate and rank the fitness values of
individual gray wolves, determine their identity, and record
relevant location information.

Step 3. Split the grey wolf swarm into a, f, 6 ac-
cording to the current fitness value.

Step 4. Update the position of each individual ac-
cording to Eq. (11). Select a, f, 6 from the current wolves
based on the fitness value.

Step 5. Prey grey wolves find prey by relying on
the information of a, f3, 0.

Step 6. The procedure carries on until the maxi-
mum iteration is re-arched, otherwise, loop to Step 2.

4. Experimental Study

In the study, bearing data sets of Case Western
Reserve University are used as the experimental data. The
state types of the rolling bearings include normal, inner
fault, outer fault, ball fault. Here, 200 samples are used as
the testing samples, among which there are 50 samples
with normal state, 50 samples with inner fault, 50 samples
with outer fault, and 50 samples with ball fault. Fig. 2 dis-
plays the time—frequency maps of rolling-bearing states
generated by empirical wavelet transform, whose texture
features are subsequently extracted.

Obtain the training sample set and testing set with
low dimensional feature by using ELTSA. C and ¢ are
determined by CGWO.The fault diagnosis model for roll-
ing bearings based on ELTSA and WGKELM with
CGWO is obtained. The comparative analysis of the con-
vergence process between CGWO and GWO is given in
Fig. 3, and it is obvious that CGWO is better than GWO.

Fig. 4 presents a comparative analysis between
the actual results and fault diagnosis results for rolling
bearings by using the ELTSA-CGWGKELM method,
demonstrating only one misdiagnosed sample. Fig. 5 illus-
trates the comparison between the actual results and fault
diagnosis results for rolling bearings by using the LTSA-
WGKELM approach, which exhibits 9 incorrect diagnoses.
Similarly, Fig. 6 shows the diagnosis results of LTSA-
ELM, with 12 misclassified samples, while Fig. 7 reveals
that PCA-ELM yields 16 misclassified samples.

As summarized in Table 1, the fault diagnosis ac-
curacies for rolling bearings are as follows: ELTSA-
CGWGKELM achieves 99.5%, LTSA-WGKELM attains
95.5%, LTSA-ELM reaches 94%, and PCA-ELM attains
92%. These results clearly demonstrate that ELTSA-
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Fig. 2 Time-frequency images of the four state types of a
rolling bearing: a — normal state, b — inner fault,
¢ —outer fault, d — ball fault
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Table 1
Comparison of the fault diagnosis results for rolling
bearings among ELTSA-CGWGKELM, LTSA-WGKELM,
LTSA-ELM, and PCA-ELM

. . The number | The number of the | . .
Diagnosis . . Diagnosis
mothod of the testing | samples with cor- acourac
samples rect diagnosis Y
ELTSA- o
CGWGKELM 200 199 99.5%
LTSA- o
WGKELM 200 191 95.5%
LTSA-ELM 200 188 94%
PCA-ELM 200 184 92%
Table 2

Comparison of the fault diagnosis results for rolling
bearings among ELTSA-CGWGKELM, LTSA-WGKELM,
LTSA-ELM, and PCA-ELM

. . The number | The number of | Diagno-
Diagnosis . . .
of the testing | the samples with | sis accu-
method . .
samples correct diagnosis racy
ELTSA- .
CGWGKELM 150 149 99.33%
LTSA- .
WGKELM 150 143 95.33%
LTSA-ELM 150 140 93.33%
PCA-ELM 150 137 91.33%
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Fig. 3 Comparative analysis of the convergence process

between CGWO and GWO
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Fig. 4 Fault diagnosis results for rolling bearings of
ELTSA-CGWGKELM
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Fig. 5 Fault diagnosis results for rolling bearings of LTSA-
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Fig. 6 Fault diagnosis results for rolling bearings of LTSA-
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Fig. 7 Fault diagnosis results for rolling bearings of PCA-
ELM

CGWGKELM yields higher fault diagnosis accuracy for
rolling bearings compared with LTSA-WGKELM, LTSA-
ELM, and PCA-ELM.

In order to testify the reliability of the methodolo-
gy presented in this study, another experimental data from
the “Bearing Fault Dataset” provided by Paderborn Uni-
versity are employed.

As summarized in Table 2, the fault diagnosis ac-
curacies for rolling bearings are as follows: ELTSA-
CGWGKELM achieves 99.33%, LTSA-WGKELM attains
95.33%, LTSA-ELM reaches 93.33%, and PCA-ELM at-



tains 91.33%. These results clearly demonstrate that
ELTSA-CGWGKELM yields higher fault diagnosis accu-
racy for rolling bearings compared with LTSA-WGKELM,
LTSA-ELM, and PCA-ELM.

5. Conclusions

This paper presents a fault diagnosis approach for
rolling bearings integrating entropy-weighted distance-
based Local Tangent Space Alignment (ELTSA) and
Weighted Gaussian Kernel Extreme Learning Machine
optimized by Circle chaotic mapping-based Grey Wolf
Optimization (CGWO). Initially, an innovative ELTSA
method is developed to reduce feature dimensionality in
rolling bearing data. This enhanced LTSA algorithm ad-
dresses limitations in conventional Euclidean distance
measurement and improves data information preservation
capabilities. Experimental validation confirms that the
ELTSA achieves higher sample discrimination rates com-
pared with standard LTSA.

Subsequently, a novel Weighted Gaussian Kernel
extreme learning machine (WGKELM) enhanced by
CGWO is proposed for rolling bearing fault classification.
The WGKELM framework significantly improves nonlin-
ear processing capabilities and robustness over traditional
weighted ELM. The CGWO algorithm incorporates circle
chaotic mapping to enhance global search efficiency dur-
ing optimization of WGKELM parameters.

The experimental results Indicate the following
fault diagnosis accuracy rates for rolling bearings: ELTSA-
CGWGKELM achieves 99.5%, LTSA-WGKELM attains
95.5%, LTSA-ELM reaches 94%, and PCA-ELM attains
92% in case 1; ELTSA-CGWGKELM achieves 99.33%,
LTSA-WGKELM attains 95.33%, LTSA-ELM reaches
93.33%, and PCA-ELM attains 91.33% in case 2. These
results demonstrate that ELTSA-CGWGKELM exhibits
superior fault diagnosis capability for rolling bearings
compared with LTSA-WGKELM, LTSA-ELM, and PCA-
ELM.
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A NOVEL FAULT DIAGNOSIS METHOD FOR
ROLLING BEARINGS BASED ON ELTSA AND
CGWO-WGKELM

Summary

Fault diagnosis method for rolling bearings by us-
ing entropy-weighted distance-based local tangent space
alignment and Weighted Gaussian Kernel extreme learning
machine with Circle chaotic mapping-based grey wolf op-
timization (ELTSA-CGWGKELM) is presented in this
paper. This study introduces two innovative methodologies
for rolling bearing fault diagnosis. First, an entropy-
weighted distance-based local tangent space alignment
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(ELTSA) technique is developed to address feature dimen-
sionality reduction in rolling bearing data. This approach
effectively resolves limitations associated with conven-
tional Euclidean distance measurement while significantly
enhancing critical data information preservation capabili-
ties. Secondly, a weighted Gaussian kernel extreme lear-
ning machine optimized through circle chaotic mapping-
enhanced grey wolf optimization (CGWGKELM) is pro-
posed for fault classification. The Gaussian kernel imple-
mentation substantially improves nonlinear processing
performance and robustness compared with traditional
weighted ELM architectures. The circle chaotic mapping
strategy integrated into the grey wolf optimization algo-
rithm (CGWO) enables superior optimization of the
weighted Gaussian kernel ELM training parameters, ensur-
ing enhanced global search capability and convergence
efficiency. The experimental results indicate the following
fault diagnosis accuracy rates for rolling bearings: ELTSA-
CGWGKELM achieves 99.5%, LTSA-WGKELM attains
95.5%, LTSA-ELM reaches 94 %, and PCA-ELM attains
92% in case 1; ELTSA-CGWGKELM achieves 99.33%,
LTSA-WGKELM attains 95.33%, LTSA-ELM reaches
93.33%, and PCA-ELM attains 91.33% in case 2. It is in-
dicated that ELTSA-CGWGKELM is the better fault diag-
nosis ability for rolling bearings than LTSA-WGKELM,
LTSA-WGKELM, and PCA-ELM.

Keywords: ELTSA, CGWGKELM, circle chaotic map-
ping, intelligent diagnosis.

Received August 27, 2025
Accepted December 15, 2025

This article is an Open Access article distributed under the terms and conditions of the Creative Commons
Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).


https://doi/
https://doi/
https://doi/
http://creativecommons.org/licenses/by/4.0/

