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1. Introduction 

Rolling bearings serve as critical components in 

mechanical systems, particularly in underwater operational 

environments [1-5]. The intricate nature of vibration sig-

nals generated by rolling bearings presents substantial dif-

ficulties in developing reliable fault diagnosis approaches 

[6, 7]. The high-dimensional characteristics of rolling bear-

ing monitoring data can adversely impact both diagnostic 

precision and computational efficiency [8], thereby neces-

sitating dimensionality reduction of these features. 

Due to the inherent sparsity present in many roll-

ing bearing datasets, conventional dimensionality reduc-

tion techniques demonstrate limited effectiveness when 

processing such information. To overcome these limita-

tions, this paper introduces an enhanced entropy-weighted 

local tangent space alignment (ELTSA) method specifical-

ly designed for dimensionality reduction of rolling bearing 

data. The proposed ELTSA methodology effectively re-

solves two fundamental challenges: inaccurate distance 

measurement associated with conventional Euclidean met-

rics and insufficient preservation of critical data infor-

mation during the dimensionality reduction process. 

Therefore, this article proposes a novel local tan-

gent space alignment based on entropy-weighted distance 

(ELTSA) to reduce the feature dimensionality of rolling 

bearings data. The ELTSA algorithm can address the issue 

of inaccurate Euclidean distance measurement and inabil-

ity to effectively preserve data information.  

To enhance the fault diagnosis capability of tradi-

tional Extreme Learning Machine (ELM) for rolling bear-

ings [9], a Weighted Gaussian Kernel ELM (WGKELM) 

algorithm is proposed, which replaces the hidden layer 

with kernel functions to significantly improve nonlinear 

processing capacity and robustness. However, the perfor-

mance of the WGKELM algorithm is highly sensitive to its 

training parameters, necessitating the use of intelligent 

optimization methods for parameter tuning. Grey Wolf 

Optimization (GWO), inspired by the social hierarchy and 

hunting behavior of grey wolves, exhibits strong robust-

ness [10-12]. Nevertheless, the traditional GWO algorithm 

suffers from limited population diversity, often leading to 

premature convergence and local optima trapping [13]. To 

address this limitation, a Circle chaotic mapping strategy is 

incorporated into the conventional GWO framework to 

enhance global exploration capabilities. This modified ap-

proach, termed Circle chaotic mapping-based GWO 

(CGWO), is employed to optimize the training parameters 

of the WGKELM algorithm.  

Firstly, a novel ELTSA algorithm is presented. 

Secondly, a novel WGKELM with Circle chaotic map-

ping-based GWO (CGWGKELM) is presented. Thirdly, 

experimental study is performed to testify the feasibility of 

the proposed fault diagnosis method for rolling bearings. 

Finally, conclusions are given. 

2. The ELTSA Algorithm 

It is widely recognized that LTSA employs Eu-

clidean distance to identify the nearest neighbors during 

feature extraction [14, 15]. To overcome the limitations of 

Euclidean distance this paper introduces an entropy-

weighted distance metric. This metric assigns weights to 

features based on their information entropy, emphasizing 

those with greater informational significance. Consequent-

ly, we propose an enhanced LTSA algorithm that inte-

grates this entropy-weighted distance to improve neigh-

borhood selection and data representation. 

Given high dimensional dataset X = (x1, x2, …, xL) 

(xi is a sample with N features), calculate the information 

entropy (xi) 
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where p(xi) denotes the appearing probability.

 Cosine similarity of the information entropy is em-

ployed as entropy-weighted distance in this paper. 
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LTSA is a representative manifold learning tech-

nique capable of revealing low-dimensional structures hid-

den within high-dimensional observational data, enabling 

the recovery of essential geometric properties while pre-

serving the critical information contained in the original 

dataset. Construct the neighborhood of sampling point 

based on the entropy-weighted distance between samples, 

and map the neighborhood to a local low dimensional tan-

gent space by the local transformation matrix. Thus, ap-

proximate the nearby local structure of the sample points 

as follows: 
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where 
F

 denotes the Frobenius norm, Hk denotes the cen-

tral matrix, and i denotes a local low dimensional descrip-

tion of Xi, 

1T T

i i iR X I ee
k


 

= − 
 

, (4) 

where I denotes the identity matrix, and e denotes the col-

umn vector representing all elements equal to 1. 

The objective function described by Eq. (3) can 

be transformed into the optimization problem,
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where Yi denotes a Xi’s global low dimensional description, 

and Qi denotes the global transformation matrix given as 

follows: 

*

i i k iQ Y H = , (6) 

where *
i  denotes the i’s Moore Penrose generalized in-

verse. 
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Fig. 1 Comparison of the data distribution of two classes 

between ELTSA and LTSA: a – the data distribution 

of two classes by using ELTSA, b – the data distri-

bution of two classes by using LTSA 

Finally, the corresponding low dimensional em-

bedding datasets Y of X is shown as follows: 

( )T T T

kY XH X I ee k = = −
,
 (7) 

where  denotes the projection matrix. 

Fig. 1 illustrates the class-wise data distributions 

produced by ELTSA and standard LTSA. Visibly, the 

overlap between the two categories is markedly smaller 

under ELTSA, yielding a higher class-separation rate. This 

confirms that incorporating the entropy-weighted distance 

into LTSA effectively mitigates the disturbance caused by 

positional misalignment of samples. 

3. The CGWO-WGKELM Algorithm 

Given the hidden layer feature mapping matrix 
T

NxmxmM )](,),([ 1 = and the training objective matrix 

T
NttT ],,[ 1 = ,the mathematical model of an extreme 

learning machine is expressed as follows: 
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where C is the penalty factor. 
Introducing the training error i and diagonal ma-

trix D for weighting, the optimization problem of non-

equilibrium learning used to minimize the weighted cumu-

lative error of each sample is expressed as follows: 
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where  denotes the weight matrix. 

The Weighted Gaussian Kernel extreme learning 

machine is obtained after introducing Gaussian kernel in-

stead of MM
T
, 
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where  is the kernel parameter, and I is the identity matrix.

                                    

Obviously, C and  
 
need to be determined. A 

Circle chaotic mapping-based GWO is used to determine 

the parameters, C and  of WGKELM. In wolf packs, 

wolves have a strict hierarchical system. When searching 

for the optimal solution, the grey wolf algorithm selects the 

best leader wolf α, β, and δ to lead other grey wolf individ-

uals to hunt within a predetermined search range during 

each iteration of the search process. 

The traditional GWO algorithm is to find the op-

timal solution during the process of following the leader 

wolf. However, traditional GWO algorithm restricts the 

wolves to a single class, forcing the population to converge 

prematurely and become trapped in local optima. In order 

to address the limitation of traditional GWO algorithm in 

the exploration phase where random search cannot traverse 

the solution space, Circle chaotic mapping is introduced to 

improve the probability of finding the global optimal solu-

tion. 

The enhancement procedure that refines the GWO 

algorithm via Circle chaotic mapping is presented below: 
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where a, b denote the control parameters, and mod() de-

notes the modulo function. 

Therefore, Circle chaotic mapping-based GWO 

algorithm is employed to determine the parameters, C and 

 of WGKELM. The processing of determining the param-

eters, C and  of WGKELM by using Circle chaotic map-

ping-based grey wolf optimization algorithm is given as 

follows: 

Step 1. Initialize the range of the parameters, C 

and , and the parameters of GWO are set. The grey wolf 

population’s size is set to 20, randomly generate the grey 

wolf population, and impose a maximum iteration count of 

100. 

Step 2. Calculate and rank the fitness values of 

individual gray wolves, determine their identity, and record 

relevant location information. 

Step 3. Split the grey wolf swarm into α, β, δ ac-

cording to the current fitness value.  

Step 4. Update the position of each individual ac-

cording to Eq. (11). Select α, β, δ from the current wolves 

based on the fitness value.  

Step 5. Prey grey wolves find prey by relying on 

the information of α, β, δ.  

Step 6. The procedure carries on until the maxi-

mum iteration is re-arched, otherwise, loop to Step 2. 

4. Experimental Study 

In the study, bearing data sets of Case Western 

Reserve University are used as the experimental data. The 

state types of the rolling bearings include normal, inner 

fault, outer fault, ball fault. Here, 200 samples are used as 

the testing samples, among which there are 50 samples 

with normal state, 50 samples with inner fault, 50 samples 

with outer fault, and 50 samples with ball fault. Fig. 2 dis-

plays the time–frequency maps of rolling-bearing states 

generated by empirical wavelet transform, whose texture 

features are subsequently extracted. 

Obtain the training sample set and testing set with 

low dimensional feature by using ELTSA. C and  are 

determined by CGWO.The fault diagnosis model for roll-

ing bearings based on ELTSA and WGKELM with 

CGWO is obtained. The comparative analysis of the con-

vergence process between CGWO and GWO is given in 

Fig. 3, and it is obvious that CGWO is better than GWO. 

Fig. 4 presents a comparative analysis between 

the actual results and fault diagnosis results for rolling 

bearings by using the ELTSA-CGWGKELM method, 

demonstrating only one misdiagnosed sample. Fig. 5 illus-

trates the comparison between the actual results and fault 

diagnosis results for rolling bearings by using the LTSA-

WGKELM approach, which exhibits 9 incorrect diagnoses. 

Similarly, Fig. 6 shows the diagnosis results of LTSA-

ELM, with 12 misclassified samples, while Fig. 7 reveals 

that PCA-ELM yields 16 misclassified samples. 

As summarized in Table 1, the fault diagnosis ac-

curacies for rolling bearings are as follows: ELTSA-

CGWGKELM achieves 99.5%, LTSA-WGKELM attains 

95.5%, LTSA-ELM reaches 94%, and PCA-ELM attains 

92%.  These  results  clearly  demonstrate  that  ELTSA-  
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Fig. 2 Time-frequency images of the four state types of a 

rolling bearing: a – normal state, b – inner fault,  

c –outer fault, d – ball fault 
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Table 1 

Comparison of the fault diagnosis results for rolling  

bearings among ELTSA-CGWGKELM, LTSA-WGKELM, 

LTSA-ELM, and PCA-ELM 

Diagnosis 

method 

The number 

of the testing 

samples 

The number of the 

samples with cor-

rect diagnosis 

Diagnosis 

accuracy 

ELTSA-

CGWGKELM 
200 199 99.5% 

LTSA-

WGKELM 
200 191 95.5% 

LTSA-ELM 200 188 94% 
PCA-ELM 200 184 92% 

Table 2 

Comparison of the fault diagnosis results for rolling  

bearings among ELTSA-CGWGKELM, LTSA-WGKELM, 

LTSA-ELM, and PCA-ELM 

Diagnosis 

method 

The number 

of the testing 

samples 

The number of 

the samples with 

correct diagnosis 

Diagno-

sis accu-

racy 

ELTSA-

CGWGKELM 
150 149 99.33%  

LTSA-

WGKELM 
150 143 95.33% 

LTSA-ELM 150 140 93.33% 

PCA-ELM 150 137 91.33% 
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Fig. 3 Comparative analysis of the convergence process 

between CGWO and GWO  
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Fig. 4 Fault diagnosis results for rolling bearings of 

ELTSA-CGWGKELM 
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Fig. 5 Fault diagnosis results for rolling bearings of LTSA-

WGKELM 
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Fig. 6 Fault diagnosis results for rolling bearings of LTSA- 

ELM 
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Fig. 7 Fault diagnosis results for rolling bearings of PCA- 

ELM 

CGWGKELM yields higher fault diagnosis accuracy for 

rolling bearings compared with LTSA-WGKELM, LTSA-

ELM, and PCA-ELM. 

In order to testify the reliability of the methodolo-

gy presented in this study, another experimental data from 

the “Bearing Fault Dataset” provided by Paderborn Uni-

versity are employed. 

As summarized in Table 2, the fault diagnosis ac-

curacies for rolling bearings are as follows: ELTSA-

CGWGKELM achieves 99.33%, LTSA-WGKELM attains 

95.33%, LTSA-ELM reaches 93.33%, and PCA-ELM at-
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tains 91.33%. These results clearly demonstrate that 

ELTSA-CGWGKELM yields higher fault diagnosis accu-

racy for rolling bearings compared with LTSA-WGKELM, 

LTSA-ELM, and PCA-ELM.  

5. Conclusions 

This paper presents a fault diagnosis approach for 

rolling bearings integrating entropy-weighted distance-

based Local Tangent Space Alignment (ELTSA) and 

Weighted Gaussian Kernel Extreme Learning Machine 

optimized by Circle chaotic mapping-based Grey Wolf 

Optimization (CGWO). Initially, an innovative ELTSA 

method is developed to reduce feature dimensionality in 

rolling bearing data. This enhanced LTSA algorithm ad-

dresses limitations in conventional Euclidean distance 

measurement and improves data information preservation 

capabilities. Experimental validation confirms that the 

ELTSA achieves higher sample discrimination rates com-

pared with standard LTSA. 

Subsequently, a novel Weighted Gaussian Kernel 

extreme learning machine (WGKELM) enhanced by 

CGWO is proposed for rolling bearing fault classification. 

The WGKELM framework significantly improves nonlin-

ear processing capabilities and robustness over traditional 

weighted ELM. The CGWO algorithm incorporates circle 

chaotic mapping to enhance global search efficiency dur-

ing optimization of WGKELM parameters. 

The experimental results Indicate the following 

fault diagnosis accuracy rates for rolling bearings: ELTSA-

CGWGKELM achieves 99.5%, LTSA-WGKELM attains 

95.5%, LTSA-ELM reaches 94%, and PCA-ELM attains 

92% in case 1; ELTSA-CGWGKELM achieves 99.33%, 

LTSA-WGKELM attains 95.33%, LTSA-ELM reaches 

93.33%, and PCA-ELM attains 91.33% in case 2. These 

results demonstrate that ELTSA-CGWGKELM exhibits 

superior fault diagnosis capability for rolling bearings 

compared with LTSA-WGKELM, LTSA-ELM, and PCA-

ELM. 
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Z. Gao, W. Qiu 

A NOVEL FAULT DIAGNOSIS METHOD FOR 

ROLLING BEARINGS BASED ON ELTSA AND 

CGWO-WGKELM 

S u m m a r y 

Fault diagnosis method for rolling bearings by us-

ing entropy-weighted distance-based local tangent space 

alignment and Weighted Gaussian Kernel extreme learning 

machine with Circle chaotic mapping-based grey wolf op-

timization (ELTSA-CGWGKELM) is presented in this 

paper. This study introduces two innovative methodologies 

for rolling bearing fault diagnosis. First, an entropy-

weighted distance-based local tangent space alignment 

(ELTSA) technique is developed to address feature dimen-

sionality reduction in rolling bearing data. This approach 

effectively resolves limitations associated with conven-

tional Euclidean distance measurement while significantly 

enhancing critical data information preservation capabili-

ties. Secondly, a weighted Gaussian kernel extreme lear-

ning machine optimized through circle chaotic mapping-

enhanced grey wolf optimization (CGWGKELM) is pro-

posed for fault classification. The Gaussian kernel imple-

mentation substantially improves nonlinear processing 

performance and robustness compared with traditional 

weighted ELM architectures. The circle chaotic mapping 

strategy integrated into the grey wolf optimization algo-

rithm (CGWO) enables superior optimization of the 

weighted Gaussian kernel ELM training parameters, ensur-

ing enhanced global search capability and convergence 

efficiency. The experimental results indicate the following 

fault diagnosis accuracy rates for rolling bearings: ELTSA-

CGWGKELM achieves 99.5%, LTSA-WGKELM attains 

95.5%, LTSA-ELM reaches 94 %, and PCA-ELM attains 

92% in case 1; ELTSA-CGWGKELM achieves 99.33%, 

LTSA-WGKELM attains 95.33%, LTSA-ELM reaches 

93.33%, and PCA-ELM attains 91.33% in case 2. It is in-

dicated that ELTSA-CGWGKELM is the better fault diag-

nosis ability for rolling bearings than LTSA-WGKELM, 

LTSA-WGKELM, and PCA-ELM.  

Keywords: ELTSA, CGWGKELM, circle chaotic map-

ping, intelligent diagnosis. 
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