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1. Introduction 

 

Nowadays energy harvesting is becoming an in-

creasingly important issue for low-power micro-systems 

(for e.g. wireless node systems, seismic sensors, etc.). Pro-

gress in modern ultra-low-power microelectronics demand 

a promote progress in micro-energy harvesting from ambi-

ent energy sources to create self-powered microsystems. 

Since usual locations for such systems are hardly accessi-

ble it is natural that it is required that these sensors or sys-

tems would be self-powered, would satisfy certain size and 

mass requirements, and would assure continuous, long-

term, uninterrupted power supply without replacement of 

batteries or other elements. Several ambient energy sources 

could be harnessed for this purpose such as thermal gradi-

ents, photonic energy, various forms of radiation though 

the biggest potential is seen in mechanical energy and vi-

brational energy in particular since low and medium fre-

quency vibrations are all around us and may offer a con-

stant and reliable power supply if harnessed correctly. 

During recent years energy harvesting from vibration 

sources has attracted a lot of interest, particularly as micro 

energy sources. The main application for these are wireless 

sensor nodes, communication modules, etc. Supply powers 

of < 100 µW are sufficient to operate wireless nodes in 

silent mode. The duty cycle can be quite small so that mW 

supply levels already enable some autonomy. Motion and 

vibrations are the most versatile and ubiquitous ambient 

energy source available [1]. The mechanical to electrical 

energy transformation is most efficiently done by piezoe-

lectric materials [2]. 

Among numerous advantages of vibration energy 

harvesting there are some drawbacks too. The most signifi-

cant of those is their low efficiency and the fact that their 

maximum power output is reached only when the frequen-

cy of ambient vibrations matches the resonant frequency of 

the harvester device. When the vibration of the environ-

ment passes resonant frequency of the harvesters its effi-

ciency drops significantly. There are numerous solutions 

offered to overcome these drawbacks such as widening the 

broadband frequency of the harvesters by changing the 

shape, mass or parameters of the harvesters or introducing 

arrays of different harvesters for harvesting different reso-

nant frequencies.  

The paper focuses on increasing the efficiency of 

rectangular and optimal shape of the second and third 

mode transverse vibration cantilever harvesters by optimal 

segmentation of the piezoelectric materials of different 

polarization on the face of the cantilever. To utilize this 

goal the rectangular cantilever is investigated at its second 

resonant frequency of 541 Hz at settled vibration state as 

well as two optimal shape cantilevers at their second reso-

nant frequency of 534 Hz. The optimal shape cantilever 

means that the cantilever is designed to match the rectan-

gular cantilevers resonant frequency (second and third 

resonant frequencies in this case) but to have minimal 

mass. The normal strain along the length of cantilever is 

assumed to be directly proportional to the power output of 

the piezoelectric layer of corresponding sign. The results 

are assumed to be universal for any cantilever harvester of 

such type. Fig. 1 illustrates the distribution of utilization of 

different vibration frequencies and accelerations by differ-

ent kinds of vibrational energy harvesters.  

 

 

Fig. 1 Distribution of utilization of different vibration fre-

quencies and accelerations by different kinds of vi-

brational energy harvesters [1] 
 

1.1. Cantilever type harvester setup 

 

Various forms and shapes of the cantilevers have 

been proposed to increase the power output from strains in 

cantilver type generators. Glynne-Jones proposed and 

modeled a tapered beam generator. The tapered beam setup 

is different from normal rectangular cantilever harvester 

that the constant strain is assured along the whole length of 

the cantilver for given displacements. The device was 

manufactured from 0.1 mm thick AISI 316 stainless steel. 

The piezoelectric material used was PZT-5H powder 

mixed with Corning 7575 glass and a suitable thick-film 

vehicle to form a screen printable thixotropic paste. Both 

faces of the cantilever were coated to cancel the uneven 

thermal expansion of the cantilever and to maximize the 

http://dx.doi.org/10.5755/j01.mech.19.4.4477


452 

power output. The structure was excited at its first natural 

resonant frequency of 80.1 Hz and generated 3 µW at 

333 kΩ [2].  

There is also wide range of active materials to 

choose since the deposition techniques are well developed 

for both thin and thick films [3]. This was a constant width 

steel bar with two layers of PZT-5A on top and bottom of 

the bar. The drawback of this design was that the strain 

was distributed unequally along the bar; the mathematical 

models describing this phenomenon are presented in [4]. A 

cubic mass made of tin and bismuth composite was at-

tached on the tip of the cantilever. The designed resonant 

frequency for the structure was 120 Hz. The maximum 

output value reached was 80 μW into a 250 kΩ load re-

sistance with 2.5 m/s
2
 input acceleration and the results 

showed a reasonable level of agreement with the analytical 

models. Using these models as reference the structure was 

optimized to overall size constraint of 1 cm
3
. Two further 

designs were developed, each using two PZT-5H layers 

attached to a 0.1 mm central brass. The paper [5] provides 

results of dynamic numerical analysis of piezoelectric can-

tilever-type microgenerator intended for wireless MEMS 

applications. This analysis constitutes an initial phase of 

ongoing research work aimed at microgenerator optimal 

design. It is based on beneficial utilization of higher vibra-

tion modes, which may offer significant benefits in terms 

of dynamic performance. Here we report preliminary re-

sults of simulations that were performed with a developed 

3D finite element model of the microgenerator that consti-

tutes a bilayer cantilever structure with proof mass at the 

free end. The structure was subjected to harmonic base 

excitation by applying vertical acceleration through body 

load. The resulting characteristics reveal strong depend-

ence of magnitude of generated voltage on design and 

excitation parameters (frequency, acceleration). Initial 

findings indicate the necessity to develop microgenerator 

design with self-tuning of the resonance frequency, i.e. the 

device should adapt to varying excitation frequency so as 

to be driven in resonance thereby achieving maximal elec-

trical power output. Paper [6] reports on numerical model-

ing and simulation of a generalized contact-type MEMS 

device having large potential in various micro-

sensor/actuator applications, which are currently limited 

because of detrimental effects of the contact bounce phe-

nomenon that is still not fully explained and requires com-

prehensive treatment. The proposed 2D finite element 

model encompasses cantilever microstructures operating in 

a vacuum and impacting on a viscoelastic support. The 

presented numerical analysis focuses on the first three 

flexural vibration modes and their influence on dynamic 

characteristics. Simulation results demonstrate the possibil-

ity to use higher modes and their particular points for en-

hancing MEMS performance and reliability through reduc-

tion of vibro-impact process duration. In [7] a piezoelectric 

generator composed from a beam and a proof mass of is 

designed and installed on a bicycle handlebar; the first 

experiments have shown that the few mW that produced 

the piezoelectric generator is able to power LED-lamp. 

Under ideal conditions such as pure sinusoidal vibrations 

at 5 ms
2
 and 12.5 Hz, the power harvestable measured 

achieved 3.5 mW for an optimal resistive load of 100 kW, 

power that is sufficient to recharge a battery, or to power 

low consumption devices.  

These types of generators are the simplest while 

the mechanical motion is directly converted into a voltage 

output via electrode active material. This type of device 

can be used for both impact and vibration energy harvest-

ing without need for numerous additional components. 

This type of generators is particularly well suited for mi-

cro-engineering. On the other hand PZT is known to pro-

vide high output voltage but low output currents. The pie-

zoelectric materials are required to be strained directly and 

therefore their mechanical properties will limit the overall 

performance and lifetime. Also the transduction efficiency 

is ultimately limited by piezoelectric properties of materi-

als employed. The output impedance of piezoelectric gen-

erators is typically very high (> 100 k) [8]. 

These and other sources were used to analyze the 

normal strain distribution in direction along of the cantile-

ver. Normal strain is analyzed because there is a direct 

relation between normal strains appearing on the face of 

the cantilever and thus in the layer of piezoelectric materi-

al, and energy output of piezoelectric material placed on 

that cantilever. Measuring and understanding the dynamic 

effects appearing in the cantilever will help to optimize the 

energy output from these strains.  

Segmentation of the piezoelectric material on the 

face of the cantilever is extremely important if the cantile-

ver is going to be used at its second or higher resonant 

frequency since at the regions of nodes areas of uncertainty 

appear, where strains of both negative and positive sign 

appear at the same moment and thus it is important to place 

the piezoelectric materials of different polarizations so that 

the maximum of the strains would be harnessed. 

In normal conditions one would segment the pie-

zoelectric material at the middle of such region, but in this 

paper optimization of such regions will be done and strain, 

or energy output gain of such optimization will be calcu-

lated. 

The objectives of this paper are to investigate 

normal strain distribution along length of cantilever, then 

the cantilever is excited at its second mode of transverse 

vibrations. The investigation was done for three different 

shape cantilevers: rectangular, optimal shape of the second 

mode transverse vibration and optimal shape of the third 

mode transverse vibration. The eigenfrequencies have the 

same value. After conducting the investigation optimal 

segmentation boundaries were calculated where tensile 

deformations change compression deformations and vice 

versa.  

 

1.2. Derivation of characteristics  

 

Modal analysis. Since the investigated cantilever 

systems are considered to be undampped that is there is no 

element present that is consuming the vibration energy of 

the cantilever the system may be considered to be undergo-

ing free vibrations and the governing differential equation 

may be written as shown in (1):  

0Mu Ku  . (1) 

Internal elastic forces Ku act as an offset to the in-

ternal forces Mü. In this case K is the stiffness matrix and 

M is the mass matrix. Differential Eq. (1) can be reduced 

further to get (2) through which the eigen-frequencies or 

resonant frequencies are found: 
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Kν = ω
2
Mv, (2) 

where ωi is resonant frequency or eigen-frequency and  

vi is corresponding vibration mode or eigen-mode vector. 

Boundary condition for this cantilever is one fixed and the 

other end is free. The impact of ambient forces is imitated 

by vertical kinematic (base) excitation of the cantilever. 

Equation of motion. The second problem is find-

ing the distribution of normal strains through the face of 

the cantilever under investigation. For this problem differ-

ential equation of damped forced vibration was used (3). 

The system was subjected to time dependent force f(t), 

which is periodic in time: 

       Mu t Cu t Ku t f t .    (3) 

In this case the added C is damping matrix. The 

time dependent force f(t) is described as cantilever body 

load in vertical direction and defined as force/volume us-

ing the thickness: 

  nf t amsin t , (4) 

where a is acceleration and is 1.2 m/s
2
, m is mass of canti-

lever and ωn is the excitation frequency, which matches the 

second resonant frequency of the cantilever under investi-

gation boundary conditions [6]. 

 

1.3. Finite element method models 

 

Finite element method (FEM) was chosen to solve 

these differential equations numerically. 

The cantilevers under investigation are considered 

to be thin because they satisfy the condition that thickness 

of the cantilever should not be bigger than one tenth of the 

width of the cantilever, this is important because in thin 

cantilevers the shear deformations in transverse direction 

are neglected.  

Because investigated structure is thick cantilever 

with no strain in the out-of-plane direction the plane strain 

2D continuum application mode was used for modeling. 

The equation of motion (3) was solved during transient 

analysis. The load parameters vary dependent on the exci-

tation frequency ωn of time dependent force f(t). The ele-

ment type is quadratic Lagrange elements with second-

order polynomials.  

Adaptive meshing and extruded triangular mesh 

was used to solve these problems. COMSOL 3.5a software 

was used. The investigation was carried out with cantilever 

of three different geometries.  

One rectangular cantilever, and the shape of other 

two cantilevers was obtained by solving the shape optimi-

zation problem with the objective to obtain the cantilever 

of minimal mass for a given mode of transverse eigen-

frequency, second and third in this case, with constraints: 

state Eq. (2) and the value of its eigen-frequency ωi must 

be the same as value of the corresponding rectangular can-

tilever eigen-frequency ωi. Optimal shape cantilevers are 

presented in Fig. 2. The cantilevers have been scaled by a 

factor of 10 in vertical direction. Mechanical properties of 

the material and dynamic characteristics of cantilevers are 

given in Table 1. 
 

 

a 

 

b 

 

c 

Fig. 2 Geometry of cantilever setups: a) optimal shape of 

the third mode transverse vibration (OPT III); b) op-

timal shape of the second mode transverse vibration 

(OPT II); c) rectangular shape (REC) 
 

Table 1 

Mechanical properties of the material and dynamic  

characteristics of cantilever setups 
 

 REC OPT II OPT III 

ω1, Hz  86 66 66 

ω2, Hz 541 534 534 

Density, kg/m
3
 7850 

Elastic modulus, N/m
2
 2 × 10

10 

Poisson’s ratio 0.33 

Length, l 0.1 m 

Width, a 0.01 m 

Thickness, b  0.001 m for rectangular  

from 0.0005 m up to 0.0015 m 

for optimal shape 
 

2. Numerical analysis 
 

Modal analysis with three different shape cantile-

ver harvesters was performed. Results of modal analysis 

are presented in Table 1. From the results it can be seen 

that values of eigen-frequency are the same or close to it 

for all the cantilevers under investigation. The first vibra-

tion mode of these cantilevers in transverse direction is 

shown in Fig. 3 along with normal strain through the 

length of the cantilever, and Fig. 4 for the second vibration 

mode. 
 

 

Fig. 3 The first vibration mode of three cantilever setups in 

transverse direction 
 

 

Fig. 4 The second vibration mode of three cantilever setups 

in transverse direction 
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The bimorph rectangular cantilevers was exposed 

to ambient harmonic vibrations that matched their second 

transverse vibration resonant frequency of 541 Hz at 1.3g 

acceleration for rectangular cantilever and 534 Hz and 1.3g 

acceleration for the optimized shape cantilevers. The verti-

cal displacement of free end of the cantilever for given 

interval of time can be seen in Fig. 5. From Fig. 5 it can 

also be observed that the interval selected for further inves-

tigation of normal strain in horizontal direction with re-

spect to cantilevers length is at the settled region of the 

time interval. The period selected from this interval is di-

vided into 4 segments, it is assumed that deflections of I 

and IV segments are equal in magnitude as well as II is 

equal to III, they only differ in sign. The same methodic 

was used for other two cantilevers that were excited at 

their second resonant frequency of 534 Hz. Fig. 6 repre-

sents distribution of normal strains in horizontal direction 

in upper cantilever edge with respect to cantilevers length 

in meters for given interval of time. 

 

 

Fig. 5 Harvesters tip amplitude in the transverse direction: 

a) versus time; b) time interval selected for further 

investigation of normal deflections; c) time period 4 

segments 

 

The number of curves represents the number of 

time steps that the time interval was divided to. From 

Fig. 6 it can be seen that positive strains appear from 0 m 

to a = 0.0189 m of the cantilever with strains curve bound-

ed area A
, while negative – from b = 0.42 m to 0.1 m 

with strains curve bounded area A
. Bounded areas A  

and A
 are computed by integration a strain-displacement 

equation: 

0i

a

t

u
A dx

x





   ; (5) 

i

l

t b

u
A dx

x





   , (6) 

where 
it

A
 is the normal strain of positive sign in trans-

verse direction of the cantilever at time step and 
it

A
 is the 

normal strain of negative sign in transverse direction of the 

cantilever at time step ti. It is seen that this problem can be 

reduced to finding the area of the region bounded above by 

the graph of a function ,
u

x




 where u – displacement in 

horizontal direction, x – horizontal axis. Bounded below by 

the x-axis (cantilevers length), bounded to the left by the 

vertical line a = 0.0189, and to the right by the vertical line 

b = 0.0416. As each different curve represents different 

point of time area bounded by each curve has to be calcu-

lated A A A    where 
1 2t t t nA A A A        and 

1 2t t t nA A A A        as shown in Fig. 5, where 
1tA  is 

normal strain of positive sign at time step 1, and A
is total 

sum normal strain for given sign for each of time steps, 

where n number of time steps. A represents the total sum of 

both positive and negative normal strain. The left side of 

the region of uncertainty at which the effective normal 

strain will be added to A
 area from Fig. 5. It is calculated 

by subtracting the area bounded by normal strain curves in 

the negative part of the graph from area bounded by curves 

in the positive part of the graph: LA  - LA  from 0.0196 m 

to 0.024039 m. Where, LA  is the sum of positive normal 

strain at each time step in the left side of the region and 

LA  - negative.  

 

 

Fig. 6 Normal strain versus length of the cantilever. Verti-

cal lines a and b represents boundaries of the region 

of uncertainty, while c – geometric middle of the re-

gion of uncertainty 
 

The right side of the region of uncertainty at 

which the gain will be added to A
 area from Fig. 5. It is 

calculated by subtracting the area bounded by normal 

strain curves in the opposite part of the graph from area 

bounded by curves in the negative part of the graph: RA  - 

RA  from 0.024039 m to 0.0416 m, where, RA  is the sum 

of positive normal strain at each time step in the right side 

of the region and RA  - negative. Optimal segmentation 

was found to be at 0.024039 m by the method of semi-

crossing [5]. 

Total normal strain in transverse direction ∑A is 

found as L RA A A A A     . It represents the total 

normal strain per given period of time at one face of the 

cantilever. The effective area calculation is done for both 

optimal and suboptimal segmentation of the cantilever to 

make the comparison of the gain of the segmentation as 
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Aopt versus ASub. For the investigated cantilever harvesters 

n = 18 time step per 1/4 period are used for more precise 

results. The optimal segmentation and gain was found for a 

rectangular cantilever at its second resonant frequency 

2 514 Hzrect  , optimal design cantilevers at its second 

and third resonant frequencies 2 534 Hzopt  . The later 

sections of the work presents the results of calculation for 

different cantilever setups at their resonant frequencies.  

 

3. Results 

 

The graphic representation of calculation position 

of optimal segmentation of three cantilevers is shown in 

Fig. 7. From Fig. 7, a it can be observed that in the rectan-

gular cantilever the optimal segmentation line is shifted 

quite far from the geometric center of the region of uncer-

tainty, while in Fig. 7, b and c where the optimal shape 

cantilever are shown the optimal segmentation line has 

been shifted by very small amount. It is also 

obvious that normal strain curves are quite symmetric with 

respect to the center of the region while in the rectangular 

cantilever the symmetry is lost. Correlation between sym-

metry of the normal strain curves and optimal segmenta-

tion can be outlined. Finding optimal segmentation al-

lowed the calculations of total normal strain gain with 

optimal segmentation versus sub-optimal segmentation. 

The normal strain curves were integrated to find the total 

normal strain at each step of time for optimal and sub-

optimal segmentation. Total normal strain calculation 

method for constant sign sections of the cantilevers can be 

seen in Fig. 7 for each cantilever, where 
itA  is the total 

normal strain for given step of time ti of positive or nega-

tive sign. The gain calculation results are given in Table 2. 

From this table it can be seen that the biggest gain was 

found in the rectangular cantilever, where the segmentation 

shift was also the greatest and distribution of normal strain 

was the least symmetric with respect to the center of uncer-

tainty. 

 

 

 a b c 

Fig. 7 Normal strain versus length: a) of the rectangular bimorph cantilever excited at its second resonant frequency of 

541 Hz; b) of the optimal shape cantilever of second mode and c) of the optimal shape cantilever of third mode are 

excited at their second resonant frequency of 534 Hz 

 

Table 2 

Total normal strain gain calculation results for three types of cantilever energy harvesters 
 

Cantilever 

type 

Segmentation 

position along 

cantilever, m 

Total strain in 

x-direction 

Region of uncertainty gain, % 
Total 

Gain, % 
Normal strain in 

region of uncer-

tainty versus total 

normal strain, % 

Normal strain in 

region of uncer-

tainty 

Gain in re-

gion of un-

certainty, % Rectangular 

+4.15% Optimal Opt = 0.024039 0.762948 14.59 0.111301 
+37.6% 

Sub-Optimal C = 0.030014  0.732532 11.01 0.080885 

OPTII 

+0.128% +0.0013% Optimal Opt = 0.023136  0.891478 1.03 0.00918 

Sub-Optimal C = 0.023072  0.891466 1.02 0.00917 

OPTIII 

+12.5% +0.0425% Optimal Opt = 0.020579  0.983534 4.19 0.03751 

Sub-Optimal C = 0.020323 0.979361 3.42 0.03333 

 

On the other hand the gain in optimal shape canti-

levers is very small, only 0.0013% in optimal shape canti-

lever for the second resonant frequency and 0.0415% for 

optimal shape cantilever for third resonant frequency. 

From Table 2 it can be seen that region of uncertainty con-

tained large proportion of total normal strain of bimorph 

rectangular cantilever, optimization of this region gained 

37.6% more usable strain in this region and due to its large 

proportion (14.59% of total normal strain output) in total 

normal strain the total gain was also big. 
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Fig. 8 Spread graphic of the normal strain versus length of the cantilever excited at the second transverse resonant frequen-

cy at time step ti: a) rectangular cantilever b) optimal shape cantilever of the second mode c) optimal shape cantile-

ver of the third mode 

 

 

 a b 

Fig. 9 Total normal strain output versus time step for the three cantilever setups at optimal and suboptimal segmentations: 

a) for all cantilever length; b) in region of uncertainty. 

 

From Table 2 it also can be observed that optimal 

shape cantilevers had quite small regions of uncertainty 

and optimization did not make big effect on total normal 

strain output. The proportions of the region of uncertainty 

versus total normal strain outputs of the cantilevers were 

only 1% and 4% for optimal shape cantilevers respectively 

so naturally optimization of this region gave small increase 

in terms of total normal strain output. Fig. 8 illustrates the 

spread graphic of the total normal strain versus length of 

the cantilever at time step ti. Total normal strain output 

versus time step can be seen in Fig. 9. Here Fig. 9, a repre-

sents comparison of total normal strain outputs of all three 

cantilevers. From here it can be seen that the biggest ener-

gy output has been reached in optimal shape cantilever of 

the third mode excited by the second resonant frequency. 

The smallest total normal strain or equivalent energy out-

put has been registered in rectangular cantilever through 

the difference between optimal and sub-optimal segmenta-

tion outputs was the greatest in this bimorph cantilever 

setup. From Fig. 9 it can be seen that the widest region of 

uncertainty with biggest normal strain is observed in rec-

tangular cantilever. Fig. 9 indicates that for the optimal 

shape cantilevers optimal and sub-optimal segmentation 

total normal strain output curves overlap (only 4 curves 

can be seen instead of 6). From Fig. 8, a it can be seen that 

only the rectangular bimorph cantilever shows large differ-

ence between optimal and suboptimal segmentation. Opti-

mal shape bimorph cantilever curves overlap in optimal 

and sub-optimal segmentation revealing very little differ-

ence between optimal and sub-optimal cantilever perfor-

mance under the same conditions. Fig. 9, b demonstrates 

that the difference between optimal and sub-optimal seg-

mentation for rectangular cantilever is even bigger, as well 

as for optimal shape cantilever for the third resonant fre-

quency excited by the second resonant frequency, though 

in this case the ratio of total normal strain output in region 

of uncertainty versus total normal strain output for the 

whole cantilever is very small. The results show that due to 

optimal shape of the cantilevers the normal strain distribu-

tion is localized in certain nodes of the cantilever and thus 

the ineffective loss of usable normal strain along cantilever 

is eliminated or minimized. This is seen from Fig. 8, b 

a b 

c 
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where rectangular cantilever demonstrates large difference 

between optimal and sub-optimal segmentation in region 

of uncertainty, while the optimal shape cantilevers show 

very small difference between optimal and sub-optimal 

segmentation. Fig. 10 Represents the results of the optimal 

segmentation of the cantilevers. Here Fig. 10 schematic 

representation can be seen of three cantilevers with optimal 

segmentation of piezoelectric layers and directions of po-

larization for these layers when they are excited by the 

second mode of transverse vibrations. 

 

 

 b 

Fig. 10 Schematic representation of three optimal segmentation cantilever setups with directions of polarization for piezoe-

lectric material: a) rectangular cantilever b) optimal shape cantilever of the second mode c) optimal shape cantile-

ver of the third mode 

 

4. Conclusions 

 

Optimal segmentation along the length of the can-

tilever was calculated for each cantilever setup. Optimal 

segmentation position: for rectangular cantilever is 

0.024039 m; for the optimally-shaped cantilever of the 

second mode of transverse vibrations - 0.023136 m; for the 

optimally-shaped cantilever of the third mode of transverse 

vibrations - 0.020579 m.  

Total normal strain amount of sub-optimal con-

figuration of the bimorph rectangular sub-optimal segmen-

tation cantilever - 0.732532, of optimal segmentation 

0.762948. For the optimally-shaped cantilever for the sec-

ond eigen-frequency – suboptimal 0.891466, optimal 

0.891478 and, for optimally-shaped cantilever for the third 

eigen-frequency suboptimal 0.97936, optimal 0.98353.  

Total gain of optimal segmentation cantilever ver-

sus sub-optimal was found to be 4.15%, and 0.00013% and 

0.0425% for the optimally-shaped cantilevers for the sec-

ond and the third eigen-frequencies respectively.   

Optimally-shaped cantilevers had narrower region 

of uncertainty and smaller ratio of total normal strain 

amount in region of uncertainty versus rectangular cantile-

ver. Total normal strain in bimorph rectangular cantilever 

was smaller if compared to the optimized cantilevers due 

to larger losses of strain due to wide region of uncertainty. 
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NORMALINIŲ DEFORMACIJŲ PASISKIRSTYMO 

OPTIMALIOS FORMOS BIMORFINĖSE GEMBĖSE, 

ŽADINAMOSE ANTRUOJU REZONANSINIU 

DAŽNIU, TYRIMAS IR PJEZOELEKTRINIŲ 

SLUOKSNIŲ SEGMENTAVIMAS 

 

R e z i u m ė 

 

Straipsnio tikslas – ištirti normalinių deformacijų 

pasiskirstymą išilgai gembės, žadinamos antruoju rezonan-

siniu skersinių virpesių dažniu. Buvo tiriamos trijų skirtin-

gų formų gembės: stačiakampė gembė, optimalios formos 

gembė, žadinama antruoju rezonansiniu skersinių virpesių 

dažniu, ir optimalios formos gembė, žadinama trečiuoju 

rezonansiniu skersinių virpesių dažniu. Atlikus tyrimą 

apskaičiuotos šių gembių optimalaus segmentavimo vietos, 

kuriose tempimo deformacijas keičia gniuždymo deforma-

cijos ir atvirkščiai. Nustatyta, kad optimalios formos gem-

bių kintamų deformacijų zona yra siauresnė, taip pat joje 

yra mažiau deformacijų, palyginti su stačiakampe gembe. 

Stačiakampėje gembėje naudingųjų deformacijų būna ma-

žiau nei optimalių formų gembėse. To priežastis – plati 

gembės zona, kurioje  deformacijos keičia ženklą, o tai 

sąlygoja deformacijų kiekio nuostolius. 
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SEGMENTATION OF PIEZOELECTRIC LAYERS 

BASED ON THE NUMERICAL STUDY OF NORMAL 

STRAIN DISTRIBUTIONS IN BIMORPH  

CANTILEVERS VIBRATING IN THE SECOND 

TRANSVERSE MODE 

 

S u m m a r y 

 

The objective of this paper is to study normal 

strain distribution along the length of a bimorph piezoelec-

tric cantilever when it is excited at the second mode of 

transverse vibrations. The analysis was performed with 

three cantilevers of different shapes: rectangular, optimal-

ly-shaped with respect to the second transverse mode and 

optimally-shaped with respect to the third transverse mode 

of the rectangular cantilever. The eigen-frequencies of the 

vibration modes have the same value for all the cantilevers. 

Numerical study provided optimal segmentation of the 

piezoelectric layer boundaries, where tensile deformations 

change into compression ones and vice versa. It is con-

cluded that the optimally-shaped cantilevers had narrower 

region of uncertainty and smaller ratio of total normal 

strain amount in the region of uncertainty versus rectangu-

lar cantilever. Total normal strain in the bimorph rectangu-

lar cantilever was smaller if compared to the optimized 

cantilevers due to larger losses of strain due to wide region 

of uncertainty.  

 

Keywords: piezoelectric energy harvesting, total normal 

strain, optimal shape cantilever. 
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