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1. Introduction 

 

Eigenstrains is a generic name given by Mura [1] 

to nonelastic strains such as plastic strains, misfits strains, 

thermal expansion or phase transformation, which generate 

a linear elastic stress field in an elastic isotropic media, 

referred to as the surrounding matrix. It should be noted 

that the region with eigenstrains, namely the inclusion, is 

assumed to have the same elastic parameters as the sur-

rounding matrix. Solution for the stresses due to inclusions 

in an infinite space can be achieved using Eshelby’s meth-

od [2]. However, in many practical situations, sites of ei-

genstrains generated by contact loading, heating or metal-

lurgical transformations are confined to a near surface re-

gion. Although inclusion problem has received a great deal 

of attention in the last four decades [3], closed-form solu-

tions exist only in a few cases of regular shaped inclusions.  

Solutions of elastic state due to a spherical or el-

lipsoidal inclusion containing pure dilatational eigenstrains 

have been obtained by Mindlin and Cheng [4] and by Seo 

and Mura [5], respectively, through integration of Green’s 

functions of a point force acting in the interior of a semi-

infinite solid [6]. The closed form solution for stresses due 

to uniform cuboidal eigenstrains in an elastic isotropic in-

finite space, as well as in the half-space, was advanced by 

Chiu [7] and by Chiu [8] respectively, using the mirror 

image method. This solution was later used by Jacq et al. 

[9] to solve the problem of residual stresses in elastic-

plastic contact due to an arbitrarily shaped plastic region, 

approximated by the reunion of a finite number of elemen-

tary cuboids, each containing uniform plastic strains. Wang 

and Keer [10] used a similar approach, implementing the 

Discrete Convolution Fast Fourier Transform (DCFFT) 

technique [11] in layers of constant depth. Liu and Wang 

[12] approached the inclusion problem by superposition, 

differentiation and integration of Mindlin and Cheng’s [13] 

solutions for the point force in the interior of the semi-

infinite solid, but their formulation led to complex calcula-

tions involving derivatives of four key integrals.  

More recent refinements of the numerical method 

for the inclusion problem involve a different approach [14] 

in derivation of influence coefficients, which allows cou-

pling with three-dimensional spectral methods, leading to a 

further decrease of order of computation. When solving 

more complex eigenstrains configurations, or when the 

inclusion problem has to be solved repeatedly, as in the 

case of elastic-plastic contact solvers, the main challenge 

consists in correlating the available computational re-

sources with the imposed precision goals. In many practi-

cal situations, problems are considered unsolvable due to 

prohibitive requirement of memory or processor speed. 

The goal of this paper is to advance a refined nu-

merical method for the inclusion problem, incorporating 

the latest enhancements in a robust, efficient algorithm, 

which can be used to solve a wider variety of inclusion-

related problems. The strong point of this method consists 

in the hybrid convolution-correlation multi-dimensional 

algorithm, which allows the use of three-dimensional 

DCFFT. The simplified method for enforcing free surface 

relief in the mirror image method allows extension to the 

case of general (not only deviatoric) eigenstrains. 

 

2. Numerical model 

 

Considering existing closed-form solutions, it is 

convenient to divide the inclusion domain into a collection 

of non-intersecting cuboids of uniform eigenstrains, using 

a rectangular three-dimensional mesh, and to approximate 

stresses due to arbitrarily shaped inclusions by superposing 

the individual contributions of each elementary cuboid. 

The starting point in the numerical procedure is the closed-

form solution advanced by Chiu [7] for the elastic stress 

field due to a cuboid of uniform eigenstrains located in an 

infinite, elastic and isotropic medium, referred to as the 

influence coefficient (IC). The main features of this solu-

tion are briefly outlined. A Cartesian coordinate system 

1 2 3( , , )x x x  is attached to the center of the cuboid contain-

ing uniform eigenstrains ij
 , , 1,2,3i j  . The six compo-

nents of the stress tensor ij , , 1,2,3i j   in a point of co-

ordinates 1 2 3( , , )x x x  (i.e. the observation point), due to the 

eigenstrains tensor ij

 (i.e. the source cuboid), can be ex-

pressed as the contribution of all components of the ij

 

tensor, yielding 36 different ICs: 
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Consequently, Aijkl, i, j, k,  = 1, 2, 3, denotes the 

stress tensor component ij  induced in the infinite elastic 

matrix by the k component of the eigenstrains tensor, 

assumed uniform and equal to unity in a cuboid centered in 

origin. It should be noted that, in case of shear strains, i.e. 

k  , as ijk ij kA A , contribution of both corresponding 

strains, i.e. of both 1k k    , is accounted for in Eq. (1) 

by means of the multiplier 2. ijkA  is therefore a fourth-

order tensor, whose components depend on the size of the 

source cuboid and on the distance between the center of 

the cuboid and the observation point. Eq. (1) can be written 

in a simplified form, using Einstein summation convention 

(which will be used from this point forward): 

1 2 3 1 2 3( , , ) ( , , ) (0,0,0)ij ijk kx x x A x x x   , (2) 

where i, j, k,  = 1, 2, 3. Detailed derivation of ijkA  in 

closed-form expression is discussed in [9] or [14]. 

As pointed out by Mura [15], in the presence of 

initial strains, a finite body with a traction-free surface can 

be treated as an infinitely extended body, if equal but op-

posite normal and shear stresses are applied on the bounda-

ry, compensating for the ones corresponding to the full 

space solution. Based on this assertion, Chiu [8] derives 

the elastic field due to a cuboidal inclusion in an elastic 

half-space, by superposition of three solutions, correspond-

ing to three elastic states, denoted by superscripts I, II and 

III in Fig. 1. The coordinate system is moved with its 

origin on the half-space boundary, laying on the normal 

axis passing through the centre of the cuboid. State I em-

ploys the eigenstrains of the original problem, i.e. I

ij ij   , 

but the surrounding elastic matrix is considered infinite in 

all directions. Let (0,0, )h  denote the position of the centre 

of the cuboidal inclusion. The same type of boundary con-

dition is imposed in state II, except the eigenstrains region 

is chosen as the mirror image of that in state I (i.e. a cuboid 

having the centre at (0,0, )h ), in such a manner that 

summation of elastic fields induced by both cuboidal re-

gions leaves the half-space boundary free of shear trac-

tions. Using Eq. (2) with the new coordinate system, su-

perposition principle applied to states I and II yields the 

stress induced in any point of the infinite space: 

1 2 3 1 2 3

1 2 3

( , , ) ( , , ) (0,0, )

( , , ) (0,0, ),

I II I

ij ijk k

II

ijk k

x x x A x x x h h ...

A x x x h h

 



    

    (3) 

where i, j, k,  = 1, 2, 3. The choice of eigenstrains depic-

ted in Fig. 1 leads to 3 1 2( , ,0) 0I II

i x x    for i = 1, 2. 

Consequently, the half-space boundary is left free of shear 

tractions, exhibiting only a fictitious normal traction (pres-

sure) 33 1 2( , ,0)I II x x  . According to the method indicated 

by Mura [15], stresses equal but opposite to 33 1 2( , ,0)I II x x   

should be applied on the boundary x3 = 0, and their contri-

bution subtracted from summation of solutions I and II, i.e. 

from the 1 2 3( , , )I II

ij x x x   computed in Eq. (3), in order to 

fully satisfy the traction free surface condition in the origi-

nal inclusion problem.  

Let 1 2 3( , , )III

ij x x x  denote the elastic state induced 

in the half-space x3  0 by the fictitious normal traction 

33 1 2( , ,0)I II x x   yielding from the states I and II. The solu-

tion of the inclusion problem with cuboidal uniform ei-

genstrains in a finite body can then be obtained by super-

position of the three elastic states, as depicted in Fig. 1: 

1 2 3 1 2 3 1 2 3( , , ) ( , , ) ( , , )I II III

ij ij ijx x x x x x x x x    . (4) 

 

Fig. 1 Solution of the inclusion problem employing the mirror image method,  11 22 33 12 23 31

T

           ε ; 

 11 22 33 12 23 31

T
I           ε ;  11 22 33 12 23 31

T
II             ε  

 

The latter solution, also referred to as the influ-

ence coefficient for the inclusion problem in a finite medi-

um, can be further employed to solve numerically any type 

of inclusion. In the numerical formulation, which involves 

digitization of problem parameters, the inclusion domain, 

which can be arbitrary shaped, containing known but oth-

erwise arbitrarily distributed eigenstrains, is divided into 

elementary cuboids of uniform eigenstrains, as shown in 

Fig. 2. Superposition principle is subsequently applied to 

evaluate the resulting stress state. As all distributions are 

assumed piece-wise constant and equal, in each cuboid, to 

the value in its centre, it is convenient to index all cuboids 

in the rectangular computational domain by a sequence of 

three integers ranging from 1 to N1, N2 and N3 respectively, 
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with N = N1N2N3, and to express all distributions as func-

tions of these integers instead of continuous coordinates. 

For example, the value of any continuous distribution f in 

the centre Cijk of the cuboid (i, j, k) will be denoted by 

f (i, j, k), and will be computed as f(x1(Cijk), x2(Cijk), 

x3(Cijk)). In this manner, the integral equation yielding 

stresses due to an arbitrary distribution of eigenstrains, 

occupying an arbitrary domain, can be estimated numeri-

cally by summating the individual contributions of all ele-

mentary cuboids with non-vanishing eigenstrains. 
 

 

Fig. 2 Inclusion problem digitization 

However, in order to implement spectral methods, 

which compute multiple elementary contributions simulta-

neously, the multi-summation process must cover all the 

cells in the computational domain. Applying this technique 

to Eq. (3) yields: 
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(5) 

where 1 2 3, , , , ,     , 11 i N  , 21 j N  , 31 k N  . 

In this relation, the cuboid ( , , )m n   , of centre mnC , is 

the mirror image with respect to the plane x3 = 0 of the 

cuboid ( , , )m n  centred at mnC . Consequently, Eq. (4) 

expresses the   stress tensor component induced in any 

observation cuboid ( , , )i j k  by a digitised distribution of 

eigenstrains located in the half-space 3 0x   (the first term 

on the right-hand side of Eq. (4)), as well as by its mirror 

image with respect to the plane 3 0x   (the second term on 

the right-hand side of Eq. (4)), both laying in an infinite 

elastic matrix. Due to symmetry, 1 1( ) ( )mn mnx C x C  , 

2 2( ) ( )mn mnx C x C  , but 3 3( ) ( )mn mnx C x C   . Conse-

quently, the term accounting for the contribution of the 

mirror images can be expressed using the set of the indexes 

employed in state I, provided the correct coordinate system 

transformation is performed, yielding: 

3 31 2 1 2

1 1 1 1 1 1

( , , ) ( , , ) ( , , ) + ( , , ) ( , , ).
N NN N N N

I II I II

m n m n

i j k A i j m k n m n A i j m k n m n      

     

         (6) 

It is also convenient to match the set of observa-

tion points to the set of centres of all elementary cuboids, 

i.e. 11 i N  , 21 j N  , 31 k N  . In this manner, the 

number of different ICs to be computed is restricted to the 

number of different distances between observation and 

source nodes (possibly with a changed sign), yielding at 

most 1 2 38N N N  different terms for each of the two mem-

bers on the right-hand side of Eq. (5). 

The fictitious normal traction 33 1 2( , ,0)I II x x   act-

ing on the half-space boundary, needed for the solution of 

state III, yields from Eq. (5) by setting k = 1 and 

3   . The stress induced by this traction in the half-

space 3 0x  , denoted ( , , )III i j k , , 1,2,3   , 

11 i N  , 21 j N  , 31 k N  , can subsequently be 

approximated numerically. Chiu [8] expressed 
III

  in 

terms of    using an existing solution for the stresses in 

an isotropic half-space under periodically distributed nor-

mal surface loading. It should be noted that his method 

holds only for deviatoric eigenstrains (i.e. ( ) 0iitr    ), 

such as the plastic strains. Moreover, the resulting influ-

ence coefficients depend not only on the distance between 

the observation and the source points, but also on the depth 

of the source point, leading to a total of 2

1 2 38N N N  differ-

ent terms, i.e. 1 2 38N N N  different terms for each of the 3N  

layers of constant depth. The amount of memory required 

to store these arrays limits dramatically the achievable res-

olution.  

The approach newly proposed in this paper differs 

from that of Chiu in the way 
III

  is related to   , allow-

ing extension of the numerical solution to the case of gen-

eral (not only deviatoric) eigenstrains, and providing an 

important reduction of computational complexity and of 

memory requirements. According to [16], the stress in-

duced in an elastic half-space by a digitised distribution of 

normal tractions can be approximated by the summation: 

1 2

33
1 1

( , , ) ( , , ) ( , ,1)
N N

III I II

k

i j m S i k j m k   

 

   , (7) 

where , 1,2,3   , 11 i N  , 21 j N  , 31 m N  . 

The influence coefficient S  expresses the   stress ten-

sor component induced in the cuboid (i, j, m) by a unit uni-

form pressure acting on the side of the cuboid (k, , 1) in-

cluded in the half-space boundary. Closed-form expres-

sions for these ICs were derived in [16]. Finally, the solu-

tion for the stress due to digitised arbitrary shaped ei-

genstrains in an elastic isotropic half-space results from 

superposition of solutions (5) and (6), as shown in Eq. (3) 

for a single cuboidal inclusion. 
 

3. Computation acceleration 
 

The multi-summation process in Eq. (5) is very 

computationally intensive, having an order of computation 
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of O(N
2
) for a grid with N elements when classical direct 

summation is used. In order to circumvent this constraint, 

which limits dramatically the resolution that can be im-

posed when solving numerically the inclusion problem, 

many authors [9, 10, 12, 14] employed spectral methods, 

based on the convolution theorem. The main idea is to 

transfer the convolution calculation from the space domain 

(SD) to the frequency domain (FD), where the computa-

tional complexity is reduced to an improved order of 

O(N log N). The source of this reduction is the convolution 

theorem [17], which states that convolution in the SD can 

be computed as an element-wise product in the FD, in 

O(N) operations. Additional computational effort is re-

quired to apply the direct (FFT) and inverse (IFFT) Fast 

Fourier Transform, to accomplish the transfer back and 

forth between the SD and the FD.  

In [9], formulas for the global ICs of the inclusion 

problem were derived by superposition of the ICs for a 

single cuboid corresponding to states I, II and III, and su-

perposition of all cuboids contributions was subsequently 

performed. This course of action limits the use of spectral 

methods to the layer-by-layer two-dimensional case, as the 

global ICs depend explicitly not only on the distance be-

tween the observation and the source, but also on the 

source depth. It should be noted that, in order to apply 

DCFFT in the direction of 3x , the global ICs should de-

pend only on the distance between the source and the ob-

servation points. Using a two-dimensional algorithm to 

solve an intrinsically three-dimensional problem is an im-

perfect solution, which limit dramatically the resolution 

that can be achieved in the numerical approach. In the 

newly proposed algorithm, superposition principle with 

respect to individual contributions of elementary cuboids 

of the same state is applied first, and summation of solu-

tions I, II and III is subsequently performed. In this man-

ner, the global ICs derived in [9] are no longer computed, 

as solution of state III is achieved in a manner different 

from that of Chiu [8], and the new algorithm can benefit 

from implementation of three-dimensional DCFFT.  

The two terms in the right-hand side of Eq. (5) in-

volve multi-summation in the three-dimensional space, 

with both source and observation domains three-

dimensional. While the first term in Eq. (5) is a three-

dimensional convolution, the second term is a two-

dimensional convolution with respect to directions of 1x  

and of 2x , and a one-dimensional correlation with respect 

to direction of 3x . The DCFFT technique presented in [11] 

for the one-dimensional case extends naturally to three 

dimensions, while for the second term, a special hybrid 

convolution-correlation algorithm is advanced herein. The 

main issue is to adapt the DCFFT algorithm, which is very 

efficient in terms of computational complexity, to allow 

calculation of correlation products as well. 

The base for this new approach is the correlation 

theorem, which states [17] that a correlation product can be 

assessed as the spectral (i.e. in the FD) convolution be-

tween one member of the correlation and the complex con-

jugate of the other. Therefore, classical DCFFT technique 

can be applied with respect to direction of 3x  too, provided 

the spectral eigenstrains array is replaced by its complex 

conjugate. This substitution can be achieved by reordering 

the terms in the eigenstrains array in upturned order with 

respect to direction of 3x , prior to transfer to the FD. In-

deed, when FFT is applied to a series s of real terms in the 

SD to acquire its spectral counterpart ŝ , one can obtain the 

complex conjugate of ŝ , denoted by ŝ , by rearranging the 

original series s in reversed order before applying the FFT. 

This feature allows combining convolutions and correla-

tions products with respect to different directions in a hy-

brid convolution-correlation multi-dimensional algorithm, 

whose flow-chart is presented in Fig. 3. The algorithm 

steps are described in the following section. 

Firstly, compute the three-dimensional arrays of 

ICs entering Eq. (5). It should be noted that the same oper-

ations apply to all the ICs in Eq. (5), regardless of the re-

ferred stress or strain tensor component, i.e. regardless of 

the instance of indices , , , 1,2,3     . Therefore, the 

subscripts denoting the tensor components will be omitted 

in this section for brevity, and classical matrix notation 

will be employed instead, i.e. , ,i j mB , 11 2i N  , 

21 2j N  , 31 2m N  , is the ( , , )i j m  element of any 

of the 36 three-dimensional arrays in Eq. (1), relating any 

stress to any eigenstrains tensor component.  

As the algorithm steps match along any direction 

corresponding to the same type of product (i.e. convolution 

or correlation), algorithm description will be limited to the 

one-dimensional case for brevity. The notation will be 

simplified accordingly, thus let us denote the three-

dimensional arrays Bi, j, m as vectors B, 1 2 kN  , having 

as components two-dimensional arrays (i.e. matrices), 

where k  can be any of the three directions, i.e. k = 1, 2 or 

3, and Nk is the number of grids in the direction of kx . The 

algorithm advanced herein can also be applied to any mul-

tidimensional configurations, i.e. when k > 3. As stated 

before, computation of B components depends weather k 

corresponds to a convolution or a correlation. In case of 

convolution, B1 corresponds to the negative greatest dis-

tance between two grid nodes taken along the xk-axis, i.e 

the observation mark is indexed with 1 and the source 

mark with Nk. The situation when the observation and the 

source points are interchanged corresponds to 2 kNB . Alt-

hough there are apparently 2Nk different terms to be com-

puted, their number is actually lower due to evenness 

of A , i.e. 2 kNB B  ,1 kN   for even A , and 

2 kNB B   , 1 kN   for odd A . If, on the other 

hand, direction of kx  corresponds to a correlation, 1B  cor-

responds to the situation when the source and the observa-

tion marks coincide, and 2 kNB  to the double of the greatest 

distance between two grid points, taken along direction of 

kx . In this case, there are exactly 2 kN  different compo-

nents of B . For example, the ICs arrays for the first term 

on the right-hand side of Eq. (5) result from 

1 2 3( )i , j ,mB A i N , j N ,m N    , and those for the sec-

ond term from , , 1 2( , , 1)i j mB A i N j N m    , where 

, , , 1,2,3     , 11 2i N  , 21 2j N  , 31 2m N  . 

The next step consists in reordering of B  terms. 

In case of convolution, a new vector B  is generated by 

zero-padding and rearrangement in wrap-around order, i.e. 
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kNB B  , 1 kN  , 1 0
kNB   , 1kNB B   , 

2 2k kN N   . This treatment, requested by the classi-

cal DCFFT algorithm [11], is employed to avoid the so-

called periodicity error related to transfer to and from the 

FD, and its base is detailed in [17]. In case of correlation, 

no additional rearrangement is necessary. 

 

Input the eigenstrains in 

the computational domain 

and extend it by zero-

padding in all directions

Compute the ICs in the 

SD using existing

closed-form expressions 

[9,14]

  

 Select the product 
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the corresponding 
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the ICs in wrapped-

around order in the 

corresponding direction

Compute the 

spectral stresses as 

element-wise 

product in the FD

Transfer the 

spectral stress 
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SD via IFFT in all 

dimensions 

Transfer the two 

product members to 

FD via FFT in all 

dimensions

START STOP

Convolution

Correlation
Retain stresses 

in the 

computational 

domain as 

algorithm output

 

Fig. 3 Flow-chart of the algorithm for the hybrid convolution-correlation multi-dimensional product 

The same notation convention can be applied to 

the digitized eigenstrains, i.e. , ,i j m   denotes any of the 

eigenstrain tensor components in the cell (i, j, m), 

11 i N  , 21 j N  , 31 m N  , and    is a vector of 

two-dimensional arrays of eigenstrains, where 1 kN  , 

1,2k   or 3. The treatment for the eigenstrains also de-

pends on the product type. In case of convolution, ei-

genstrains are simply extended by zero-padding to match 

the size of the B  vector:    , 1 kN  , 0   , 

1 2k kN N   . In case of correlation, after zero-

padding, the eigenstrains are rearranged in reversed order 

with respect to the corresponding direction, i.e. 0   , 

1 2k kN N   , 2 kN  

 , 1 2 kN  . 

In the following step, the ICs and the eigenstrains 

arrays are transferred to FD by means of FFT: 

FFT(B̂ B ) , FFT(ˆ )   . The spectral array of elastic 

stresses can be computed as element-by-element product in 

the FD: ˆ ˆˆ B   , 1 2 kN  . Its SD counterpart is 

then retrieved by means of an inverse Fourier transform: 

IFFT( )ˆ  , and only the terms in the original computa-

tional domain are retained, i.e.   , 1 kN  . 

By applying the multi-dimensional spectral algo-

rithm described above, the order of computation for solv-

ing the inclusion problem in infinite, elastic and isotropic 

space (states I and II in Fig. 1) is reduced from the existing 
2

3 1 2 1 2( )O N N N log N N  in [9, 10], to a further improved 

1 2 3 1 2 3( )O N N N log N N N . The efficiency of the newly pro-

posed algorithm also stems from the solution of state III, 

which is achieved directly from Eq. (6) as a two-

dimensional convolution, which can be efficiently comput-

ed using a layer-by-layer two-dimensional DCFFT algo-

rithm, as detailed in [16]. In this case, although the obser-

vation domain is three-dimensional, the source is two-

dimensional only, comprised in the half-space boundary. 

The computational complexity for achieving solution of 

state III is therefore only of order 3 1 2 1 2( )O N N N log N N . 

 

 

4. Program validation 
 

Numerical predictions of the newly advanced al-

gorithm are benchmarked against existing solutions for the 

inclusion problem involving regularly shaped domains 

containing eigenstrains. The solution of an ellipsoidal in-

clusion with uniform dilatational eigenstrains (i.e. 

ij ije   , where ij  is the Kronecker delta and e  a pre-

scribed strain) in an elastic isotropic half-space is present-

ed by Mura [1]. Ellipsoid half-axis along direction of 

, 1,2,3ix i  , is denoted by ia  ( 1 2a a  in all simulations), 

and the depth of the ellipsoid center by h , as shown in 

Fig. 4, a. Dimensionless coordinates are defined as ratio to 

half-axis in the corresponding direction, and dimensionless 

normal stresses ii  as ratio to the normalizer 

0 2 (1 ) (1 )e      , where   and   are the elastic 

constants of the elastic matrix. Normal stresses along di-

rection of 3x , depicted in Fig. 5 for the case 32h a , and 

in Fig. 6 for the case 3h a , match well the results pre-

sented in [1], pp. 117-119. 

Subsequent simulations are performed employing 

a hemispherical (a1 = a2 = a3) inclusion with the base par-

allel to the free surface. The depth of the centre of the 

sphere is denoted by h, and the eigenstrains are located in 

the half-space 3x h , as shown in Fig. 4, b. The closed-

form solution to this problem is presented in [18], and the 

imposed stress normaliser is 0 2 e  . In Fig. 7, uniform 

dilatational eigenstrains, i.e. ij ije   , are imposed, and in 

Fig. 8, 11 33 e    , 22 0 5. e   , 0*

ij , i j   . 

 

       

 a b 

Fig. 4 Configurations employed for validation purposes:  

a) ellipsoidal inclusion; b) hemispherical inclusion 
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Fig. 5 Stresses along the 3x -axis: 1- 11  in the case 

1 3a a ; 2- 33  in the case 1 3a a ; 3- 11  in the case 

1 33a a , 4- 33  in the case 1 33a a  
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Fig. 6 Stresses along the 3x -axis: 1- 11  in the case 

1 3a a ; 2- 33  in the case 1 3a a ; 3- 11  in the case 

1 33a a ; 4- 33  in the case 1 33a a  
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Fig. 7 Normal stresses along the 3x -axis: 1- 33  in the case 

30 2h . a ; 2- 11  in the case 30 2h . a ; 3- 33  in the 

case 3h a ; 4- 11  in the case 3h a  

5. Extension of results 

 

The newly advanced computer program is used 

next to predict spherical inclusion interaction, and a critical 

interaction distance between two neighboring inclusions is 

advanced for the case when dilatational eigenstrains are 

uniform or vary linearly with the radius of the sphere. 

These particular examples are meant  to prove the potential  
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Fig. 8 Normal stresses along the 3x -axis ( 3h a  in all cas-

es): 1- 11 , 2- 22 ; 3- 33  

of the method to simulate a large variety of scenarios in-

volving inclusions. 

In a first scenario, two spherical inclusions of ra-

dius 4R a  (with a  fixed but otherwise arbitrarily cho-

sen), containing uniform dilatational eigenstrains, are con-

sidered in a computational domain of side lengths 

4a a a  , divided into 800 200 200   elementary cu-

boids. The coordinate system origin matches the center of 

the top side of the rectangular computational domain, and 

the 3x -axis points inwards. Dimensionless coordinates are 

defined as ratio to a , i ix x a , 1,2,3i  , and stresses are 

normalized by the quantity 0 2 (1 ) (1 )e      , where 

e is a prescribed strain. Position of the center of one sphere 

is kept fixed at 1( 1,0,1 2)C  , while the other one is 

moved along an axis 1x , parallel to 1x , passing through 

1C . Stresses along the 1x -axis are presented in Fig. 9, for 

various positions of 2C . The 22  stress tensor component 

is omitted, because its distribution matches closely that of 

33 . This proves that, in the investigated configuration, the 

free surface has a negligibly weak effect on the stress dis-

tribution. Consequently, the critical interaction distance 

found in this case also holds when the sphere of center 2C  

is translated along an axis parallel to 3x . It has been veri-

fied that at smaller depths, the 22  and 33  stress tensor 

components no longer overlap, and the effect of the free 

surface must be accounted for, although the same critical 

interaction distance holds.  

Curves 1 and 2 in Fig. 9 prove a strong interaction 

between the tangent spherical inclusions, leading to an 

increase of almost 100 %  in 11  at the contact point. 

When the second inclusion is moved so that the distance 

between 1C  and 2C  is eight times the radius of the sphere, 

the interaction is small enough to be neglected, as con-

firmed by the symmetry of left and right branches of 

curves 3 and 4 with respect to the centers of the spheres, 

located at 1 1x   . In this case, stresses are close to uni-

form inside the inclusions, in agreement with existing 

closed-form results [1], and vanish asymptotically at the 

edges of the computational domain, 1 2x   , as well as in 

the middle, where 1 0x  . 
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Fig. 9 Interaction of two spherical inclusions with uniform dilatational eigenstrains: 1- 11  and 2- 33  in the case 

2 ( 1 2 0 1 2)C , , , i.e. in case of tangent spherical inclusions;  3- 11  and 4- 33  in the case 2 (1 0 1 2)C , ,  
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Fig. 10 Interaction of two spherical inclusions with linearly distributed eigenstrains: 1- 11  and 2- 33  in the case 

2 ( 1 2 0 1 2)C , , ; 3- 11  and 4- 33  in the case 2 (0 0 1 2)C , , ; 5- 11  and 6- 33  in the case 2 (1 0 1 2)C , ,  

In a second scenario, the eigenstrains vary linear-

ly with the radius of the sphere, i.e. ( ) ( )ij ijr e R r R     

in a spherical coordinate system linked to the center of 

each sphere. Again, ij  is the Kronecker delta and e  a 

prescribed strain. The results for this configuration are pre-

sented in Fig. 10, considering three positions of 2C , while 

1C  is kept fixed at coordinates ( 1,0,1 2) . Curves 1 and 

2, corresponding to tangent spherical inclusions, show the 

intensity of the interaction, leading to loss of stress sym-

metry in both inclusions and to higher stresses at the inter-

face. When the second inclusion is located eight radii away 

(curves 5 and 6 in Fig. 10), stresses regain symmetry with 

respect to the center of each sphere. The vanishing stresses 

on the sides of the computational domain, 1 2x   , and in-

between the spherical inclusions, 1 0x  , prove that at this 

distance, interaction is minimal, and stresses vary almost 

linearly inside the inclusion. The latter behavior was also 

observed by Liu and Wang [12] when studying a single 

spherical inclusion with linearly distributed dilatational 

eigenstrains. An intermediate configuration is depicted by 

curves 3 and 4, when maximum stresses at the edge of the 

inclusions are weakly affected, but stresses in the middle 

region are distorted due to proximity of the neighboring 

inclusion. 

 

6. Conclusions 

 

A refined numerical solution to the inclusion 

problem, based on the mirror image method, is advanced in 

this paper. Its strong point consists in implementation of 

spectral methods implementing the convolution and corre-

lation theorems in superposition of effects in three dimen-

sions. An existing technique for rapid computation of con-

volution products is enhanced by joining convolution and 

correlation in a hybrid algorithm, and used to efficiently 

compute stresses due to inclusions in infinite, elastic and 

isotropic space.  

Additional computational efficiency yields from 

the robust manner of imposing free surface relief, allowing 

for solution of inclusion problem involving general, not 

only deviatoric, eigenstrains. A good agreement of the nu-

merical predictions with existing solutions for regularly 

shaped domains containing uniform dilatational ei-

genstrains was found.  

The computationally efficient new method allows 

fine resolutions capable of simulating interaction of multi-

ple inclusions. The effect of a second inclusion proximity 

is investigated through several practical examples. A criti-

cal interaction distance, above which the interference be-

tween two identical spherical inclusions can be neglected, 

is advanced. 

 

References 

 

1. Mura, T. 1987. Micromechanics of Defects in Solids, 

Martinus Nijhoff: Kluwer Academic Publishers, 587 p. 

2. Eshelby, J.D. 1959. The elastic field outside an ellip-

soidal inclusion, Proceedings of the Royal Society of 



259 

London A252: 561-569. 

3. Mura, T. 1988. Inclusion problem, ASME Applied 

Mechanics Review 41(1): 15-20. 

http://dx.doi.org/10.1115/1.3151875. 

4. Mindlin, R.D.; Cheng, D.H. 1950. Thermoelastic 

stress in the semi-infinite solid, Journal of Applied 

Physics 21(9): 931-933. 

http://dx.doi.org/10.1063/1.1699786. 

5. Seo, K.; Mura, T. 1979. The elastic field in half space 

due to ellipsoidal inclusions with uniform dilatational 

eigenstrains, ASME Journal of Applied Mechanics 

46(3): 568-572. 

http://dx.doi.org/10.1115/1.3424607. 

6. Mindlin, R.D. 1936. Force at a point in the interior of a 

semi-infinite solid, Physics 7(5): 195-202. 

http://dx.doi.org/10.1063/1.1745385. 

7. Chiu, Y.P. 1977. On the stress field due to initial 

strains in a cuboid surrounded by an infinite elastic 

space, ASME Journal of Applied Mechanics 

44(4): 587-590. 

http://dx.doi.org/10.1115/1.3424140. 

8. Chiu, Y.P. 1978. On the stress field and surface de-

formation in a half space with cuboidal zone in which 

initial strains are uniform, ASME Journal of Applied 

Mechanics 45(2): 302-306. 

http://dx.doi.org/10.1115/1.3424292. 

9. Jacq, C.; Nelias, D.; Lormand, G.; Girodin, D. 2002. 

Development of a three-dimensional semi-analytical 

elastic-plastic contact code, ASME Journal of Tribolo-

gy 124(4): 653-667. 

http://dx.doi.org/10.1115/1.1467920. 

10. Wang, F.; Keer, L.M. 2005. Numerical simulation for 

three dimensional elastic-plastic contact with hardening 

behavior, ASME Journal of Tribology 127(3): 494-502. 

http://dx.doi.org/10.1115/1.1924573. 

11. Liu, S.B.; Wang, Q.; Liu, G. 2000. A versatile method 

of discrete convolution and FFT (DC-FFT) for contact 

analyses, Wear 243(1-2): 101-111. 

http://dx.doi.org/10.1016/S0043-1648(00)00427-0. 

12. Liu, S.; Wang, Q. 2005. Elastic fields due to ei-

genstrains in a half-space, ASME Journal of Applied 

Mechanics 72(6): 871-878. 

http://dx.doi.org/10.1115/1.2047598. 

13. Mindlin, R.D.; Cheng, D.H. 1950. Nuclei of strain in 

the semi-infinite solid, Journal of Applied Physics 

21(9): 926-930. 

http://dx.doi.org/10.1063/1.1699785. 

14. Zhou, K.; Chen, W.W.; Keer, L.M.; Wang, Q.J. 
2009. A fast method for solving three-dimensional arbi-

trarily shaped inclusions in a half-space, Computer 

Methods in Applied Mechanics and Engineering 198(9-

12): 885-892. 

http://dx.doi.org/10.1016/j.cma.2008.10.021. 

15. Mura, T. 1968. The continuum theory of dislocation, 

in Advances in Material Research, Vol. 3.-Herbert 

Herman: Interscience Publisher: 1-108. 

16. Liu, S.B.; Wang, Q. 2002. Studying contact stress 

fields caused by surface tractions with a discrete convo-

lution and fast fourier transform algorithm, ASME 

Journal of Tribology 124(1): 36-45. 

http://dx.doi.org/10.1115/1.1401017. 

17. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; 

Flannery, B.P. 1992. Numerical Recipes in C: The Art 

of Scientific Computing, Second Edition, Cambridge 

University Press. 994p. 

18. Wu, L. 2003. The elastic field induced by a hemispher-

ical inclusion in the half-space, Acta Mechanica Sinica 

19(3): 253-262. 

http://dx.doi.org/10.1007/BF02484488. 

S. Spinu 

IŠTOBULINTAS SKAITINIS INTARPŲ UŽDAVINIO 

SPRENDIMO METODAS 

R e z i u m ė 

Straipsnyje pateikiamas ištobulintas skaitinis in-

tarpų pasirenkamame tūryje uždavinio su deformacijų tik-

rinėmis reikšmėmis sprendimo metodas. Šiuolaikinis veid-

rodinio atspindžio algoritmas įgyja pranašumų, palyginti su 

daugiadimensiu algoritmu, pagrįstu konvoliucijos ir kore-

liacijos teoremomis. Įvairūs taisyklingos formos intarpai, 

pasižymintys pastoviomis deformacijų tikrinėmis reikš-

mėmis, gerai sutampa. Metodas pritaikytas nustatyti kriti-

niam atstumui tarp dviejų gretimų sferinės formos intarpų, 

turinčių tolygių ir netolygių plėtimosi deformacijų reikš-

mes. 

 

 

S. Spinu 

 

A REFINED NUMERICAL SOLUTION TO THE 

INCLUSION PROBLEM 

S u m m a r y 

A refined numerical method for the inclusion 

problem involving known, but otherwise arbitrary shaped 

multiple regions with eigenstrains is advanced in this pa-

per. The newly advanced algorithm, employing the mirror 

image method, derives its effectiveness from implementa-

tion of a hybrid multi-dimensional algorithm, based on 

convolution and correlation theorems. A good validation 

for various regularly shaped inclusions containing uniform 

eigenstrains is found. The method is subsequently applied 

to predict a critical interaction distance between two 

neighboring spherical inclusions, containing uniform or 

non-uniform dilatational eigenstrains. 

 

Keywords: numerical simulation, inclusion problem, con-

volution, correlation, spectral methods. 
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