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1. Introduction

In the last few decades, Single-Degree-Of-
Freedom (SDOF) oscillator has been widely used to study
the behavior of machines used in pile driving, compacting,
rock drilling, impact printing and marine structures [1-4].

Dario Aristizabal-Ochoa analyzed the large-
deformation-small strain and postbuckling behavior of
Timoshenko beam-columns subjected to conservative as
well as non-conservative end loads. He investigated the
combined effects of shear, axial and bending deformations
in a simplified manner. Later, a one-dimensional compo-
site frame element for nonlinear static and cyclic behavior
of concrete-filled steel beam columns is formulated by
Valipour and Foster [5].A nonlinear fiber element analysis
is presented through the work presented by Liang et al. [6]
for predicting the ultimate strengths of thin-walled steel
box columns with local buckling behavior.

Apart from the studies mentioned above, many
works have been carried out to analyze the nonlinear vibra-
tions, most of which on developing governing equations
for Dynamic response of axially loaded Euler-Bernoulli
beams [7, 8], inextensible beams [9, 10], transportation
[11], cubic-quintic Duffing [12, 13], mass-spring systems
[14], and more [15-23].

In addition, the ability to determine the magnetic
fields and the resulting parameters (force, impedance,
power losses) is very important in the optimization of elec-
tric machines and equipment. Gasiorski in 1986 [24] pre-
sented a general method which is based on combination of
Bubnov-Galerkin methods by means of finite element
method. The presented approach was utilized for calcula-
ting impedance of polygonal and symmetrical shape con-
ductors carrying current chosen for simulations.

In the present paper, we obtain an approximate
expression for the periodic solutions to two practical cases
[25, 26] of nonlinear SODF oscillation systems, namely
oscillation of current-carrying wire in a magnetic field and
the model of bucking of a column by means of iteration
perturbation method (IPM), variational approach (VA),
and perturbation expansion method (PEM). These tech-
niques yield a very rapid convergence using an iteration
and lead to high accuracy of the solution. The results pre-
sented in this paper reveal that these methods are very ef-
fective and convenient for conservative nonlinear oscilla-
tors.

2. The models of nonlinear SODF systems
2.1. Case 1: Motion of a current-carrying conductor

Fig. 1 shows a pair of current-carrying wire-
conductors restrained by a wire to a fixed wall by linear
elastic springs. Assume X, k, and m as displacement of the
wire, stiffness of the springs and mass of wire respectively.
The differential equation describing the motion of wire is
[25]:

d2%%  _ 2ii,l ; dx
mF+kX—b1_2 =0, x(0)=A, a(o)zo' @

>

where kX the restoring forces due to is springs and
2ii,l /(b—X) is the attraction force between the conduc-

tors due to magnetic fields produced by the currents.
Eqg. (1) can be rewritten as a conservative nonlinear oscilla-
tory system with a rational form:

dx
dt?

=0, x(0)=A, %(o):o, )

A
T
1-x
where x=%/b, t=af, o =k/m, and A=2ii,l/kb?.
Aiis also the initial condition for x.
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Fig. 1 Current-carrying wire in the field of an infinite cur-
rent-carrying conductor [25]
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The following four cases should be separately
considered: A<0, A=0, 0<A<1/4 and A>1/4 [25].

Authors are interested in constructing analytical approxi-
mate periodic solutions to Eq. (2). Three different approx-
imate as IPM, VA, and PEM are utilized to construct ana-
Iytical approximations to periodic oscillation of the cur-

rent-carrying wire for the cases 4<0 and 0 < A< 1/4 .

The first-order approximate procedure yields rap-
id convergence with respect to the “exact” solution ob-
tained by numerical integration. In addition, the results are
valid for all permitted oscillation amplitude.

2.2. Case 2: Model of a buckling column

In this section we consider the structure exposed
to buckling as shown in Fig. 2. The mass m moves in the
horizontal direction only. It is therefore studied the static
stability by determining the nature of the singular point at
x =0 of the dynamic equations. The proposed dynamic
approach is more convenient and effective to use than the
static concept [26].

Neglecting the weight of all but the mass, show
that the governing equation for the motion of m is [26]:

mt‘j+(kl—zlpju+(k3—‘fj +.=0. (3)
Where the spring force is given by:
Feoring = Kol +Kau® +.. 4
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Fig. 2 Model for the bulking of a column [26]
3. Solution procedures
3.1. Basic idea of IPM

In this paper, we will consider the second-order
differential equation:

i+ f(ut)=0. (5)

We introduce the variable y=du/dt, and then
Eqg. (5) can be replaced by equivalent system:

u(t)=y(t); (6)
y(t)=-1(ut). )

Assume that its initial approximate guess can be
expressed as:
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u(t)=Acos(at), ®)

where w is the angular frequency of the oscillation. Then
we have:
u(t)=—Awsin(ot)=y(t). 9)

Substituting Eq. (8) and 9 into the Eq. (7), we ob-
tain:
y(t)=—f (Acos(at),t). (10)

Using Fourier expansion series in the right hand
of Eq. (10):

f (Acos(at),t)= iazm cos[(2n+1) ot |=
= o, C0s(t)+ar, €05 (3wt ) +... (11)

Substituting Eq. (11) into Eq. (10) yields:

y(t) =—(oq cos(@t)+az cos(3ot) +...). (12)
Integrating Eq. (12), yields:
__ % _ % _
y(t)= B sin(wt) 2 sin(3wt)—... (13)
Comparing Eq. (9) and (13), we obtain:
Aw=-% (14)
[
= ﬁ " 1
.y -
T-2r F . (16)
2]

3.2. Basic idea of VA

For explaining the VA procedure, we consider a
general nonlinear oscillator in the form of Eg. (5). Its var-
iational principle can be established using the semi-inverse
method [27, 28]:

(T4 1.,
J(u)__[0 (—Zu +F(u)}dt, 17)
where T is period of the nonlinear oscillator,

F(u):jf(u)du. Assume that its solution can be ex-
pressed as Eq. (8). Substituting (8) into (17) results in:

T/4

J(Aw)=
_ij”/z(_l
R 2

; Azwj';/zsinztduéj:/z F (Acoswt)dt .(18)

(—% A’w’ sin’ ot + F (Acos a)t)jdt =
A’w?sin’t+F (Acost))dt =



Applying the Ritz method, we require:

— =0; 19
A (19)
o)

=0. 20
P (20)

But using a careful inspection, for most cases we
find:

80 1 1 e
%__EA fo smtdt—;jo F(Acost)dt <0.(21)

Thus, we modify conditions (19) and (20) into a
simple form:

22 oo, (22)

3.3. Basic idea of PEM

In order to use PEM, we rewrite the general form
of Duffing equation in Eq. (5) in the following form [9]:

U+au+BN(u,t)=0, (23)

where N(u,t) is the nonlinear term after expending the
solution u; a as a coefficient of u and g as a coeffi-
cient of N(u,t), the series of p introduce as follows:

U=U, + pu, + p°U, +...; (24)
a=a’ +py,+py,+o; (25)
B =po,+p°S, +... (26)

Substituting Egs. (24) - (26) into Eq. (23) and
equating terms with the identical powers of p, we have:

p’: i, +w’u, =0; (27)

1

' Uy + @’y + Uy + N (Up,t) =0. (28)

Considering initial conditions u,(0)=A and
U, (0)=0, the solution of Eq.(27) is u, = Acos(mt).
Substituting ug into Eq. (28), we obtain:

p' U, + Uy +y,Acos(wt)+ 5N (Acos(wt),t)=0. (29)

Similar to IPM, for achieving the secular term, we
use Fourier expansion series as follows:

5N (Acos(wt),t)=

= ibml cos[ (2n+1)wt |=

:tn)j)(:os(a)t)+b3 cos(3wt)+...~b cos(wt)  .(30)
Substituting Eq. (30) into Eq. (29) yields:

p' U +o’u +(1A+b)cos(wt)=0. (31)
For avoiding secular term, we have:

(7,A+b)=0. (32)

Setting p =1 in Egs. (25) and (26), and Substitut-
ing 7, =a—o” and &, = B in Eq. (32), we can achieve the
frequency and period of Eg. (5).

4. Applications of analytical solutions for Eq. (2)

To show the applicability, accuracy and effective-
ness of proposed methods, they are applied to the first
practical case presented in Egs. (2). We use the simple
form of Eq. (2) to obtain the approximate solutions based
on IPM, VA, and PEM. For this sake, we let x =X, +u in

Eg. (2) and expand the resulting equation in a Taylor series
about u=0. The result is:

U+ou+a,u” + U’ +...=0, x(0)= A, x(0)=0, (33)
where

4 7 % 4 asz_iA - (34)
(1-a) (1-a)

a, =1- ,
1 (1-a)’

4.1. Implementation of IPM

As it can be seen in the basic idea of IPM, after
introducing the variable y=du/dt, and substituting

u=Acos(at) into the Eq. (33), we obtain:
y =—ayAcos(wt)—a, A cos’ (wt) —a; A’ cos® (wt) . (35)

By using Fourier series expansion, we have:

y= iam cos[(2n +1)cot} = [—alA_(iK/zcos(go)(azAZ cos® (p)+ a, A® cos® (go))d(pj:|COS ot+..=
n=0 T

) _A(12a17z+32a2A+9a3A2ﬂ')
127

By integrating Eg. (36), and comparing with
Eq. (9), we obtain:

JCOSCOI+... (36)



(120, 7 +320, A+ 90, A7)
o= ; (37)
127
3/2
T- 43 (38)

(220, 7+ 320, A+ 90, A2 '

4.2. Implementation of VA

In this section, we will use the VA solution for
Eq. (33). The variational principle of this equation can be
obtained:

J(u)= JM[—;UZ +[(oqu + a,u? +a3u3)dujdt. (39)

Using a trial function u= Acoswt into (39), the
solution of (33) can be expressed as follows:
2 2
_L pew sin? o L aACos ot
/4 2

I(A)=] 2 t.  (40)

0 L% A’cos’ wt o, A cos® wt
3 4

Thus, the stationary condition with respect to A is:

OA

8 1 —A®’sin® wt+ oy Acos® wt +
a, A’ cos® wt + a, A’ cos” wt

Jdt:O.(41)

This leads to the result:

T/A(OllACOS wt+a,A cos’ ot +J ot

I" +a; A’ cos® wt

2

- T/A . 5 -
Al (sin a)t)dt
I”/Z o, A’ cos® t +a, A’ cos® t + it
O | +a,A'cos*t @)
= T/ . 5 -
Af " (sin®t)dt

Thus, we aobtain the following frequency and pe-
riod as same as IPM solution:

(120, 77 +320, A+ 90, A° )
w= ; (43)
127
3/2
T- i (44)

\/((12% 7 +320,A+ 90, Aor))

4.3. Implementation of PEM

In order to use PEM procedure, we can rewrite
(33) in following form:

t+(eq)u +1(0!2U2 +a3u3):0. (45)

This equation is same as the Eq. (23) form where

a=a; and p=1. According to PEM and Substituting
a=agand =1 into Egs. (25)-(26), we have:

a, ="+ Py, + Py, s (46)

1= ps, + p°S, +... (47)

Substituting Egs. (24) and (46)-(47) into Egs. (45)

and equating the terms with the identical powers of p, we
obtain:

p% U, +@®u, =0; (48)
ph U, +@U, + pU, + S, + Saud =0. (49)
Considering initial conditions u(0)=A and

1(0) =0, the solution of Eq. (48) is u, = Acos(wt). Sub-
stituting uo into Eq. (49), we obtain:

p': U +@u, +y,Acos(wt)+

+ 68,0, A’ c0s® (@t ) + 5,1, A° cos® (wt) =0 . (50)

It is possible to perform the following Fourier se-
ries expansion:

S, A? cos? (wt) + 5,0, A° cos® (oot ) = iazw cos[ (2n+1) ot | = (e, cos(at)+...) =
n=0

4 cx2 A6, (320, + 9Aa,
:(”Jo cos(¢) (8,0, A’ cos” () + 8,0, A° cos’ ((p))d(chos(a)t)+...: Al 127; ) . (51)
Substituting Eq. (51) into Eq. (50) gives:
A A?5,(32a, +9Aa,T) 0o 53
o P25, (32a, +9AatyT) nA+ on =0. (53)
U, + o’u, +| 7, A+ o cos(at)+
VA
. Setting p = 1 in Egs. (25) and (26), we have:
+> . 8,,,,C08|(2n+1)wt |=0. (52)
é 2n+1 |:( ) ] a1:w2+71; (54)
1=¢,. (55)

No secular term in u, requires that:

From Egs. (53)-(55), we obtain:
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(120, 77 +320, A+ 90, A’ r)
o= ; (56)
127
3/2
T= 43 (57)

\/((12051 7 +320, A+ 90, A’z ) '

5. Applications of analytical solutions for Eq. (3)

Similar to prior section, in this part, we applied
the approximate methods for another practical case pre-
sented in Eqg. (3). This equation can be put in the following
general form:

i+au+au®=0, (58)

k, 2P k, 2P
where o, = wim ) o, = m Pm)

5.1. Applying the IPM

After introducing the variable y=du/dt, and
Substituting u = Acos(at) into the Eq. (58), we obtain:

y =—ay Acos(wt)—a,Acos’ (wt). (59)
By using Fourier series expansion, we have:
y = iazm cos| (2n+1)at] =
n=0

= {—alA—(4a3A3j:/2<COSA (¢))dgoj:|cos(a)t)+ =

T

e A(120, 7 +320, A+ 9, A7)
127

Jcos(a)t)Jr... (60)

By integrating Eg. (60), and comparing with
Eqg. (9), we obtain:

o= fal+%a3 A (61)

7o (62)

Jba, +3a, A7
5.2. Applying the VA
In this section, we will use the Variational Ap-

proach solution for Eq. (58). The variational principle of
Eq. (58), can be obtained:

J (u):ﬂ“(—zuz +j(a1u +a2u3)dujdt. (63)

Using a trial function u= Acosat into Eq. (63),
the solution of Eq. (58) can be expressed as follows:

/ —%Aza)zsinza)u

T/4

J(A)= dt. (64
(#) jo alAzcosza)tJrazA“cos“a)t 69
N

2 4

Thus, the stationary condition with respect to A is:
oJ
A = Io

This leads to the result:

1/4( =A@’ sin® ot +
+oy Acos® ot +a, A® cos” wt

Jdt=0. (65)

, L)T/‘l(ozlAcos2 ot+a,A’ cos’ ot )dt

- A‘[()T/‘l(sin2 a)t)dt

72 2 3 ancd
_J'O (cwAcos’t+a, A’ cos t)dt. (66)

- Ajo”“(sin2 t)dt

Thus, we obtain the following frequency and pe-
riod same as the IPM solution:

o= /a1+§a3 A (67)

T- ¥ (68)

doy + 30, A
5.3. Applying the PEM

We assume that in Eq. (58), a =a; and S = as.
Similar to sections 3.3 and 4.3, we expand the solution u,
and its coefficients a; and 1 (Eqgs. (24)-(26)), and substitut-
ing into Eq. (58), we can obtain:

0

p’: Ui, +w’u, =0; (69)

1

phi U +@’U, + U, + Sayus =0. (70)

Considering Eg. (69) with initial conditions
u(0)=A and 1u(0)=0 gives u, = Acos(wt). Substitut-
ing ug into Eq. (70), we obtain:

p' U, +o’u, +y,Acos(wt)+5,a,A’ cos’ (wt) =0. (71)

Using the following Fourier series expansion, we
have:

8,0, A’ cos® () =
= iazm cos[ (2n+1)t | = (a cos(at)+...) =
n=0

4 /2
- (ﬂ 5,0, K[ (cos* ((/)))d(pj cos(@t)+...=
3,0,

Sl (72)

Substituting Eq. (72) into Eq. (71) gives:
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3A3LS From Eqgs. (75) and (76), we obtain:
Uy + U, + 71A+# cos(mt)+

. = %al +§053 A% 77
+Y8,,,,€0s[ (2n+1)wt | = 0. (73) 4
" . (78)
No secular term in uy requires that: %4% +3053A2 '
3 . R
A+ 3N a6, _ 0. (74) 6. Results and discussions
As it is apparent in section 4, the periodic solu-
Setting p = 1 in Egs. (25) and (26), we have: tions of IPM, VA, and PEM for a current-carrying conduc-
tor with cubic non-linearity are equal. In order to, substi-
a, =a’+y; (75) — 2 _ 3
i1 71 tute o —l—A/(l—a) . a ——A/(l—a) and
1=4,. (76) o, =—4/(1-a)" into results of periodic solutions for

example Egs. (56) and (57) , the frequency and period val-
ues of Eq. (33) can be written as follow:

a):JlZ(l—A/(l—a)z)ﬁ+32(—41/(1—a)3)A+9(—A/(1—a)4)A27r

e ; (79)

T= 4377 . (80)
\/12(1—A/(l—a)z)ﬂ+32(—A/(1—a)3) A+9(-4/(1-a)' | A

Table 1

Similarly, substituting o =(k,/m-2P/Im) and
a, =(k;/m-2P/1°m) into Egs. (77) and (78) gives the
following frequency and period values for Eq. (58):

w= E_E +§ ﬁ_ﬁ AZ;
m Im/) 4\{m IPm

T= 4r (82)

J4(k1_2pj+3[k3—23PjAz
m Im m I°m

6.1. Analytical solutions of current-carrying wire
conductor equation

(81)

In this section, we compare the analytical approx-
imate periods of Eq. (33) with the exact ones. Considering
[25], the exact solution of Eq. (33) is expressed in appen-
dix A.

Using 4=-3/4, a=-1/2 and 4=1/8,

a =(2—ﬁ)/4, the exact period T, [25] and approximate

periods Tipm, Tya, and Tgpy are listed in Table 1. From Ta-
ble 1 we can obtain that the presented approximate solu-
tions are excellent for all permitted oscillation amplitudes.
In general, the first approximate periods of IPM, VA, and
PEM are acceptable.

Comparisons of the approximate analytical solu-
tion with the exact solutions for given 4 =-3/4, o =-1/2

and 4=1/8, a =(2—\E)/4 and different amplitudes of
oscillation A are shown in Figs. 3-6, respectively.

Comparison of approximate and “exact” periods for
current-carrying conductor

A B[26] T, [26] Taop Toop /Te
a) A=-3/4 Tiem = Tepm =
a=-12 = Tua
0.1 | 0.10112 |5.43974 | 540109 | 0.99289
0.4 | 041917 | 541309 | 5.26059 | 0.97183
0.7 | 076545 | 5.34444 | 509664 | 0.95363
1.0 | 1.16058 | 520343 | 4.91674 | 0.94490
1.2 | 1.48388 |5.02518 | 4.79132 | 0.95346
1.4 | 1.97647 | 465034 | 4.66357 | 1.00284
1.43 | 2.10317 | 454583 | 4.64431 | 1.02166
b) 4=1/8
a=(2- \/Z)ﬁ
0.1 | 0.09839 |6.91230 | 6.98305 | 1.01023
0.3 | 0.28465 | 6.99470 | 7.20094 | 1.02948
0.5 | 0.44943 | 7.25765 | 7.51543 | 1.03552
0.6 | 051485 | 7.63026 | 7.71964 | 1.01171
0.63 | 053007 | 7.85127 | 7.78834 | 0.99198
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Fig. 3 Comparison of approximate periodic solutions of
current-carrying conductor equation (Eg. 34) with
the exact one for 4 = -3/4, o« = —1/2, with u(0) = 0.1

Fig. 5 Comparison of approximate periodic solutions of
current-carrying conductor equation (Eq. 34) with

the exact one for A =1/8, a:(2—ﬁ)/4 with
u(0)=0.1

Fig. 4 Comparison of approximate periodic solutions of
current-carrying conductor equation (Eg. 34) with
the exact one for 4 = -3/4, o = —1/2, with u(0) = 1.4
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Fig. 6 Comparison of approximate periodic solutions of
current-carrying conductor equation (Eq. 34) with

the exact one for A =1/8, a:(2—ﬁ)/4 with
u(0) = 0.6

Solid line: Exact solution. Diamond symbol: Approximate IPM, VA and PEM.

6.2. Analytical solutions of bucking of a column equation

The exact frequency w, for a dynamic system
governed by Eq. (58) is presented in Appendix B. As we
know Eq. (58) is similar to a type of Duffing equation. So,
the maximum amplitude A of the oscillation satisfies
0,A% = —qy; the Duffing equation has a heteroclinic orbit
with period +o [26]. Hence, in order to avoid the hetero-

clinic orbit with period +o, the value of ks in the bucking

of a column equation should satisfy the following equa-
tion:

-k 2p( 1 1
k3 >A—;+T(?+I—2), (83)
where k,leR" and A,peR.

To further illustrate and verify the accuracy of the
proposed analytical approaches for Eq. (58), the corre-
sponding comparisons of analytical solutions with exact
results for specific parameters and initial values consisting
m, p, I, ky, k; and A are tabulated in Table 2.

Table 2
Comparison of approximate and “exact” periods for the bucking of a column
Constant parameters T, Tapp T/ Te
m L P ky ks A Tionw =Team =Tua
1 1 10 1 1.96451 1.96254 1.00101
5 1.5 5 5 6 3 3.32368 3.23744 1.02664
10 10 10 10 50 10 0.33143 0.32426 1.02212
50 25 40 30 100 20 0.26208 0.25640 1.02216
70 20 -30 50 100 10 0.30993 0.30323 1.02212
100 50 150 70 20 100 0.16580 0.162206 1.02218
500 150 220 120 500 0.5 9.71672 9.676370 1.00417
1000 500 1000 500 500 1 6.75871 6.73241 1.00391
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Fig. 7 Comparison of approximate periodic solutions of  Fig. 8 Comparison of approximate periodic solutions of

Bucking of a Column equation (Eg. 58) with the ex- Bucking of a Column equation (Eq. 58) with the ex-
act one for m=I1=p=1, k; =10, ks=5 with act one for m=1l=p=k; =10, ky=50 with
u@@)=1 u(0) =10

0.4] %

0.2

-0.21

-0.44

IR TR VA P
t t
Fig. 10 Comparison of approximate periodic solutions of
Bucking of a Column equation (Eq. 58) with the
exact one for m=100, 1=50, p =150, k; =70,
ks = 20 with u(0) = 100

Fig. 9 Comparison of approximate periodic solutions of
Bucking of a Column equation (Eg. 58) with the ex-
act one for m=500, =150, p =220, k; =120,
ks =500 with u(0) = 0.5

Solid line: Exact solution. Diamond symbol: Approximate IPM, VA and PEM.

Figs. 7-10 indicate the comparison of these ana-  Appendix A
Iytical methods for different parameters with initial values
which are in an excellent agreement with the exact solu- For achieving the exact period T, of Eq. (1), sub-
tions. stituting a new independent variable u =x—«a into Eq. (1)
Of course the accuracy of these methods can be  leads to [25]:
improved upon using higher—order approximate solutions
for approximations methods. Hencg, it is conclu_ded for 4o +U— A -0, u(O): A, u(o):o, (A1)
providing an excellent agreement with exact solutions for l—a—u
the nonlinear Duffing equation.

where o is one of the stable equilibrium points and

A= A—qa. The corresponding potential energy function
is:

7. Conclusions

In summary, three analytical approximations to
the periodic solution of SDOF systems including current-
carrying conductor and bucking of a column are construct- V (u) =
ed using IPM, PEM, and VA approaches. According to the
results (Tables. 1-2, and Figs. 3-10), we can see that the
presented approximate results are absolutely equal and
differences between analytical and exact solutions are neg-
ligible. In other words, the first—order approximate solu-
tions of IPM, EBM, and VA benefit a high accuracy and
the percentage error improves significantly from lower—
order to higher—order analytical approximations for differ-
ent parameters and initial amplitudes.

(u+a) +Anfl-u-a|. (A2)

N

And it reaches its minimum at u=0. Thus, the
system will oscillate between asymmetric limits [-B, A]
where both —B (B > 0) and A have the same energy level,
ie.:

V(-B)=V(A). (A3)

The exact period T.(A) is:



=y
(A+a)2 —(u+a)2 + v
1-A-a

l-u-«a

du, (A4)

2[',

+2A41In

where B is given by Egs. (A.2) and (A.3).
Appendix B

The exact solution of Eq. (58) can be obtained by
integrating the governing differential equation and impos-
ing the initial conditions in Eq. (58) as follows:

B

2

1\72

5 + A Pvioc, i, (B.1)

which C is a constant. Imposing initial conditions in
Eq. (58) yields:

c=%a P (B.2)
2 4
Equating Egs. (B.1) and (B.2) yields:
1\72+gv2+£v4 =gA2+£A4 (B.3)
2 2 4 2
or equivalently
dt= dv (B.4)

i

Ja(Az—v2)+ 5

Integrating Eg. (B.4), the period of oscillation T,

=

T(A)=4] dv

! . (B.5)
Jal P (i)

Substituting v = Acost into Eg. (B.5) and inte-
grating:
4 dt

7/2

T(A)= Jo+ B A? k J-5 sin’t’ (B6)
which
_ BN
S pR) (B.7)

The exact frequency we is also a function of A and
can be obtained from the period of the oscillation as:

ﬂ,fa+ﬂ A e dt .
o, (A) =" {k Tssimt] (B.8)
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S. S. Ganji, A.Barari, Abdolhossein Fereidoon,
S. Karimpour

SROVES PERDAVIMO LAIDU IR ATRAMU
VIRPESIU TARPUSAVIO SAVEIKA

Reziumé

Straipsnyje aptariami apytiksliai analitiniai meto-
dai — iteracijy trikdZio metodas (ITM), parametry i$plétimo
metodas (PIM) ir variacinio priartéjimo metodas (VPM) —
vieno laisvés laipsnio (1 1.1.) netiesinéms virpesiy siste-
moms tirti. Pateikta keletas skaitiniy pavyzdZziy, tokiy kaip
dinaminés elektros srovés laidy ir kolony virpesiy analizé
ir jos rezultaty palyginimas su tiksliais duomenimis. Ti-
riama skirtingy specifiniy parametry ir pradiniy reikSmiy,
pavyzdZziui, masés ir standumo, jtaka ir pasiekiamas nori-
mas tikslumas — isskirtinis pasitlytiems sprendimams vi-
same virpesiy amplitudziy diapazone.

S. S. Ganji, A. Barari, Abdolhossein Fereidoon,
S. Karimpour

ON THE BEHAVIOUR OF CURRENT-CARRYING
WIRE-CONDUCTORS AND BUCKING OF A
COLUMN

Summary

This paper applies approximate analytical meth-
ods namely lIteration Perturbation Method (IPM), varia-
tional approach (VA) and Parameter Expanding Method
(PEM) to Single-Degree-Of-Freedom (SDOF) nonlinear
oscillation systems. Some numerical cases as dynamic be-
havior of current-carrying wire-conductors and bucking of
a column as well as their comparisons with the exact solu-
tions are presented. Different specific parameters and ini-
tial values comprising the mass and stiffness are studied
within the current research and excellent accuracy which is
the most significant feature of the proposed solutions, is
reported for the whole range of oscillation amplitude val-
ues.

Keywords: Nonlinear oscillation; Current-carrying con-
ductor; Bucking of a column; Iteration Perturbation Meth-
od (IPM); Parameter Expanding Method (PEM); Varia-
tional Approach (VA).
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