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1. Introduction 
 

Ball screw drives are widely used as the motion 

delivery mechanism due to their high stiffness and high 

accuracy. As the speed and precision requirements from 

machine tools increase, the effects of the structural flexi-

bility of the drives on controller performance are becoming 

increasingly significant. The vibrations adversely affect the 

positioning accuracy and performance of the drive. The 

natural frequencies of a ball screw system vary as the nut 

moves along the screw. It is necessary to have an insight 

into the dynamic response of the rotating ball screw sub-

jected to axially moving load during prototyping of the 

machine tool and controller [1]. 

Conventional dynamic modeling methods of the 

ball screw drives employ lumped parameter models [2-4], 

which cannot accurately characterize the high frequency 

mechanical resonance. More advanced models are obtained 

with the help of hybrid methods that consider torsional, 

axial, and possibly flexural vibrations. Varanasi et al. [5] 

and Whally et al. [6] captured the axial and torsional dy-

namics of a ball screw drive using beam formulations. In 

general, these models cannot accurately characterize the 

high frequency mechanical resonances. Frey et al. [7] pro-

posed an approach aims at identifying the dominant effects 

of the ball screw and including them into a simple lumped 

mass model. Vicente et al. [8] studied the axial and tor-

sional coupled vibration by Ritz serious method. Finite 

Element methods are often incorporated in modeling the 

drive systems. Zhou et al. [9] presented a model only con-

sidering the axial dynamics of the screw. However, neither 

model considers the flexural deformation. Okwudire et al. 

[10] proposed a model of ball screw using beam elements 

having axial, torsional, and lateral dynamics.  

This paper presents a hybrid model of a ball screw 

drive, in which the screw is considered as a Timoshenko’s 

beam having axial，torsional and flexural dynamics. The 

deformation of the screw is determined by assumed mode 

method. The method models the dynamic behavior of a 

ball screw considering the moving nut. The dynamic equa-

tions of a rotating screw subjected to the axially moving 

load with general boundary conditions are proposed. 
 

2. Hybrid modeling 
 

A ball screw drive feed system proposed in this 

paper is shown in Fig. 1. Actuation is provided through a 

servomotor that is connected to the ball screw using a cou-

pling. The screw is constrained to the machine base 

through a thrust bearing at the motor side. 

 

Fig. 1 Mechanical components of a ball screw feed drive 

 

The vibration of a ball screw feed drive can be 

characterized by three different modes: axial, torsional and 

flexural as shown in Fig. 2. It should be notice that in order 

to keep the model complexity minimal the modeling of the 

nut dynamic, which have been successful modeled by 

Okwudire [10], is not considered in this article. 

 

 

Fig. 2 Dynamic structural model of a ball screw feed drive system 

 

The ball screw considered is an axisymmetric 

uniform shaft rotating about its longitudinal axis with a 

constant angular velocity , as shown in Fig. 2. The rota-

ting screw is subjected to two forces Px, Py moving along 

the x-axis. Px, Py are applied in the directions of the X and 

Y axes. Px is the axial load. The mass of the ball in the nut 

is considered as concentrated mass expressed as Py. F is 

the preload. 

The screw is characterized by density ρ, 

cross-section A, length L, polar moment of inertia J, 

Young’s modulus E, Poisson’s modulus G, and screw pitch 

l. 

The relatively more rigid components are repre-

sented as lumped parameters connected by springs at joint 

interfaces. The lumped parameters are defined by the axial 

stiffness Kb, the torsional stiffness Kc of the coupling, the 

axial stiffness Kn and radial stiffness Knr of the nut, the in-

ertia of the motor Jm and the coupling Jc, the mass of the 

table mt. 

 

2.1. Axial-torsional model 

 

The continuous deformation of the ball screw can 

be represented by an axial displacement using a field func-
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tion U(x, t)，by an angular displacement using Θ(x, t). The 

ut(t) and θm(t) each represents the displacement of the table 

and the angle of rotation of the motor. 

           
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, ; ,
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i i i i
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   , (1) 

where ui(x) and θi(x) are shape functions that satisfy the 

corresponding boundary conditions; i(t) and i(t) are the 

respective modal displacements. 

For the screw-nut interface, the preloaded nut 

serves as a special spring that couples different degrees of 

freedom, especially in the torsional and axial directions. 

The axial deformation of the screw-nut interface n can be 

expressed as: 
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The kinetic energy T of the axial-torsional cou-

pled system, due to the distributed inertia of the screw, the 

mass of the table, the inertia of the rotor and the energy 

from the flexible coupling, can be computed as: 
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where the symbols (.) denotes differentiation with respect 

to time. 

The potential energy U, due to the potential ener-

gy stored in the elastic parts including the screw , coupling, 

screw nut interface and preload, is defined as: 
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where the symbols “ ′ ” indicate differentiation with re-

spect to x. 

 

Define: 
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The energy can be expressed in matrix form: 
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The work done due to the moving load Px is 

 ,x tW P U x t  . Through Lagrangian approach， the 

equations of motion for the system is given as: 
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where the preload F can enhance the axial stiffness of the 

whole system. 

 

2.2. Flexural model 

 

Based on Timoshenko’s beam theory, the de-

formed screw can be described by the transverse transla-

tions V(x, t) and W(x, t) in Y and Z directions and small ro-

tations B(x, t) and (x, t) about the Y and Z, respectively. 

The translations V, W consist of a contribution Vb，Wb due 



318 

to bending and a contribution Vs， Ws due to transverse 

shear deformation. The relations among these variables 

are: 
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Using the assumed mode method, V, W, , B can 

be expressed: 
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where i(x) and ψi(x)  are shape functions that satisfy the 

corresponding boundary conditions; vi(t), wi(t), pi(t) and 

qi(t) are the respective modal displacements. 

The kinetic energy Tf, due to the screw rotating at 

a constant speed : 
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where 4 4I r / ,
 dI I  and 2pI I  are the di-

ametral and polar mass moments of inertia of the shaft per 

unit length. 

The kinetic energy TM
 
, due to moving mass[11]: 
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The potential energy Uf，due to shear deformation 

and elastic bending，the preload F and moving axial force 

Px is: 
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where κ is the shear coefficient. 

 

Define: 
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The energy can be expressed in matrix form as: 
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The virtual work  ,b tW m g V x t  . The equations described the rotating screw subjected to the axially mov-

ing load can be expressed as: 
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where a time-dependent stiffness term generated by the 

moving axial force Px reduces (when compressive) or in-

creases (when tensile) the overall stiffness of the ball screw 

drive system. 

 

2.3. Shape functions for general boundary conditions 

 

For axial-torsional model, the shape functions are 
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For flexural model, three general geometric 

boundaries of a screw are introduced, including 

Clamped-Hinged (C-H), Clamped-Clamped (C-C), 

Hinged-Hinged （H-H). The corresponding shape func-

tions are shown in Table 1. 

 
Table 1 

Flexural shape functions for variable boundary condition 
 

 Boundary Shape function 

C-H 

   

   

   

   

0, , 0

0, , 0

0, , 0

0, , 0

V t V L t

W t W L t

V t B L t

W t L t

 

 

  

  

 

 

 

i

i

x i x
x sin

L L

i x
x cos

L







 
  

 

 
  

 

 

C-C 

   

   

   

   

0, , 0

0, , 0

0, , 0

0, , 0

V t V L t

W t W L t

V t V L t

W t W L t

 

 

  

  

 

 

1
j

i

x x j x
sin

L L L

i x
x cos

L







 



   
   
   

 
 
 

 

H-H 

   

   

   

   

0, , 0

0, , 0

0, , 0

0, , 0

V t V L t

W t W L t

B t B L t

t L t 

 

 

  

  

 

 

2

2

j

i

j x
sin

L

i x
x cos

L







 
  

 

 
  

 

 

 

2.4. Model verification 

 

Eqs. (8) and (18) can be expressed as: 

       t t t t  M q C q K q F , (20) 

where M, C and K are the inertia, damping, and stiffness 

matrices, respectively. The matrices are dependent of the 

time, and needs to be updated as the nut moving over the 

screw. The F includes the generalized forces and q is the 

generalized vector. Eq. (20) can be solved by a 

Runge-Kutta method to obtain the dynamic response of the 

rotating ball screw under the moving load. The vibration 

modes can also be obtained through the characteristic 

equation. It is observed that the first three modes present a 

favorable approximation using N = 4 terms in axi-

al-torsional subsystem and n = 10 terms in flexural sub-

system. 

In this section, measurements are made on a ball 

screw drive. The test bed shown in Fig. 3 moves a carriage 

of mass 50 kg. The parameters are listed in Table 2. The 

axial vibration is measured between an impact 

force(PCB/086C03) applied at the table (in the direction of 

motion of table) and axial acceleration measurements ob-

tained from the table using accelerometer(PCB/356A32). 

The flexural vibration is measured using an accelerometer 

at each of 12 points on the screw. To investigate the varia-

tion as the table moves along the screw, each of the tests is 

measured at four distinct position of the table within its 

travel range. 
 

 

Fig. 3 Ball screw drive setup 

 

The predicted and measured resonance frequen-

cies are listed in Table 3. It can be concluded that the pre-

dicted results have a good agreement with the measured 

ones. The deviation may due to the inaccuracies or igno-

rance in various stiffness and inertias. The axial and flex-

ural mode shapes are shown in Fig. 4. 
 

Table 2 

Parameters of the ball screw drive system 
 

Symbol Value Unit 

mt 50 kg 

d 50 mm 

l 25 mm 

Jm 1.2e-3 kg m2 

Jc 1.12e-3 kg m2 

Kc 13752 N m/rad 

Kt 6.5e7 N/m 

Knr 1.5e9 N/m 

Kn 2.5e9 N/m 

L 1480 mm 

 

Table 3 

Predicted and measured resonance frequencies 

Position 

(xt, mm) 

Axial  

Hz 

Flexural  

Hz 

Pre. Mea. Pre. Mea. 

400 138 142 130 125 

600 136 137 185 189 

800 135 135 187 171 

1000 133 134 136 117 

 

 

 

a 

 

 

b 

Fig. 4 The measured mode shapes for the ball screw drive at 

xt = 1000 mm a) axial; b) flexural 
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Table 4 

Critical rotational speed r = 0.01 m, L = 1 m 
 

Boundary 
Theoretical result, 

Hz 

Proposed model, 

Hz 

clamped-hinged 63.0 66.2 

calmped-clamped 91.4 96.6 

hinged-hinged 40.3 40.3 

 

For different boundary conditions , the critical ro-

tational speed is  2 2/ L EI / A   , where 

λ = 3.927, 4.73, π for clamped-hinged, clamped-clamped 

and simply supported, respectively. Table 4 shows the crit-

ical rotational speed of a circular shaft for corresponding 

boundary condition. The flexural model for general 

boundary conditions shows a reasonable approximation for 

the critical rotational speed. 

 

3. Numerical simulation and analysis 

 

Table 5 gives the parameters used in simulation. 

Due to the table moves along the screw reducing the num-

ber of available measurement or excitation locations, it is 

impractical to measure the complex mode shapes of the 

ball screw assembly. Hence, the model presented here is 

instrumental in understanding the behavior of these modes. 

 
Table 5 

Parameters of the ball screw drive system for simulation 
 

Symbol Value Unit 

E 2.06e11 N/m2 

G 8.1e10 N/m2 

ρ 7850 kg/m3 

A 1.1341e-3 m2 

Jc 6.5e-4 kg m2 

Jm 6.4e-3 kg m2 

Kb 2.5e8 N/m 

Kc 1.41e5 Nm/rad 

Knr 6e7 N/m 

Kn 5e8 N/m 

L 2000 mm 

 

3.1. Mode shapes for variable table positions 

 

The ball screw feed drive is always subjected to a 

moving mass during the operation. The Fig. 5 illustrates 

the axial and torsional components of the mode shapes. 

The axial displacement of the table is described as a point 

value plotted at x = xt. Similarly, the torsional displacement 

of the motor rotor is plotted at x = 0. 

In Mode 1, the angular component has the small-

est value compared to the other three torsional components. 

In addition, the displacement of the table has the largest 

value, which indicates that the first mode is described as an 

axial mode with lightly coupled with the torsional mode. 

The mode shape is similar with the experimental results 

shown in Fig. 4, a. The axial deformation of screw in-

creases from the thrust bearing to the table position, while 

the value of axial deformation remains constant from table 

position to the right end of the screw. 

In Mode 2, the amplitude of the torsional compo-

nent increases considerably, whereas the axial component 

decreases. The axial displacement of the table is very small. 

Fig. 5, b shows the neural position of the torsional mode is 

near the motor. The torsional displacement gradually in-

creases from left to right along the ball screw and the 

maximum deflection happens at the free end. The motor 

has a negative displacement in this mode. It can be con-

cluded that this is a torsional predominant mode. 

Finally, in Mode 3, the amplitude of the axial 

component shows the largest values, whereas the torsional 

component amplitude is also very large. There are two 

neutral positions in this torsional mode, one near the motor 

and the other between the table position and the free end. It 

is observed that in this mode exists a strong coupling be-

tween the axial and torsional deformation. 

The variable table position almost has no influ-

ence on the torsional mode shapes, however, it has large 

influence on the axial mode shapes. It is obvious that the 

largest torsional deformation always appears at the right 

side of the ball screw. The mode shapes of the system pro-

vide a useful guideline for measurement. 

 

0 0.2 0.4 0.6 0.8 1

-0.05

0

(a) Axial

0 0.2 0.4 0.6 0.8 1
-0.1

-0.05

0

0.05

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0 0.2 0.4 0.6 0.8 1

-10

0

10

(b) Torsional

0 0.2 0.4 0.6 0.8 1

0

20

40

0 0.2 0.4 0.6 0.8 1
-10

0

10

Axial distance x/L Axial distance x/L

Mode 1

Mode 2

Mode 3

Mode 1

Mode 2

Mode 3

 

 a b 

Fig. 5 Axial and torsional mode shapes for l = 10 mm, 

mt = 400 kg; △----: xt = 0.7L; ○—:xt = 0.5L;     + -.-.: 

xt = 0.4L; a) axial ; b) torsional 

 

Fig. 6 shows the first flexural mode shapes for 

variable table position. Comparison of the predicted and 

measured mode shapes (Fig. 4, b) indicates that the flexur-

al model can accurately describe the mode shapes of the 

ball screw drive. As can be expected, the variable table po-

sition has a great influence on the flexural mode shapes. 

Due to the table is properly amounted to the rigid guide-

way, and the excitation on the flexural direction is consid-

erably small, hence the flexural modes only have tiny in-

fluence on the feed motion controller and therefore will be 

neglected in the following discussion. However, the flex-

ural nature frequency of the screw is the key point for de-

termining the critical rotational speed. 

 

0 0.2 0.4 0.6 0.8 1
-2

0

2

Flexural

0 0.2 0.4 0.6 0.8 1
-2

0

2

0 0.2 0.4 0.6 0.8 1
-2

0

2

Axial distance x/L

Mode 1

Mode 2

Mode 3

 
Axial distance x/L 

Fig. 6 Flexural mode shapes for l = 10 mm, mt = 400 kg ----: 

xt = 0.7L; —:xt = 0.5L; -.-.: xt = 0.4L 
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3.2. Analysis of vibration for variable operating conditions 
 

From the controller design standpoint, it is of in-

terest to know varies in the axial and torsional vibration 

according to variable operating conditions. Numerical re-

sults have been divided into three sections to investigate 

the effects of variable mass, screw pitch and table position, 

respectively. The simulation results are listed in Table 6. 

The first axial mode has a wide variation in resonance fre-

quency as a function of the table position and table mass; it 

presents low sensitivity to the variable mass for high 

transmission ratio. The second
 
mode seems almost inde-

pendent of the table position and mass, which is due to the 

weaker stiffness coupling provided by the screw-nut inter-

face in torsional direction. On the other hand, the third 

mode shows very low sensitive to the table mass, however, 

it presents a considerable shift for variable table position, 

due to its highly axial-torsional coupling. 

 

Table 6 

Simulation results of the hybrid model for variable mass, screw pitch and table position 
 

No. 
Table mass, 

kg 

Screw pitch, 

mm 

Table position, 

mm 

Mode 1, 

Hz 

Mode 2, 

Hz 

Mode 3, 

Hz 

1 400 10 500 97.227 466.178 704.749 

2 400 10 1000 83.489 466.155 916.005 

3 400 10 1500 76.509 466.139 964.433 

4 400 30 500 124.415 466.147 697.950 

5 400 30 1000 105.061 465.951 907.272 

6 400 30 1500 95.325 465.832 990.237 

7 800 10 500 72.212 466.178 701.031 

8 800 10 1000 61.980 466.155 911.243 

9 800 10 1500 56.759 466.139 960.445 

10 800 30 500 107.308 466.147 694.502 

11 800 30 1000 90.561 465.951 903.292 

12 800 30 1500 82.112 465.832 986.680 

 

Due to the stiffness of the screw decreases with 

increasing effective length(from the fixed bearing location 

to the table position), the first mode frequency decreases 

steadily as the table moves away from the motor while the 

table’s vibration amplitude follows the reverse pattern. 

Therefore, the first axial mode can be explained by a 

spring mass system: the higher the mass and the greater the 

distance between machine table and fixed bearing the 

smaller the value of the first eigenfrequency. The first axial 

mode, due to its sensitive to the table position and mass, 

plays an important role in controller design and perfor-

mance simulation based on the feed drive model. 

The interaction between axial and torsional modes 

in Eq. (2) is determined by the transmission ratio of the 

ball screw. As can be seen from Table 6, with the increas-

ing screw pitch the first mode frequency reveals a general 

trend of increase while the second and third frequencies 

decrease insignificantly. It indicates that the axial-torsional 

coupling has a great influence on the first mode frequency. 

The effects of the axial-torsional coupling forbid the axial 

and torsional mode to be considered separately, especially 

in high transmission ratio. 

 

3.3. Analysis of ball screw preload variation 

 

The nominal life of the ball screw can be calcu-

lated by an equation using the values for the basic dynamic 

load rating Ca and applied axial load Fma: 

3

610a

w ma

C
T

f F

 
  
 

, (21) 

where fw is the load factor, Fma, calculated by the overall 

applied external forces F and preload force Fpr, is defined 

as: 

3 2

1
3

/

ma pr

pr

F
F F

F

 
  

 
 

. (22) 

The stiffness value of the nut Kn is obtained from 

the preload and elastic displacement under a preload of 

10% of the basic dynamic loading rating Ca. If the preload 

Fpr is differs from 0.1Ca, the stiffness Kn can be expressed 

using the following equation [12]: 

1 3

0 8
0 1

/

pr

n

a

F
K . K

. C

 
  
 

, (23) 

where K   is the rigidity value in the specification table. 

 
Table 7 

The first three frequencies shift for variable preload for xt = L / 2, 

mt = 400 kg 
 

pr aF / C  
Mode 1, 

Hz 

Mode 2, 

Hz 

Mode 3, 

Hz 

0.5% 38.17 466.15 503.36 

2% 62.41 466.15 605.01 

4% 73.38 466.15 710.40 

8% 81.52 466.16 860.59 

10% 83.49 466.16 916.01 

 

Due to friction, lubrication and machining condi-

tion the preload will gradually decrease, which reduces the 

life expectancy of the ball screw. In order to examine the 

effect of preload variation, the first three eigenfrequencies 
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for variable preload are calculated in Table 7. It indicates 

that the first and third mode frequencies exhibit a large 

variation with the preload variation in the range of 

0.5-10%, while the second mode frequency has no signifi-

cant deviation. The first and third mode frequencies reveal 

a decreasing tread as the preload steps down. It can be 

concluded that the stiffness of the nut is of great im-

portance on the axial mode. The simulated result has a 

good accordance with the experimental measurement in [4]. 

Therefore, the preload level can be predicted by monitor-

ing the measured vibration dynamics, and then the life ex-

pectancy and the running status of a ball screw can be es-

timated. 

 

4. Servo-control model 

 

The servo controller should compensate for the 

vibration of the system and be designed carefully for any 

variations in the dynamics of the system [13, 14]. The hy-

brid model of the ball screw drive can be implemented into 

servo control algorithms, and then the effectiveness of 

various servo control algorithms can be evaluated to 

achieve high bandwidth control during the draft design 

stage of a machine. 

 

 

Fig. 7 Servo control system 
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A typical servo control system is composed of the 

drive mechanism and the servo system, as shown in Fig. 7. 

In control engineering, the state space model for the me-

chanical model is preferred above other representations. 

There are a proportional controller Gp in the position loop 

and a proportional and integral controller Gv in the veloci-

ty loop. The velocity feedforward controller F is used to 

improve tracking performance. 

The frequency response of hybrid and rigid model 

is shown in Fig. 8，it can be seen that the hybrid model 

captures the dynamics of the ball screw feed drives. 

It is of interest to investigate the influence of the 

structural vibrations on the controller performance, partic-

ular the axial and torsional modes. Fig. 9 shows that due to 

the structural dynamics at 83 and 466 Hz, instead of ob-

taining a GM (Gain Margin) of 41.7 dB as indicated in 

rigid model, a GM of 3.67 dB is observed. In order to im-

prove the performance of the controller, two common 

methods can be used: increasing the natural frequencies by 

the mechanical modification at the design stage and notch 

filtering of the structural modes of interest.  

 

5. Conclusion 

 

This paper has presented a hybrid dynamic model 

for a rotating ball screw drive subjected to axially moving 

load. The simulated results show a good accordance with 

the experimental data. Results of numerical simulations 

have been presented for various combinations of operation 

conditions. The proposed hybrid model can accurately 

capture the dynamic of the ball screw drive and be imple-

mented into the design of the servo system. 
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HIBRIDINIS MODELIAVIMAS IR RUTULINIO RE-

CIRKULIACINIO PASTŪMOS SRAIGTO SISTEMOS 

STRUKTŪRINĖ DINAMINĖ ANALIZĖ 

 

R e z i u m ė 

 

Norint turėti pilną rutulinio recirkuliacinio pas-

tūmos sraigto struktūrinės dinamikos vaizdą šiame 

straipsnyje pateiktas hibridinis modeliavimo metodas. Di-

naminės rutulinio recirkuliacinio pastūmos sraigto charak-

teristikos analizuojamos paskirstytųjų parametrų strypui 

įvertinant ašinę, sukimo ir lenkimo dinamiką. Dinaminė 

besisukančio sraigto žadinamo ašine kryptimi lygtis su 

apibendrintomis ribinėmis sąlygomis sudaryta Lagranžo 

priartėjimu. Lyginant su eksperimento rezultatais modelis 

gali tiksliai įvertinti rutulinio recirkuliacinio pastūmos 

sraigto struktūrinę dinamiką. Tokių parametrų, kaip stalo 

masė, sraigto žingsnis, stalo padėtis ir struktūrinės dina-

mikos išankstinė rutulinio recirkuliacinio sraigto apkrova 

yra aptariama. Galiausiai hibridinis modelis yra integruotas 

į servo valdymo sistemą, kuri sudaro integruotą galimo 

servo mechanizmo brėžinį. 

 

 

Liang Dong, WenCheng Tang 

 

HYBRID MODELING AND ANALYSIS OF  

STRUCTURAL DYNAMIC OF A BALL SCREW FEED 

DRIVE SYSTEM 

 

S u m m a r y 

 

In order to get the complete structural dynamic of 

the ball screw drive this paper proposes a hybrid modeling 

method. The dynamic characteristic of a ball screw is ana-

lyzed by a continuous beam approach having axial, tor-

sional and flexural dynamics. The dynamic equation of a 

rotating screw subjected to the axially moving load with 

general boundary conditions are obtained through Lagran-

gian approach. Compared with the experimental results, 

the model can accurately capture the structural dynamics 

of the ball screw drive. Influences of parameters, such as 

table mass, screw pitch, table position and preload on the 

structural dynamic of the ball screw drive are discussed. 

Finally, the hybrid model is integrated into a servo control 

system, which makes an integrated design of the servo-

mechanisms possible. 

 

Key words: ball screw, feed drive, vibration, hybrid model, 

moving load. 
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