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1. Introduction 
 

The traditional ball screw can only perform in 

helical transmission with constant lead, and the rotational 

motion of screw is linear with the linear motion of nut. In 

order to get nonlinear relation between the two motions, 

motor control is used. The variable lead screw mechanism 

(VLSM) is generally used to change linear motion to angu-

lar motion or vice versa for a prescribed nonlinear input-

output relationship. There are some different types of 

VLSM discussed in previous papers. Transmission quality 

of VLSM is evaluated by Ming J. Tsai [1]. Yan and Cheng 

studied several kinds of meshing rollers with concave and 

convex involute surfaces. Using conjugate surface theory, 

Liu and Yan [2] studied the surface geometry of the screw 

in the VLSM and the basic equations were derived for ma-

chine tool settings used in manufacturing the screw. 

Transition curve design is important to transmis-

sion performance. Rolling-ball method was proposed by 

Rossignac [3] to structure transition surface, which simu-

late a ball rolling along the intersecting line of two surfac-

es. Choi B. K., Harada and Farouki [4] then studied the 

constant and variable radius methods. This paper research-

es on the geometrical property of spiral line in cylin-

drical surface which is helpful to the variable lead trans-

mission performance. 

 

2. Testing procedures 

 

The helical character can be described with lead p 

or lead angle . Considering of the variation of revolver 

radius with generatrix, an arbitrary revolver has to be de-

scribed with cylindrical coordinate (r, θ, z). Lead angle λ is 

the function of z. The general spiral line is represent by the 

equation         , ,l r z cos z r z sint z z  . 

Fig. 1 shows the general spiral line in Cartesian 

coordinate system. P is a moving point on spiral line 

whose speed vector V  can be resolved along three direc-

tions, which are axial vector aV , circumferential vector tV  

and radial vector rV . 

The speed vector of revolver generatrix tangent 

direction is u a r V V V . The lead angle is expressed by 

speed vector as: 

     /u ttan z z z  V V . (1) 
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Fig. 1 Coordinate of variable radius and lead spiral line 

 

The circumferential speed is:  

     t

d
z r z r z

dt


 V ω , and easily we can get: 

( ) ( )td dt z dt / r z  ω V . (2) 

According to equation above and /a dz dtV , we 

can  
 

       
21

1
t

a

V z dtd
r

dz V z r z dt r z tan z




   ,where r  

is dr / dz . 
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The function θ(z) is expressed as follows: 

21
( ) 1

( ) ( )
z r dz

r z tan z



  , (3) 

that the local shape of variable lead helix is described by 

θ(z)，λ(z) and r(z) exactly. 

 

3. Curvature of variable lead helix 

 

It is convenient to get anti-function of  z  . 

Here, the general helix parameter equation l(t) is represent 

below: 

  
  

 

,

,

.

x r z cos

y r z sin

z z

 

 



 







 

If θ is replaced by parameter t, the equation is 

given as: 

  
  

 

,

,

,

x r f t cos t

y r f t sin t

z f t

 







 (4) 

so the first-order l', second-order l'' and third-order l''' de-

rivative forms are respectively expressed as follows: 

,

,

.

x r f cos t rsin t

y r f sin t rcos t

z f

   

    
  


 (5) 

   

   

1 ,

1 ,

. 

x r f r f r cos t f r sint

y r f r f r sint f r cos t

z f

          

          

  

 (6) 

 

 

 

 

2 2

2 2 ,

2 2

2 2 ,

.

x r f r f r f r r f cos t

r f r f r r sin t

y r f r f r f r r f sin t

r f r f r r cos t

z f

              


       


              


       
  

 (7) 

The curvature and torsion of moving point P are 

obtained when plugging Eqs. (5)-(7) into Eqs. (8) and (9): 

3
/l l l     ; (8) 

2
( , , ) /l l l l l       . (9) 

From the equation above, we know that the curva-

ture and torsion expression of general spiral line is too 

complicated. At present we are not interested in that how 

the curvature is affected by variable radius, but that how 

the curvature is affected by variable lead. Now the revolver 

is considered as a cylinder with constant radius a, and the 

lead just relates to the function f (t).  

The curvature and torsion formula are easily de-

rived as follows: 

 

 

1 2
2 2 2

3 2
2 2

a f f a

a f


  



; (10) 

2 2 2

f f

f f a


 


  
, (11) 

where a is the constant radius of cylinder. 

 

4. Normal and geodesic curvature of variable lead helix 
 

The curvature vector of the moving point P could 

be resolved into normal vector and geodesic vector, and 

they are perpendicular, thus / n gd ds    α n α n , 

where α  is the unit vector of point P along the tangent 

direction, and n  is the unit vector of point P along normal 

direction. n  is normal curvature while g is geodesic 

curvature, then: 

2 2 2

n g    . (12) 

According to Meusnier theorem, the curvature of 

P on the helix is equal to the latitude circle curvature. 

The cylindrical surface parameter equation is 

   , , , ,S t z acost a sint z  then the first fundamental 

form and second fundamental form are: 

2 2 2

2

,

.

a dt dz

adt





  


 
 (13) 

then the helix normal curvature is: 

2

2 2 2 2 2n

adt a

a dt dz a f





 
  

 
κ , (14) 

where a is the constant radius. 
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Fig. 2 Normal and geometric curvature of helix 
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According to equation 2 2 2

n g     and 

Eq. (10), the geometric curvature equation is: 

 
3 2

2 2
g

a f

a f






. (15) 

We can conclude that the normal curvature is de-

termined by the radius a and first-order derivative of func-

tion f (t), while the geometric curvature relates to the radius 

a and second-order derivative of function f (t). If f (t) is a 

linear function of t, then 0g  , thus the curve is a geo-

desic curve. 

Corollary: The geometric curvature of the helix 

on the cylindrical surface is equal to the geometric curva-

ture of plane line which is obtained by expanding the cy-

lindrical surface along axial direction. 

Proof: The cylindrical surface is expanded along 

axial direction, and the helix change to a plane line with 

the parameter equation     , ,0P t at f t . Easily, the 

first-order derivative of  P t  is    , ,0P t a f  , and the 

second-order derivative of  P t  is    0, ,0P t f  . 

According to Eq. (8), the curvature of the plane 

curve is shown below: 

 
3/2

2 2

a f

a f






 (16) 

and the corollary above is proved. 

 

5. Design of transition curve on cylindrical surface 
 

According to the corollary above, the space curve 

can be researched in plane which is simplified. The transi-

tion curve needs to meet some conditions according to the 

specific circumstances. 

VLSM here is a variable lead screw in rail door 

system. Usually the door speed of opening and closing is 

designed quickly and smoothly for the convenience of pas-

sengers, so the transition curve should be first-order con-

tinuous at the two connection point at least. Circular arc 

can meet the condition, besides it has n-order continuous 

characteristics with simple equation, thus, we try to con-

nect two curves in cylindrical surface with circular arc. 
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Fig. 3 Transition curve of circular arc 

 

Fig. 3 shows two curves L1 and L2 in cylindrical 

surface with unequal slopes at end point A and B. The local 

coordinate is established which its horizontal ordinate is at. 

The two curves can be regarded as constant slope curves. 

L1 and L2 become to straight line when the cylindrical sur-

face is expanded. Curve G is the circular arc that connects 

L1 and L2. The coordinate of A is  ,A AA at z  and the slope 

Ak  of A is 2Ap a ; the coordinate of B is  ,B BB at z , 

and the slope Bk  of A is 2Bp a , where Ap  and Bp  are 

helical pitches. The coordinate of 'O  is 

     
, ,

A B B A B A A B A A B B A B

A B A B

k k z z a t k t k k z k z a t t

k k k k

      
 

  

and the parametric equation of transition circular arc is: 

      

  
22 2 2

,

/

1 ,

A A B B A B A B

A A

x acos t

y asint,

G t z k z k z a t t k k

R a k t t







       

    

 

where A Bt t t  . 

Polynomial curve is used in curve fitting problem 

generally, and the polynomial curve is discussed in plane 

as before. The plane equation is: 

 
 

,

,

x at
G t

z f t


 


 

where A Bt t t  . 

The boundary conditions are shown as follows: 

 

 

,

,

A A

A A

x t at

z t z

 



         

 

 

,

,

A B

B B

x t at

z t z

 



 

 

 

,

2 ,

A

A A

x t a

z t p 

 

 

   
 

 

,

2 .

B

B B

x t a

z t p 

 

 

 

Because of the uniqueness condition, the function 

f (t) is defined as: 

  4 3 2

1 2 3 4,f t t m t m t m t m      , (17) 

Where: mi is an undetermined coefficient and β is shape 

parameter. 

Putting the boundary conditions into Eq. (14), we 

obtained linear simultaneous equation: 

4 3 2
1

4 3 2
2

3 2
3

3 2
4

1

1

24 3 2 1 0

23 2 1 0

AA A A A

BB B B B

AA A A

BB B B

m zt t t t

m zt t t t

m pt t t

m pt t t









     
     
     
     
     
      

, (18) 

where β determines mi to obtain better transition curve. 

In the system of railway traffic, the train door sys-

tem uses VLSM to realize the self-locking with zero lead 

at the end of screw. Fig. 4 shows the working principle of 

self-locking in the VLSM. Z direction is the screw axis 

direction. We consider the screw coordinate system as stat-

ic coordinate, then the roller which connected with nut 

rolls along the curve 1 2L G L  . When the roller enters 

into the region L2, the VLSM can not change the straight 

line motion of nut to rotary motion of screw. 
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Fig. 4 Self-locking principle of VLSM 

Sometimes the transition curves discussed above 

can not meet other conditions such as slickness, fairness, 

and then the functional of transition curve is built as 

Eq. (19) according to constraint condition to solve the ex-

treme-value problem: 

   , , ,...
B

A

t

t
J z t F z z z dt     . (19) 

This is n-order derivative unary variation problem 

which should satisfy Euler-Poisson equation: 

   
0

1 0k

kn
k

k z
k

d
F

dx

  , (20) 

where F has n+2 order continuous derivative; z has n order 

continuous derivative and need 2n boundary condition to 

be determined. 
 

6. Conclusions 
 

1. This paper firstly established the mathematical 

model of variable lead helix in rotary surface and discussed 

the geometrical characteristic of helix in cylindrical surface. 

We got the general expression of curvature and torsion in 

cylindrical surface refer to Eqs. (10) and (11). 

2. The geometic curvature of the helix on the cy-

lindrical surface is equal to the geometric curvature of pla-

ne line which is obtained by expanding the cylindrical su-

rface along axial direction. The geometric curvature is 

 
3/2

2 2

a f

a f






. 

3. The transition circular arc equation is shown as 

Eq. (13), and the polynomial curve can satisfy the bounda-

ry condition well. Shape parameter method is appropriate 

for optimization problem and variation method is appropri-

ate for the extreme value problem. 
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Wei Zhang, Xiang Shi, Dongbo Li 
 

MATEMATINIS VARANČIOJO SRAIGTO 

MODELIAVIMAS IR KVSM PEREINAMOSIOS 

KREIVĖS PROJEKTAVIMAS 

R e z i u m ė 

Straipsnyje analizuojamas kintamo varančiojo 

sraigto mechanizmo (KVSM) kintamo spindulio varančio-

jo sraigto matematinis modelis, sukurtas taikant kintamos 

varančiosios transmisijos teorijos metodą. Jame taip pat 

studijuojamos kintamo varančiojo sraigto cilindrinio pavir-

šiaus geometrinės charakteristikos, o kreivumas ir susuki-

mas yra išreikšti ( )z f t  funkcija, kuri tinka pereinamajai 

kreivei tirti. Prieita prie išvados, kad sraigto geometrinis 

kreivumas cilindriniame paviršiuje yra tolygus geometri-

niam kreivumui linijos plokštumoje, kuri gaunama ištęsiant 

cilindrinį paviršių ašies kryptimi, kad pereinamosios krei-

vės brėžinį būtų galima perkelti į plokštumą. 

Pereinamosios kreivės brėžinyje apskritiminis 

lankas ir polinominė kreivė buvo pasirinkti sujungiant dvi 

žinomas kreives, paskui, remiantis kraštinėmis sąlygomis, 

įterptas pereinamosios kreivės funkcionalas. 
 

 

Wei Zhang, Xiang Shi, Dongbo Li 

MATHEMATICAL MODELING OF VARIABLE LEAD 

HELIX AND DESIGN OF TRANSITION CURVE IN 

VLSM 

S u m m a r y 

This paper established the general mathematical 

model of variable radius variable lead helix, which applies 

the theory method for variable lead transmission. It also 

studeid the geometrical characteristics of variable lead 

helix in cylindrical surface, and the curvature and torsion is 

expressed by function  z f t , which is good to the re-

search of transition curve. The corollary is put forward and 

explained that the geometric curvature of the helix on the 

cylindrical surface is equal to the geometric curvature of 

plane line which is obtained by expanding the cylindrical 

surface along axial direction, that transition curve design 

can be carried out in the plane. In the design of transition 

curve, circular arc and polynomial curve were chosen to 

connect two known curves respectively, and then accord-

ing to the extreme conditions the transition curve function-

al is built up. 
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