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1. Introduction 

 

Flows of non-Newtonian fluids are important due 

to their applications in various branches of industry and 

technology and their study presents a special challenge to 

engineers, physicists and mathematicians. The motion of 

non-Newtonian fluids due to the oscillations of a plate has 

been studied by many authors while exact solutions for 

motions induced by an infinite plate that applies an 

oscillating shear stress to the fluid are almost absent. 

However, to the best of our knowledge, the first closed-

form starting solutions for flows of Newtonian fluids due 

to cosine and sine oscillations of a flat plate have been 

established after a long time by Erdogan [1]. Recently, 

similar solutions for the motion of the same fluids due to 

an infinite plate that applies oscillating shear stresses to the 

fluid have been established in [2]. These solutions have 

been obtained as limiting cases of more general solutions 

corresponding to the unsteady motion of the fluid between 

two side walls perpendicular to a flat plate that applies 

oscillating shear stresses to the fluid. 

The aim of this note is to extent the results from 

[2] to a larger class of fluids. More exactly, our interest is 

to provide close-form expressions for the starting solutions 

corresponding to the unsteady motion of a Maxwell fluid 

due to an infinite plate that applies oscillating shear 

stresses to the fluid. For generality, the general solutions 

will be established for the motion of the fluid between two 

parallel walls perpendicular to the plate. In the absence of 

the side walls, namely when the distance between walls 

tends to infinity, these solutions aspire to the similar 

solutions corresponding to the motion over an infinite 

plate. Furthermore, if the relaxation time 0, the 

solutions that have been obtained tend to the known 

solutions for Newtonian fluids. Such solutions are 

uncommon in the literature because, unlike the usual no 

slip condition, a boundary condition on the shear stress is 

used. This is very important as in some problems, what is 

specified is the force applied on the boundary. 

It is also important to bear in mind that the “no 

slip” boundary condition may not be necessarily applicable 

to flows of polymeric fluids that can slip or slide on the 

boundary. Thus, the shear stress boundary condition is 

particularly meaningful. To the best of our knowledge, the 

first exact solutions for motions of non-Newtonian fluids 

in which the shear stress is given on the boundary are those 

of Waters and King [3] for Oldroyd-B fluids and Bandelli 

et. al [4] for second grade fluids. Meanwhile, other exact 

solutions for different motions of viscous or non-

Newtonian fluids have been established [5-12]. 

The present solutions, as well as those obtained in 

[2], are written as a sum of steady-state and transient 

solutions. They describe the motion of the fluid some time 

after its initiation. After that time, when the transients 

disappear, the fluid is moving according to the steady-state 

solutions which are periodic in time and independent of 

initial conditions. However, they satisfy the governing 

equations and boundary conditions. Finally, the distance 

between walls for which the velocity of the fluid in the 

middle of the channel is unaffected by their presence and 

the required time to reach the steady-state are graphically 

determined. Furthermore, on the basis of an immediate 

consequence of the governing equations, an important 

relation with the motion over a moving plate is brought to 

light. 

 

2. Governing equations 
 

The Cauchy stress tensor T for an incompressible 

Maxwell fluid is related to the fluid motion in the 

following manner [13]: 

 = , =Tp      T I S S S LS SL A , (1) 

where: p I  is the indeterminate part of the stress due to 

the constraint of incompressibility; S is the extra-stress 

tensor; λ is the relaxation time; L is the velocity gradient; 
T= +A L L  is the first Rivlin-Ericksen tensor; μ is the 

dynamic viscosity and the superposed dot denotes the 

material time derivative. In the following we shall seek a 

velocity field v and an extra-stress S of the form [14]: 

     = , , = , , , = , ,y z t u y z t y z tv v i S S , (2) 

where: i is the unit vector along the x-direction of the 

Cartesian coordinate system x, y and z. For such flows the 

constraint of incompressibility is automatically satisfied. If 

the fluid is at rest at the moment t = 0 then: 

   , ,0 = 0, , ,0 = 0y z y zv S  (3) 

and the second constitutive Eq. (1) leads to the meaningful 

relations: 

http://dx.doi.org/10.5755/j01.mech.19.3.4665


270 

  
 

 
 

1 2

, , , ,
1 , , = , 1 , , =

u y z t u y z t
y z t y z t

t y t z

  
     
   

   
    

   
, (4)

where 1( , , ) = ( , , )xyy z t S y z t  and 2 ( , , ) = ( , , )xzy z t S y z t  

are the non-trivial shear stresses. In the absence of a 

pressure gradient in the flow direction and neglecting body 

forces, Eq. (4) together with the motion equations lead to 

the governing equation for velocity [14]: 

 
   

   
2 2 2

2 2 2

, , , ,
= , , ; > 0, 0, , > 0,

u y z t u y z t
u y z t y z d t

tt y z

   
 

  

 
   

 
 (5) 

where v = μ / ρ is the kinematic viscosity and ρ is the 

constant density of the fluid. In the following, the 

governing Eqs. (4) and (5) together with appropriate initial 

and boundary conditions will be solved using the Fourier 

and Laplace transforms. 

 

3. Oscillating motion between two side walls 

perpendicular to a plate 
 

Let us consider an incompressible Maxwell fluid 

at rest over an infinite flat plate situated in the (x, z) - 

plane, and between two side walls situated in the planes 

z = 0 and z = d. After time = 0t   the plate applies an 

oscillating shear stress: 

 
 

   1 2

1
0, , =

1

t
f

z t sin t cos t e 


  


  
  

   
; (6) 

 
 

 
 

1 2
0, , =

1

t /cos tf e
z t sin t


 

 

  
  

   
 (7) 

to the fluid. Here f and ω > 0 are constants, ω being the 

frequency of the shear stress on the boundary. Owing to 

the shear, the fluid is gradually moved. Its velocity is of the 

form Eq. (2)1, the governing equations are given by 

Eqs. (4) and (5) while the appropriate initial and boundary 

conditions are given by: 

 
 

 

   

1

2

, ,0
, ,0 = = 0, , ,0 = 0,

, ,0 = 0; > 0, 0, ;

u y z
u y z y z

t

y z y z d











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 (8) 

 
 

 

   

1 =0

, ,
1 0, , = | =

or ; 0, , > 0;

y

u y z t
z t fsin t

t y

fcos t z d t


   
 



 
  

  
 

 (9) 

   ,0, = , , = 0; > 0, 0u y t u y d t y t   (10) 

and (the natural condition of boundedness at infinity): 

   , , 0 as , 0, , 0u y z t y z d t    . (11) 

Of course, the expressions of  1 0, ,z t  given by 

Eqs. (6) and (7) are just the solutions of the partial 

differential Eqs. (9)1 or (9)2. For 0  , Eqs. (6) and (7) 

take the simplified forms: 

       1 10, , = or 0, , =z t fsin t z t fcos t     (12) 

corresponding to a Newtonian fluid. They are boundary 

conditions corresponding to the motion of a Newtonian 

fluid between two side walls perpendicular to a plate that 

applies an oscillating shear stress ( )fsin t  or ( )fcos t  to 

the fluid. In the following, let us consider the complex 

fields: 

     

     

, , = , , , , ;

, , = , , , , , 1,2;

c s

k kc ks

V y z t u y z t iu y z t

T y z t y z t i y z t k 
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

  

 (13) 

where ( , , )su y z t , ( , , )ks y z t  and ( , , )cu y z t , ( , , )kc y z t  

are the solutions of our problem corresponding to the 

boundary conditions Eq. (6), respectively Eq. (7), and i is 

the imaginary unit. In the next, for simplicity, we shall 

refer to them as to solutions corresponding to the sine and 

cosine oscillations of the shear stress on the boundary. In 

view of the above relations, we obtain the following initial-

boundary value problem: 
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 (14) 
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 (15) 

 
 

 
, ,0

, ,0 = = 0, , ,0 = 0k

V y z
V y z T y z

t




; (16) 

 
 

1 =0

, ,
1 0, , = | = i t

y

V y z t
T z t fe

t y


 
 
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 

 
; (17) 

   ,0, = , , = 0, > 0, 0V y t V y d t y t  ; (18) 

   , , 0 as , 0, , 0V y z t y z d t    . (19) 

4. Solution of the problem 
 

In order to determine the solution of problem 

Eqs. (14)-(19) we use the Fourier and Laplace transforms 
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[15, 16]. Multiplying both sides of Eq. (14) by 

2 / ( ) ( )ncos y sin z   , where = /n n d  , integrating 

with respect to y and z from 0  to  , respectively 0  to d 

and using the corresponding initial and boundary 

conditions, we find that: 

   
   

 

2

2 2

2

, ,
, =

1 12

cn cn

n cn

n

i t

n

V t V t
V t
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f
e ,

   
    



  

  
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  

  

(20) 

where the double Fourier cosine and sine transforms: 

 
       

0 0

2
, = , ,

= 1,2,3...

d

cn nV t V y z t cos y sin z dzdy,

n
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

 





 (21) 

of the function V(y, z, t) have to satisfy the initial 

conditions: 

 
 ,0

,0 = = 0
cn

cn

V
V

t

 



. (22) 

Applying the Laplace transform to Eq. (20) we get: 

 
 

   2 2 2

1 12
, =

1

n

cn

n

n

f
V q

,
q i q q


  

    

  
 

  


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 

 (23) 

where  ,cnV q  is the Laplace transform of  ,cnV t . 

Applying the inverse Laplace transform to 

Eq. (23) we obtain: 

 
 

 
1 12
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n

cn n

n
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V t F t 
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; (24) 

 

where 
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 (25) 

In the following, we present the solution 

corresponding to sine oscillations only. For cosine 

oscillations the solution can be obtained by a similar way. 

Inverting Eq. (24) by means of the Fourier and Laplace 

inversion formulae [15, 16] and by using the well known 

formulae: 
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we find the following expression for the velocity  , ,su y z t : 
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where 
2

2 4 2 2 2 4 2 2 2 22 = , 2 = , = , = , = , 2 1, 2 ,
2

m
m m m m m m m m m m

m

B m
A b c b B b c b b c tan m n d h .

A h

  
  

 
          

 

Direct computations clearly show that the starting solution 
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 , ,su y z t  given by Eq. (26) satisfy all imposed initial and 

boundary conditions. It is presented as a sum between 

steady-state and transient solutions and describe the motion 

of the fluid some time after its initiation. After that time, 

when the transients disappear, the starting solution tend to 

the steady-state solution: 
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Generally, the starting solutions for unsteady 

motions of fluids are important for those who want to 

eliminate the transients from their rheological easurements. 

Consequently, a very important problem regarding the 

technical relevance of such solutions is to find the 

approximate time after which the fluid is moving 

according to the steady-state solutions. More exactly, in 

practice, it is necessary to know the required time to reach 

the steady-state. This time will be later determined by 

means of graphical illustrations. In order to determine the 

shear stress  1 , ,s y z t , for instance, we apply the Laplace 

transform to Eq. (15)1 and use Eq. (23) to get  , ,V y z q . 

Lengthy but straightforward computations lead to: 
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where =tan  . The starting solutions Eq. (28) is also 

presented as a sum of steady-state and transient solutions. 

 

 

 

5. Limiting cases 

 

5.1. 0 (Newtonian fluids) 

 

By making 0   into Eqs. (26)-(28), the 

solutions [2], Eqs. (14) and (17): 
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

 
    





 

 (30) 

corresponding to Newtonian fluids performing the same 

motion are recovered. In these last relations: 

 

2 4 2 2 2 4 2 22 = , 2 = ,

=

mN m m mN m m

mN mN mN

A c B c

tan B A .

   



   

 

 

5.2. Case h   (Flow over an infinite plate) 

 

In the absence of side walls, namely when 

h  , the general solutions Eqs. (26) and (28) 

corresponding to Maxwell fluids take the simplified forms 

are immediately obtained from Eqs. (31)-(32) for 0  . 
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1 2
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s
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u y t sin t yA e

A B
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c


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

  

 

 

 
     

   

      
     

     



 (31) 
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 (32) 

where    2 2 2 2 2 2 2 2 22 = 1 , 2 = 1 , ( ) = 1 4 = 1 .A B c , tan
 

           
 

        

 The similar solutions for Newtonian fluids [2], Eqs. (20) and (21): 
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 . (34) 

 

6. Numerical results, discussion and conclusions 
 

In this note, oscillating motions of a Maxwell 

fluid between two side walls perpendicular to a plate are 

studied by means of integral transforms. The motion of the 

fluid is induced by plate that after time = 0t  applies time-

dependent shear stresses of the form Eq. (6) and Eq. (7) to 

the fluid. The obtained starting solutions for  , ,su y z t  and 

 1 , ,s y z t , are presented as a sum between steady-state 

and transient solutions. They satisfy all imposed initial and 

boundary conditions and describe the motion of the fluid 

some time after its initiation. After that time when the 

transients disappear, the fluid is moving according to the 

steady state solutions. The similar solutions for Newtonian 

fluids, given by Eqs. (29) and (30), are recovered as 

limiting cases of general solutions. 

In the absence of the side walls, namely when the 

distance between walls tends to infinity, the solutions that 

have been obtained reduce to the similar solutions 

Eqs. (31)-(34) corresponding to the motion over an infinite 

plate. In order to bring to light a new and useful 

application of present results, let us firstly remember a 

known solution [17], Eqs. (3.9) with = 0 : 

 
  2
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0 4

2
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sin yV ty t Ve sin t y e d




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


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
 

   
     
 

  (35) 

for the velocity corresponding to the motion of a 

Newtonian fluid over an infinite plate that oscillates in its 

plane according to: 

   0, =v t V sin t . (36) 

As form, the right member of Eq. (35) is identical 

to those from Eq. (34) corresponding to the motion of a 

Newtonian fluid on an infinite plate that applies oscillating 

shear stresses ( )f sin t  to the fluid. This is not a surprise 

because for such motions of Newtonian fluids the velocity 

( , )y t  and shear stress ( , )y t  satisfy the same governing 

equation, namely [12]: 

   2

2
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N Ny t y t

t y
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 (37) 

respectively, 
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2

, ,
=

N Ny t y t

t y

  


 
. 

It is worth pointing out that such a property is also 

valid for Maxwell fluids. More exactly, the velocity 

( , )M y t  and the shear stress ( , )M y t  corresponding to a 

Maxwell fluid in such a motion satisfy the governing 

equations 
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  


  
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  

 (38) 

This simple remark is very important from 

theoretical point of view. It allows us to provide new exact 

solutions for the motion of a Maxwell fluid over an infinite 

plate. For instance, the velocity of a Maxwell fluid over an 

infinite plate that after time = 0t 
 oscillates in its plane 

according to: 

 
 

   
2

1
0, =

1

t

v t V sin t cos t e 


 


  
  

   
 (39) 

is given by Eq. (32) with V  instead of f. 
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Finally, in order to reveal some relevant physical 

aspects of the obtained results, some graphs are sketched in 

this section. 

In order to determine the distance between the 

side walls for which the measured values of the velocity 

 , ,su y z t  in the middle of the channel are unaffected by 

the presence of the side walls, more exactly this velocity is 

equal to the velocity  ,su y t  corresponding to the motion 

over an infinite plate, Fig. 1  has been prepared. It is 

clearly seen from these diagrams that the distance between 

side walls has a significant influence on the velocity field. 

In the considered case, if h > 0.55 the influence of side 

walls on the velocity becomes insignificant. Other 

important problem regarding the technical relevance of 

starting solutions is to find the required time to reach the 

steady-state. More exactly, in practice it is necessary to 

know the approximate time after which the fluid is moving 

according to the steady-state solutions. To solve this 

problem, the variations of starting and steady-state 

velocities  ,su y t  and  ,ssu y t  are depicted in Fig. 2. At 

small values of the time t, the difference between the 

starting and steady-state solutions is meaningful. This 

difference decreases in time and the required time to reach 

the steady-state for the motion due to the sine oscillations 

of the shear is decreasing if the frequency ω increases. 

In conclusion, the main results obtained in this 

note are: 

  Closed-form expressions for starting solutions 

corresponding to the oscillating motion of a Maxwell fluid 

between side walls perpendicular to a plate that applies 

oscillating shear stresses to the fluid are established in 

integral and series form. 

  These solutions, that are presented as a sum of 

steady-state and transient solutions, describe the motion of 

the fluid some time after its initiation. After that time, 

when the transients disappear, the fluid is moving 

according to the steady-state solutions. 

  Similar solutions corresponding to the motion over 

an infinite plate as well as the solutions for Newtonian 

fluids are obtained as limiting cases of general solutions. 

  The distance between walls for which the velocity 

of the fluid in the middle of the channel is unaffected by 

their presence is graphically determined. 

  Required time to reach the steady-state is a 

decreasing function with regard to the frequency   of the 

shear stress. 

 

     

 a b 

 

c 

Fig. 1 Profiles of the velocities us(y, 0, t) and us(y, t) given by Eqs. (26) and (31)for f = 6 N/m
2
,  = 1.48 Ns/m

2
, 

 = 0.001457 m
2
/s,  = 0.5 s,  = 1.2 s

-1
 and different values of t, s and h, m 
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 a b 

 

c 

Fig. 2 The required time to reach the steady-state for sine oscillations of the shear .For h,  = 1.48 Ns/m
2
, 

 = 0.001457 m
2
/s,  = 0.8 s and different values of , s

-1
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ŠONINIŲ SIENELIŲ ĮTAKA MAKSVELO SKYSČIO 

PULSUOJAMAJAM JUDĖJIMUI VIRŠ BEGALINĖS 

PLOKŠTELĖS 

 

R e z i u m ė 

 

Pradinis vertinimas, atitinkantis Maksvelo skysčio 

pulsuojamąjį judėjimą tarp šoninių statmenų plokštelei 

sienelių, atliktas naudojant integrines transformacijas. Apie 

skysčio judėjimą dėl pulsuojančios šlyties poveikio 

sienelei literatūroje mažai kalbama. Sprendiniai, 

atitinkantys judėjimą virš begalinės plokštelės, kurią liečia 

pulsuojančio skysčio apkrova, yra gauti kaip ribiniai 

bendrojo sprendinio atvejai. Visi sprendiniai yra pateikti 

nusistovėjusio ir pereinamojo sprendinių sumos pavidalu ir 

lengvai gali būti konkretizuoti suteikiant panašius 

sprendinius niutoniniams skysčiams. Jie nusako skysčio 

judėjimą po kurio laiko nuo jo pradžios. Po šio laiko, kai 

pereinamasis procesas baigiasi, skysčio judėjimas 

išreiškiamas nusistovėjusiais sprendiniais, kurie yra 

periodiniai ir nepriklausomi nuo pradinių sąlygų. Tačiau 

jie tenkina ribines sąlygas ir vyraujančias lygtis. Grafiškai 

apibrėžti atstumas tarp sienelių, kuriam esant skysčio 

greičiui kanalo viduryje įtaka nedaroma, ir laikas būtinas, 

nusistovėjusiam režimui pasiekti. 

 

 

A. Sohail, D. Vieru, M.A. Imran 

 

INFLUENCE OF SIDE WALLS ON THE 

OSCILLATING MOTION OF A MAXWELL FLUID 

OVER AN INFINITE PLATE 

 

S u m m a r y 

 

Starting solutions corresponding to the oscillating 

motion of a Maxwell fluid between side walls 

perpendicular to a plate are established using integral 

transforms. Such solutions are scarce in the literature, the 

motion of the fluid being due to an oscillating shear on the 

boundary. The solutions corresponding to the motion over 

an infinite plate that applies an oscillating shear to the fluid 

are obtained as limiting cases of general solutions. All 

solutions are presented as a sum between steady-state and 

transient solutions and can easily be particularized to give 

the similar solutions for Newtonian fluids. They describe 

the motion of the fluid some time after its initiation. After 

that time, when the transients disappear, the motion of the 

fluid is described by the steady-state solutions which are 

periodic in time and independent of initial conditions. 

However, they satisfy the boundary conditions and 

governing equations. Finally, the distance between walls 

for which the velocity of the fluid in the middle of the 

channel in unaffected by their presence and the required 

time to reach the steady-state are graphically determined. 

 

Keywords: Maxwell fluids, oscillating shear, side walls, 

starting solutions, steady-state and transient solutions. 
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