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1. Introduction 

 

At present in the design and operation of critical 

products from non-conventional metal materials their 

strength and plasticity resources evaluation is actual. In 

this context, statistical strength and plasticity criteria that 

allow taking into account the structure and peculiarities of 

intercrystalline interaction for polycrystalline materials 

under deformation and fracture have large opportunities 

from our point of view. It is not the least of the factors that 

directly in them relation between micro- and macrocharac-

teristics of the processes analyzed is set via the correspond-

ing averaging methods. This kind of criteria takes an in-

termediate place between phenomenological and physical 

approaches. Phenomenological criteria connect strength  

with various invariants of a tensor of stresses or defor-

mations. The physical approach allows to estimate features 

of elastic-plastic deformation depending on operating 

mechanisms of deformation (sliding, doubling) demand 

enough difficult procedures of calculation for construction 

of macroscopically characteristics (a curve of deformation 

and others) [1-3]. Statistical criterion considered in given 

article, possess simplicity of use in engineering practice 

and allow to estimate strength precisely enough.  

Development of the statistical approach was made 

in works of Weibull, Frenkel, Fisher and Hollomon, 

Afanasev, Bolotin, Novozhilov and others [4]. The statisti-

cal approach to material strength evaluation proposed by 

Volkov S.D. [5] is based on the hypothesis that mi-

crostresses are distributed by the normal law while fracture 

occurs when critical probability of exceeding by mi-

crostresses responsible for fracture is reached. It was as-

sumed that incipient microcracks appear in the planes with 

orientation close to the basic area corresponding to the 

principal macroscopic stress 1 while local criterion of 

fracture is c 11 . Here 11  is microstress ( 11 || 1 ) 

where mathematical expectation is 111   and local 

strength is constс  . The hypothesis acceptance that crit-

ical probability does not depend on stress state kind results 

in the fact that generalized condition of strength will be 

expressed as follows:  

 1

11( )

с

cz const
S

 




  ,    (1) 

that is prescribed integration limit of density function cor-

responding to the critical probability. The exact criterion 

kind depends on the function
11 1 2 3( ) ( , , )S      deter-

mining dependence of root-mean-square deviation on 

macrostress state. Volkov S.D. supposed that dispersion:  

 2

11 11( ) ( )D S KW   ,                       (2) 

where W is potential energy of deformation. Having de-

termined czK   and c by tests with two different kinds of 

stress state, he got two-parameter criterion of strength.  

Pisarenko G.S. and Lebedev A.A. proposed to use 

not the whole of energy but distortion strain energy only 

having got as well the two-parameter criterion which for 

the main part of materials describes well the strength for 

limited range of stress states which are managed to be imi-

tated in laboratory conditions. However, for a number of 

materials such as columbium alloys, the Pisarenko-

Lebedev criterion describes experimental results poor even 

for the state of plane stress [6].  

In the work [6] the statistical approach has been 

developed due to consideration of various mechanisms of 

discontinuance (oriented and non-oriented fracture) and 

use of local strength criteria taking into account the 

strength anisotropy of grains. Only for materials with low 

strength anisotropy the crystals of which do not have   any 

cleavage planes or have many families of cleavage planes 

c 11 can be used as local criterion of fracture as they 

have low strength anisotropy (oriented fracture). To such 

materials refractory of 5а and 6а groups of Mendeleev peri-

odic system (niobium, vanadium, tantalum, chromium, mo-

lybdenum) with cubic crystalline lattice can be related. 

However, for such materials or rather like for all polycrys-

tals the hypothesis Eq. (2) is not acceptable. We can show 

this for the case of elastic deformation. 

2. Theoretical  

Microstresses in the random point of nonuniform 

micro-sized medium with elastic deformation can be found 

as the sum: 

 
(1) (2) (3)

11 11 1111 1 2 3         , 

where 
( )

11

k

 is microstress caused by single principal 

macrostress k , then dispersion  11D   can be found as 

sum of three dependent random quantities: 
 

   2 11 2 22 2 33 12 13 23

11 1 11 2 11 3 11 1 2 11 1 3 11 2 3 112D B B B B B B               ,                                          (3)
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where 







)k(
kkk DBB 111111   is dispersions and 









)m()k(
km covB 111111  =

)m()k()m()k(

11111111    is cova-

riances (correlation moments) of microstresses caused by 

single macrostresses k  and m . Here, angle brackets 

mean averaging. In the work [6] by the model of polycrys-

tal based on the deformations homogeneity hypothesis 

(Voigt hypothesis) and by the finite element model it is 

shown that for quasi-isotropic crystal:  

 33

11

22

11

11

11 BBB  , 23

11

13

11

12

11 BBB  . (4) 

Last equation shows the inconsistency of hypoth-

esis (2) because its confirmation requires performance of 

the following conditions for dispersions 11 22 33

11 11 11B B B   

and covariances 12 13 23

11 11 11B B B  . Moreover iiij B/B 1111 , 

where   is Poisson coefficient. It should be noted that 
(1) (2) (3)

11 11 111 0,     . 

Dispersions 
11

kB  and microstresses covariances 

11

kmB  arising from the elastic anisotropic grains interaction 

are defined analytically with use of a hypothesis of strains 

uniformity, and also numerically for polycrystal model by 

means of finite elements solution for elastic plane problem 

for cubic crystals [6-8]. 

Calculation by a method of final elements of 

models taking into account anisotropy of properties of 

grains is made with the most various purposes [9-11]. Here 

the results received at the decision of a volume problem for 

materials with close-packed hexagonal space lattice are 

discussed. For implementation of this approach the finite 

element model of the polycrystal was used in the form of a 

thin plate consisting of one layer of grains in the shape of 

hexagonal prisms (39 hexahedrons and fragments forming 

a rectangular plate). Grain thickness was equal to diameter 

of the circle around the hexahedron. Each grain was split 

into 1193 elements in the form of tetrahedron containing 

four nodes with three nodal displacements. Anisotropic 

element type was used for which the elastic properties j,iC  

are given by the 6x6 matrix. Components of the matrix of 

elastic properties were determined by conversion of the 

fourth-rank elastic tensor for different orientations of crys-

tallographic axes of the grain given by Eulerian angles. An 

angle change pitch was 24/  in the range from 0 

to 2/ . Total number of considered orientations of grains 

was 2197. Orientations of grains of the model were chosen 

from the resultant aggregation by means of the random 

number generator. For each material 5 different combina-

tions of orientations of 39 grains were considered. For fas-

tening 7 connections in four points were given. In one an-

gle point of the base 0321  uuu , in the most remote 

from it base point 032  uu , in two remaining angle 

points 02 u . Such fastening ensures no constraints due to 

availability of connections and during extension along any 

axis in the elastic isotropic model monoaxial extension 

occurs in all elements. During calculation of the polycrys-

tal model complex stress state occurs in the model volume 

caused by interaction of anisotropic grains. For each orien-

tation two kinds of monoaxial extensions were considered 

along 1x axis and along 2x  axis caused by single macro-

scopic stresses on lateral surfaces 1  and 2 . For every 

kind of extension six components of microstresses (1)

ij  

and (2)

ij  and deformations caused by single macrostresses 

were determined. For evaluation of representativeness of 

samplings normal modules of elasticity and Poisson ratios 

of the model in х1, х2 directions were determined. Spread 

of values of elastic constants of the model depends on the 

rate of elastic anisotropy of crystals. For majority of mate-

rials it was in the range 5%. The exceptions were cadmi-

um, zinc and graphite (mentioned in ascending order of 

degree of anisotropy) for which deviations were two or 

three times more. 

For averaging and determination of mathematical 

expectations 
( }k

ij  , dispersions and covariances, differ-

ence of volumes of finite elements with consideration of 

FEM grid topology was taken into account.  Here, it was 

established that ijij   as required by boundary con-

ditions. Fig. 1 shows microstress fields 
(2)

22  for titanium 

polycrystal in the middle plane of the plate with monoaxial 

extension 2 . 

 

 

Fig. 1 Change of microstresses 
22

(2)

 in the cross section 

passing through the middle of the plate; monoaxial 

extension is; material is titanium 

 

Taking into account the quasi-isotropic conditions 

(4) determination of average values of dispersions ii

iiB , 

( )kk

iiB k i was conducted by averaging of ten values of 

the corresponding dispersions and for ( )ik

iiB k i of twen-

ty values of covariances for each material got by solving 

five variants with different orientations of crystallographic 

axes. It was not possible to determine covariances of
23

11B  

using only two kinds of extensions by single macrostresses 

12211   therefore they were found in assumption 
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that    (2) (3) (1) (2)

11 11 33 3323 12cov cov    by averaging 10 val-

ues  (1) (2)

33 3312cov   . 

For each material confidence intervals were de-

termined for mathematical expectation of the correspond-

ing sampling of dispersions and covariances on the as-

sumption that these values are not correlated between 

themselves. For this purpose dispersions of dispersions 

 11

11D B ,  22

11D B  and dispersion of covariances  12

11D B , 

 23

11D B  were calculated. Then with probability of 0.95 the 

confidence interval   2

11 /kmb Z D B N  of possible 

spread of average values of dispersions and covariances 

was determined. Here Z is quantile of normalized normal 

law of distribution corresponding to the given probability 

while N is a number of considered cases (10 for 
jj

ii

ii

ii B,B , ( , 1,2; 3)ij

mmB i j m   and 20 for kj

iiB .  

As it can be seen from the table, the values of P, 

Q, F parameters for the studied HCP materials differ greatly. 

From here it appears the necessity of more detailed study of 

effect of these parameters on strength with complex stress 

state with application of experimental data. 

As can be seen from Fig. 2, microstresses concen-

tration 
11
  strongly depends on the stress-strain state 

which is influenced by the ratios of principal macroscopic 

stresses 
2 1/   and 

3 1/  . Therefore there are strong 

reasons for the creation of a strength criterion considering 

influence of a type of stress-strain state on concentration of 

microstresses. Taking into account Eq. (4), expressing in 

formulae (1) cz  and c  during two test types with various 

stress states in the work [6] the statistical criterion of ori-

ented fracture was got: 

 

   2 2 2

1 2 3 1 2 1 3 2 3 12 2 1 рP Q F P                                                     (5) 

where 
p

c

,





  а cp ,  are true fracture stresses at ten-

sion and compression, 
 
 

(1)

11

(2)

11

;
D

P
D




  

 
 
12 11

(2)

11

;
cov

Q
D




  

 
 
23 11

(2)

11

cov
F

D




 . Taking into account the quasi-isotropic 

conditions (4) one can see that F is correlation coefficient 

of  
11 11

(2) (3)

23   . It can be shown that F/Q is correla-

tion coefficient of  
11 11

(1) (2)

12
   .   

 

 
Fig. 2 Normal microstresses dispersion variation in a poly-

crystal of the titan as a principal stresses function. 

Calculated on a formula (3) where 11

ijB  values are 

found from finite elements solution 

 

In the work [6, 7] with the use of analytical and 

numerical models of the polycrystal P, Q, F parameter 

values were got for a large number of metals with cubic 

crystal lattice. Taking into account that for these materials 

the parameter values got by the finite element method cal-

culation are close to the values P=16/9, Q=-8/9, F=-7/63 

got by the model of the polycrystal with the use of the de-

formation homogeneity hypothesis, for materials with the 

cubic crystal lattice in the work [7] two-parameter strength 

criterion was proposed which describes the strength of 

columbium alloys well.  

However, during the tests of polycrystals with the 

hexagonal close-packed space lattice it was established that 

these parameter values greatly depend on the test material. 

This was established both by the model with the use of the 

deformations homogeneity hypothesis that allows getting the 

analytical solution [8] and by the method of the finite ele-

ments [13]. This is obviously related to the less symmetry of 

HCP crystals compared with the cubic ones. Therefore, if 

there is no data on P, Q, F values for materials, one should 

use the five-parameters criterion in the form Eq. (5) that 

makes it inconvenient for application. 

Earlier in the work [2] specified in our article, we 

have considered process of change of dispersions of micro 

stresses and deformations at elastic-plastic deformation. It 

has been shown that level of concentration of the micro 

stresses, arising from interaction it is elastic the anisotropic 

grains, characterised in the variation factor, in    to iron 

at an input in plastic deformation decreases a little, and 

then is stabilised and remains at the further deformation.  

The fact of preservation of stability of a picture of 

micronon-uniform deformation at the big plastic defor-

mations is confirmed in a great number of experimental 

works (Gur'ev A. V., Romanov A. Н. and others). In them 

it is shown an invariance of factors of concentration of the 

local deformations measured on bases several times small-

er, than the size of grain, in a wide range of plastic defor-

mations. 

It should be noticed that the statistical criterion 

includes not value of dispersions, but relative parameters 

P, Q, F. By working out of criterion of strength it was sup-

posed that process of plastic deformation poorly influences 

these relative parameters. For this reason it is proposed in a 

present work to use for the first approximation parameters 

P, Q and F found from the numerical finite elements calcu-

lation of a microtresses field for a polycrystal model for an 
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elastic problem. Results can be specified with use of exper-

imental data on a fracture of cylindrical specimens with 

cuts of various sharpness which will provide various 

stress-strain states in the fracture zone. Such approach is 

often used for an estimation of fracture toughness [14,15], 

influences of speed of deformation [16] and destruction 

mechanisms [17] and another. 

 

3. Experimental 

 

Test methods were used that can be easily applied 

in laboratory conditions namely, tension of cylindrical sam-

ples with various sharp circumferential notches. For analysis 

of stress state in the stress concentration zone the well-

known Bridgeman and Davidenkov approaches were used. 

Comparative analysis of these approaches required building 

of deformation curves in the coordinates 
1 ( )iS f e . Here 

A/FS 1  is averaged true stress determined by cross 

section area А corresponding to the load F; 

02 ( / )i ie n d d  is true deformation in the stress concen-

tration zone determined by initial 
0d  and current diameter 

of minimum cross section. For tests 5V titanium alloy 

samples were taken: smooth and with notch radius 2.3; 1.5; 

0.85; 0.5 mm with ratio of diameters d/D = 0.707. In addi-

tion to this, the test results with six fold resharpening of the 

sample that were conducted after the neck started forming 

and ie = 5% plastic deformation was reached that al-

lowed getting the characteristics without considerable in-

fluence of the neck shape. The technique, described to 

work [18] has been used. 

Table  

Results of calculation of criterion parameters and confidence intervals b,  

ordered by ratio of extreme modulus of crystal elasticity  
 

 

 

For approximation of deformation curve of the 

smooth sample with sixfold resharpening the power law 

hardening equation n

iyi eKs    was used, where 

K = 225.16 MPa, n = 0,21395 – hardening parameters; 

665y МPа – limit of elasticity. Approximation error is 

1.5%. For justification of the calculation method for stress 

intensity is  by 1S  the deformation curves for the samples 

with necks and notches were rebuilt in the coordinates of 

stress intensity is and intensity of deformations 

( )i is f e . For determination of is the Bridgeman and 

Davidenkov solutions were used. Coefficients of “harden-

ing” k taking into account curvature of the neck causing 

inhomogeneous stress state in the minimum cross section 

area for the smooth sample do not differ greatly. 

However, it was established that for small radius 

of curvature in circumferential notches Bridgeman correc-

tion ensures better conformity to the single deformation 

curve in the coordinates ii es  . Therefore it is used in 

further calculations to determine stress intensity: 

    1 / ; 1 4 / 1 / 4 ,is S k k R d n d R       (6) 

here ,d R  are diameter and radius of curvature in the neck 

or in the notch. For circumferential notches diameters and 

radii were determined both before deformation and after 

fracture.  

For determination of P, Q, F parameters the crite-

rion Eq. (5) is represented in the form convenient for fur-

ther calculations: 

 

      2 2 2

1 2 3 1 2 2 3 2 3 12 2 1 ,c C

i p q qs s P n n n Q n n n n F n n P n                                  (7) 

 

here 
c

is  is stress intensity corresponding to fracture in such 

stress state, 
C

s

C

pq s/s  
C

s

C

p s,s  are true fracture stresses 

at tension and compression; 1 1 2 2; ;i in / s n / s    

3 3 in / s  are relative parameters characterizing stress 

state in the fracture point; 321  ,,  design stresses ac-

cording to Bridgeman and Davidenkov; 321 n,n,n are ex-

pressed via rigidity index in stress state 

1 2 3( ) / iN s      and Lode parameter  character-

izing the kind of deviator:  

  ;//Nn 333 2

1 




   

    2 2

2 32 3 3 3 3 3n N / / ; n N / / .              

 

According to Bridgeman for the central part of the 

cross section in the neck where fracture starts:  

1 3 (1 / (4 )),N n d R  
 

.1  

Experimental and design values of fracture stress 

1S were compared. Satisfactory fit was reached. For more 

Parameters Be Co Mg Ti Zr Cd Zn Graphite 

Emax/Emin 1.16 1.16 1.17 1.37 1.4 2.7 3.5 6.98 

Р 2.49 1.12 0.92 0.57 1.55 3.448 2.70 1.89 

Pb  0.266 0.219 0.099 0.096 0.210 0.449 0.255 0.882 

Q -1.03 -0.38 -0.282 -0.48 -0.386 -0.83 -0.69 -0.43 

Qb  0.095 0.113 0.065 0.105 0.089 0.125 0.101 0.191 

F -0.12 -0.024 0.11 0.095 0.202 0.175 0.033 -0.28 

Fb  0.028 0.077 0.087 0.065 0.039 0.029 0.054 0.12 
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precise definition of parameters variation of P, Q, F, 
r

  

was made for minimization of the sum of squared differ-

ence of theoretical and experimental values of fracture 

stresses for each type of curvature radii: 

   
2

1

1

, , ,
n

c exp

i r m
m

Re k s P Q F S min 


  ,      (8) 

where stress intensity ( , , , )c

i rs P Q F  is calculated by the 

criterion Eq. (7) in which N and 21 n,n respectively are 

determined by the value of radius in the notch measured 

after fracture, n – number of sample types; Re() – means 

that only real part of the complex number is taken which 

can be theoretical value of stresses and deformations in the 

process of iterations when no imposed below given re-

strictions are provided resulted from the study of deviator 

and meridian fracture surface cross section. Taking into 

account that the second derivative sign 2

0

2 dFd  in the 

meridian cross section will not change in the whole inter-

val of spherical tensor change
0[ ... ]c , where c

0  is 

strength with triaxial uniform tension, general solution was 

got for the restriction in 
q . The most strict is the re-

striction for 1 ,  

 
14

21422
0






QF

PQPF
r ,        (9) 

that was used in calculations. From the condition of reality 

of values 2

0

2 dFd  the restriction 
P

QP
F

22
  follows. 

The other restriction is the expres-

sion 0224  FQP  that follows from the condition 

of non-negativity of dispersions of microstresses in any 

stress state.  

After minimization of the expression (8) with the 

use of the above mentioned restrictions it was got: 

0 45r . ,   P=0.59, Q= - 0.49, F= - 0.17. The values of P 

and Q parameters are inside of the confidence interval got 

by calculation of FEM, only F value is beyond the limits 

got by finite element modeling that is connected with im-

perfectness of the polycrystal model (one layer of grains). 

So there are grounds to convert the criterion Eq. (5) in 

three-parameter one if the calculated P and Q parameters 

are used. 

Accuracy of description of fracture was compared 

with other strength criteria that are particular cases of the 

criterion Eq. (5). With the values of the parameters P = 1, 

Q = F = - 0.5 the criterion Eq. (5) corresponds to the 

Pisarenko-Lebedev criterion. With P = 1, Q = F = - , 

where Poisson ratio   equal for titanium to 0.32, the crite-

rion Eq. (5) corresponds to the Volkov criterion. With 

these fixed values of P, Q, F parameters minimization of 

the expression (8) was performed to find  parameter for 

Pisarenko-Lebedev and Volkov criteria. The criteria  = 

0.63 and 1.72 were got, respectively. According to the 

Volkov criterion tensile strength is considerably higher 

than compression strength that is not proved by the exper-

iment. Fig. 3 shows meridian cross sections corresponding 

to 1  for the Pisarenko-Lebedev criterion (straight 

line 1), for the Volkov criterion with  =1.72 (curve 2) and 

for  =0.42 (curve 3) corresponding to the maximum value 

of restriction Eq. (9). The criterion of oriented fracture 

Eq. (5) is represented by curve 4 (Fig. 3).  

The range of stress states ensured by the samples 

with circumferential notches from N = 1 (smooth sample 

with resharpenings) to N = 4.3 is marked with arrows. It is 

seen that within it as well as for compression spherical 

tensors the criterion of oriented fracture and the Pisarenko-

Lebedev criterion give approximately the same results. 

However, in the area of the most dangerous stress states 

close to uniform tension the Pisarenko-Lebedev criterion 

enhances strength two point five times more compared 

with the criterion Eq. (5). So, for this area of stress states 

there are grounds to use alternative three-parameter criteri-

on that allows higher reliability of calculations.  

 

 
 

Fig. 3 Meridian cross sections of fracture surface corre-

sponding to 1  (tension with accuracy to 

spherical tensor) for various strength criteria (please 

find clarifications in the text) 

 

 
 

Fig. 4 Fracture contours for the plane stress state for titani-

um alloy 5В by the Pisarenko-Lebedev criterion 

(curve 1), by the Volkov criterion with normalized 

=0.42 (curve 2) and oriented fracture (curve 3) 

 

Fig. 4 shows fracture contours in the plane stress 

state for the criteria considered. As is obvious, strength 

differences in the area of biaxial tension are not great. 

Maximum difference observed with 21   is less 7%. 

However, tests of samples with circumferential notches 
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when the conditions of volumetric stress state are imple-

mented, give more 30% differences in strength evaluation 

by the Volkov criterion and criterion Eq. (5). This points 

out that for determination of F parameters one should use 

tests not in the plane but in the volumetric stress state that 

was implemented in the procedure proposed. 

 

4. Conclusions 

 

For polycrystals with hexagonal crystal lattice the 

statistical strength criterion was proposed that is more reli-

able in forecasting of strength in any stress state. The pro-

cedure of determination of criterion parameters was devel-

oped when two of these parameters are determined by 

FEM calculation on the polycrystal model while three oth-

er parameters were determined experimentally on the sam-

ples with circumferential notches. 
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V. P. Bagmutov, E. P. Bogdanov, I. A. Shkoda 

STATISTINIS STIPRUMO KRITERIJUS MEDŽIAGOMS SU 

SUTANKINTA ŠEŠIAKAMPE KRISTALINE GARDELE 

R e z i u m ė 

Ištirtos normalinių mikro įtempių koncentracijos priklau-

somybės kylančios dėl tampriųjų anizotropinių grūdelių poveikio 

kombinuotam įtempių –deformacijų būviui. Panaudojant gautas 

priklausomybes polikristalams, kurių grūdeliai neturi skilimo 

plokštumų, pasiūlyti statistiniai orientuoto lūžio stiprumo kriterijai. 

Titano eksperimentinių duomenų analizė parodė, kad pasiūlytas 

kriterijus numato patikimesnę stiprumo prognozę kieto įtempio 

būviui lyginant su žinomais fenomenologiniais kriterijais. Du pa-

siūlytų kriterijų parametrai stačiakampio gretasienio centruotos 

kristalinės gardelės medžiagoms nustatyti polikristaliniam modeliui 

naudojant baigtinių elementų analizę. Trys kiti parametrai pasiūlyti 

nustatyti cilindrinių bandinių su įvairių aštrumų antgalių įpjovomis 

eksperimentiniais tempimo bandymais. 
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V. P. Bagmutov, E. P. Bogdanov, I. A. Shkoda  

STATISTICAL STRENGTH CRITERION FOR  

MATERIALS WITH HEXAGONAL CLOSE-PACKED 

CRYSTAL LATTICE 

S u m m a r y 

 

Dependences of concentration of the normal mi-

crostresses arising from interaction of elastic anisotropic 

grains, on a type of a combined stress-strain state are in-

vestigated. With use of the received dependences, for poly-

crystals which grains have no cleavage planes, the statisti-

cal strength criterion of the oriented fracture is suggested. 

The experimental data analysis for titan has shown that the 

criterion suggested provides more reliable strength progno-

sis for rigid stress states in comparison with known phe-

nomenological criteria. Two parameters of a suggested 

criterion for hexagonal close-packed crystal lattice materi-

als are determined for polycrystal model using the finite 

element analysis. Three others are suggested to be defined 

experimentally by means of a tension test performed on 

cylindrical specimens with notches of a various tip sharp-

ness. 

Keywords: statistical strength criterion, microstresses, 

close-paced hexagonal space lattice. 
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