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1. Introduction

Computer-aided methods of analysis and simula-
tion are widely used for the investigation on dynamic
properties of mechanic, mechatronic and other equipment
[1-12].

In majority of cases, the application of computer-
aided simulation in the environment of MATLAB / Simu-
link programs for such investigation is purposeful [13, 14].
For this purpose, the equations for description of the dy-
namic processes of the equipment under investigation,
hereinafter referred to as the dynamic system or shortly
system, and the structural diagram of the system formed on
the base of the said equations according to the dynamic
model of the system with discrete elements (widely used
for examination of automatic control systems) should be
available. Such a diagram formed according to the re-
quirements of MATLAB/Simulink program package and
“understandable” for a computer is referred to as Simulink-
model [13, 14]. There are no substantial differences be-
tween it and the structural diagram: if any of them is avail-
able, the other is easily found on its base.

When a mechatronic system is examined, its elec-
trical part, such as electric drive, components of sensors
and so on, usually are provided as already known structural
diagrams [15]. Cases of formation of structural diagrams of
the mechanical part of mechanical or mechatronic systems
appear to be more complicated. Because of the wide vari-
ety of structures of mechanical systems, their structural
diagrams are not predictable in any specific case, so their
formation in cases of complicated systems requires consi-
derable attempts and errors are hardly avoidable if the
process is not computerized.

The purpose of the paper is provision of a meth-
odology of the application of MATLAB/Simulink program
package to the available linearized mechanical system (or
is a part of more complicated system) for computer-aided
generation of equations describing movement of the sys-
tem using Lagrange equations of the second type, trans-
formation of the generated equations into the convenient
structural diagram of the said system and Simulink-model,
formation of literal and digital analytic expressions of
transfer functions included in them.

Software package MATLAB Simulink program is
not directly intended for creation of the said model. How-
ever, there are enough resources to solve this problem,
which is devoted to this work.

The obtained structural diagram can be easily in-
tegrated in a structural diagram and Simulink-model of a

more complicated system. In addition, the generated equa-
tions of the system are of independent value as well.

2. Generation of the equations

The equations describing movement of the linear
mechanical dynamic system with lumped parameters re-
quired for the formation of structural diagram of the sys-
tem are obtained from Lagrange equations of the second

type
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where T, I1 are kinetic and potential energy of the system,
respectively; @ dissipation function; x;, x; i-th generalized
Lagrangian coordinate, shortly referred to as the coordi-
nate, and its time (¢) derivative; F,(¢) the generalized out-

side force acting along the coordinate ;.
It can be stated that each of coordinates x, corre-

sponds to one equation of (1). In traditional case, the equa-
tion (1) include n generalized coordinates x;; their number
n equals to the number m of degrees of freedom of the sys-
tem (n=m) when a structural diagram for of self-
contained mechanical system is generated of transformed
Eq. (1). However, on generation of structural diagrams in
more common case when the stationary linear mechanical
system under discussion is a part (component) of a larger
mechanical system with nonlinear or nonstationary com-
ponents, a mechatronic system and so on, it can be m > n,
i.e. we’ll have n equations with m coordinates included in
them and the structural diagram for such a system. Herein-
after, we’ll mark such coordinates by x, (s =1, ..., i, ..., m).
In such a case, the Eq. (2) will include £ = m — n redundant
coordinates. For the simulation of a system described by
equations with redundant coordinates, the values of such
redundant coordinates are set or found from the “rejected”
part of the system by connecting its structural diagram to
the structural diagram of the mechanical part under discus-
sion.

It is notable that in both cases, i.e. when m=n
and when m > n, the methodology of formation of struc-
tural diagrams and Simulink-models remains the same.
Incorporating of auxiliary coordinates in the model let us
assume analyzed system as a part of another more complex
system, which may have nonlinear and nonstationary ele-
ments, electrical elements and so on.



In the case under discussion, kinetic energy 7 is a
function of derivatives of coordinates x; and (more rarely)

a function of the coordinates x, themselves; potential en-

ergy /7 is a function of coordinates X, and dissipation
function @ — a function of derivatives x, . In addition, the
expressions of 7', /7, @ can be direct functions of time ¢,
when, for example, known kinematic excitations ()

(z=1,2, ..., d) are included in the said expressions

T=T(x,x,t);11=1(x1t); @=@(,1) 2)

where x =x,, x,,..., X, ; X=X, X,, ..., X,, are the totalities

m 2

of coordinates x_and their derivatives x, .

In many cases [16, 17], striving to facilitate the
generation of analytic expressions of the functions
T,11,® for complicated systems, it is purposeful to use

not only the generalized coordinates x included in the

Eq. (1), hereinafter referred to as the principal generalized
coordinates, or shortly — to as the principal coordinates,
but also auxiliary coordinates &;. They should be chosen

in accordance with the below condition, i.e. they should be
expressed unambiguously by the principal coordinates

X, according to linear dependence in the following equa-

tions of connection

O, =a;x,+a;,x, +..+a,,x, +7j(t) 3)
O, =a; X +a;,% +..+a; X, + ;},.(t) 4)
(j=12,...,1)

where o, ,a . are constant coefficients formed of the
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parameters of the system’s dynamic model; }/(t) non-

stationary members being predictable functions of time ¢ (a
part of the said coefficients or all nonstationary members
or any part of them can be equal to zero).

When the auxiliary coordinates & =9,,9,,...,

are applied, we obtain the following expression instead of
Eq. (2)

T:d&néﬁﬂyazaﬁﬁ@

T =1I(x,6,1) )

Before differentiation of the functions 7T, /7, @

included in the Eq. (1), the auxiliary coordinates and their
derivatives should be eliminated by using the Egs. (3) and
(4), i.e. T,11,@ should be provided the expressions

analogous to Eq. (2).

If the auxiliary coordinates are properly chosen
according to the Eq. (3), the analytic Eq. (5) of the func-
tions T, I7, @ developed by the investigator will be con-

siderably simpler, as compared to Eq. (2). Then elimina-
tion of the auxiliary coordinates and their derivatives as
well as differentiation of the functions Eq. (2) shall be car-
ried out in a computer-aided way.

When the final Eq.(2) of the functions
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T,I1,®,F after differentiation and other relevant proce-

dures are available, linear differential equations with con-
stant coefficients of a degree not higher than second (in
some cases, linear algebraic equations) are obtained for
description of the dynamic model of the system under dis-
cussion. As it was mentioned, each i-th generalized coor-

dinate X; corresponds to i-th equation from the Eq. (1).

After introducing the differentiation operator p = d/dt , the
equation will be transformed as follows:

d;, (p)xl +d;, (p)xz +..+d;; (p)xi +..+d,, (p)xn +

+ di,n+1 (p)‘x}1+1 +...+ di,m (p)xm = F;(t)+ Hi (t)

(i=12,..n) (6)
where

di,j (p) = ai,/p2 +bi,/p+ci,/

(i=L2,..,n;j=12,..,m) @)

di,i (p) = az’,ipz +bi,ip +¢, 8)

polynomials of the second degree in respect of p; a ,b, ¢
with relevant indexes — constant coefficients (any of them
can be equal to zero); Fi(t) — the generalized outside force
acting along the x; — th generalized coordinate; Hi(f) is the
component of the generalized force acting along the x; — th
generalized coordinate obtained on differentiation of the
functions 7, /7, @ in the cases of their direct dependence

on time ¢ (for example, when the equations (3) and (4) in-

clude nonstationary members y, and y,); x,..,x, are

s X
principal generalized coordinates (each of them corre-

sponds to one of the equations (1)), and; x,,,..., x,, are

n+l»
redundant generalized coordinates when they are used. It is

accepted that

H (1)=& (P)N.. (1 ©)

e=l
gi,e (p)zai,epz +'7i,ep+§i,e (10)
where «o,,,7,,,&;, are constant coefficients; N,,(¢) is the

known functions of time ¢, i.e. the nonstationary members
7;()included in the Eq.(3) or kinematic excitations

u,yz(t) included in the T,/7,@ Egs. (2) and (5) but not

assessed in the Eq. (3).

The expressions of the generalized forces Fi(f) are
developed by the investigator, so they are not discussed in
details herein.

For the formation of structural diagram, each
Eq. (6) is solved in respect of the coordinate x; included in
it

X, = dijil (p) [E (t)+Hi (t)_di,l (p)xl _di,2 (p)xz T
_du‘-l (p)xz—] _di‘iﬂ (p)xm _"'_di,n (p)xn -

_di,n+1 (p)xnﬂ _"'_di,m (p)xm]

(i=12,..n (11)



According to the equations (11), the structural
diagrams corresponding to them are formed; they are con-
nected into the complete typical structural diagram of the
whole system shown in Fig. 1 and on the base of the latter,
Simulink-model for simulation of the system is developed.

-

dl,l

xn

dn, n

L

Fig. 1 The typical structural diagram of the system under
discussion formed on the base of the Eq. (11)

3. The example

Let’s suppose that low frequency vibrations of a
vehicle moving on an uneven road are examined (Fig. 2).
The vehicle is considered as absolutely solid body standing
on elastic supports with damping; the supports simulate
units of its wheels. The masses of the wheels and the sus-
pension are neglected. For generation of equations for de-
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scribing movement of the vehicle, two systems of coordi-
nates are chosen. One of them, i.e. the system
0,X,,Y,Z is fixedly connected to the vehicle and
moves together with it. The point of the origin of coordi-
nates of the said system of coordinates coincides with the
center of stiffness of the vehicle located in the plane of
fixing four elastic supports to the vehicle. In the plane, the
points of fixation of the supports 1, 2, 3, and 4 are situated.
All these points are situated in the same distance from the
point of origin of coordinates O, and are symmetrical in

respect of it (their positions are defined by the distances /
and /,, respectively). The other (immovable) system of
coordinates O, X, Y, Z , upon the rest of the vehicle when

it is affected by the force of gravity only coincides with the
system O, X,,Y,,Z,, (in such a state, both systems of
coordinates are shown in Fig. 2). It is conditionally sup-
posed that the velocity of the vehicle’s movement equals to
zero and the uneven road is “moving” with its velocity v .

It is considered that vibrations of the vehicle in respect of
the system of coordinates O, X,Y,Z are small. During

the vibrations, it rotates by small angles ¢, ¢, about the

axes passing the point O, and parallel to the axes X and Y ;
in addition, it moves in vertical direction to the distance z
along the axis of coordinates Z. For simplifications of the
example, the shifts along the axes X, Y and rotation about
the axis Z are neglected. It is considered that coordinates of
the center S of the mass of the vehicle in the system of
coordinates O,, X,Y,Z, are x_,y,,z . On simulation of
the wheels and units of their suspensions, all four elastic
supports of the vehicle are considered alike (their coeffi-
cients of stiffness and resistance are k and /4, respectively).
It was supposed that vibrations of the vehicle are excited in
a kinematic way by the road’s inequalities z,(¢), z,(¢), z, (¢)
and z,(¢) that are known functions of time ¢ (kinematic
excitation). In addition, excitation of vibrations of the ve-
hicle by the forces and moments of forces that impact the
engine is assessed as well; after reduction to the origin of
coordinates of the system O,, X, Y,, Z,, the said forces and

moments of forces are expressed by the vertical force
P.(t) and the moments M (f) and M y(t) of rotational

forces. The mass of the vehicle is m, its moments of inertia
about the axes X, Y, are J,J,, respectively, and its

combined moment of inertia is J, , (no other moments of

inertia exist in the case under discussion).

Thus, the dynamic model discussed upon in the
example has three degrees of freedom and its movement is
defined by the principal generalized coordinates,, ¢, z .

The following specific values of the parameters of the dy-
namic model presented in the example were accepted:

m=5000kg; J, =3600kgm®; J =6000kgm’;
J,, =600kgm?; /,=135m; [,=0.85m;
k=80000 N/m; h=1920Ns/m; x,=02m;
y,=0.05m.
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Fig. 2 The dynamic model of a vehicle moving on an uneven road

Kinetic energy of the machine according to [18]
without auxiliary coordinates

T= %{mz'z +J @ +J @ -2], .0, +

v2mz(x,0, - 1.0, (12)

For the simplification of the initial expression of
potential energy /7 and dissipation function @ , auxiliary
coordinates are introduced. Let’s suppose that on vibra-
tions of the vehicle, the elastic elements used for simula-
tion of the wheels and their suspensions are deformed by
the values ¢, 0,, 0;, 0, that are considered auxiliary gen-

eralized coordinates. So, potential energy

n=§(55+5;+§;+5f) (13)

The auxiliary coordinates are expressed by the
principal ones using the Eq. (3)

6, =z-Lo —lLop, -z 6,=z-Lo +lp, -2z,
(14)
S, =z+1Lp, _11% —2,0,=2z+L,p, +l1¢’y -z,

After insertion of the values of the auxiliary coor-
dinates &, in the Eq. (13), potential energy expressed by

principal coordinates only is found

2

i zg[(z—lzq)x Lo, —Z])z +(z—12(px +ho, —22) +
+(z+lzgox ~lp, —23)2 +<z+12gox +Lp, —24)2] (15)

The expression of dissipative function is found in
an analogous way

¢:§@+x+g+x%
2

:g[(2_12¢x _ll¢}’ _Z'l)z + (2'_12¢x +ll¢y _22) +

(240, ~1g, -2, F +(E+Lg, +1g, —2'4)2] (16)
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Fig. 3 Structural diagram of the dynamic model of the ex-
ample

The generalized outside forces

F=P(0); F,=M(0); F=M,() (17)
Then, using Lagrange Eq. (1), the equations of the
vehicle’s movement in principal generalized coordinates
@., ¢, z (there are no auxiliary coordinates in the exam-

ple under discussion) are generated. The expressions of
T,11,® Egs. (12), (15) and (16) included in the Eq. (1)
are differentiated and if the generalized outside forces
Eq. (17) are known, the differential equations of the vehi-
cle’s vibrations are found; from the latter, Eq. (11) type are
obtained



where

H, (t)=lz(hp+k)(zl+zz—23—z4)
H, (t) =1 (hp+k) (z1 —2,+2z, —24)
H, (t) =(hp+k) (z1 +2z,+z, +Z4)

d, = J.p* +4hL p+ 4kl

d,, = Jyp2 +4hl} p+ 4kl (19)
dy, =mp® +4hp + 4k
di,=dy, = _Jx,ypz
d},l = d1,3 = _myxpz

dy,=d,; = mx‘ypz

The structural diagram shown in the Fig. 3 is
formed on the base of the solutions of (18) and the typical
structural diagram (Fig. 1).

4. Computerized realization of the proposed
methodology

The application of the computerized methodology
of computation of Eq. (11) type equations describing me-
chanical dynamic systems and the parameters of Simulink—
model formed on their base in literal and digital form can
be divided to the following phases.

1. Familiarization with the system, formation of
its dynamic model, computation of the values of its pa-
rameters, choosing the principal generalized coordinates,
choosing the auxiliary generalized coordinates (if they are
used) generation of their Egs. (3) and (4) in the principal
generalized coordinates, generation of expressions of ki-
netic energy 7, potential energy /7 and dissipative function
@ included in the Eq. 1), formation of expressions of the
generalized outside forces F;, kinematic excitations N,

e

and u,, that affect the system. All materials are developed

by the investigator.

2. Entering the initial data in to a computer. The
data to be entered: data names; control matrix K; names of
auxiliary coordinates Eqs. (3) and, (4), if they are used, and
their time ¢ derivatives; analytic expressions of the func-
tions T, 11, @, numerical values of the parameters of the
dynamic model.

First of all, data names are entered. They are writ-
ten in lines; each line starts from the word ,,syms®“. The
order of entering is chosen freely. The entered data names
are distributed in a line, for example, as follows.

In the first line, all principal generalized coordi-
nates x,, X,, ..., X,, , the kinematic excitations u,, (if they

are used) in the expressions of 7, /1, @ and nonstationary
members y, included in the expressions of the auxiliary

coordinates Eq. (3) are listed.

In the second line, the derivatives of all values
listed in the first line are provided; they are marked with
the letter D before any of such value, for example, Dz, Dx
and so on.

In the third line, the names of all parameters in-
cluded in the dynamic model of the system under discus-
sion (all constants included in the expressions of the func-
tions 7, 11, @, the connection Eq. (3), kinematic and out-
side excitations and generalized forces) are provided.
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In the fourth line, the names of generalized out-
side forces F(¢), the differentiation operator p, and time ¢
included in the equation (1) are provided.

For the example under discussion, the data names
are written as follows

syms phix phiy Z z1 z2 z3 z4 %
syms Dphix Dphiy DZ Dzl Dz2 Dz3 Dz4
syms mJIx Jy Jxy xs ys 11 12 k h
syms Mx My Pz p t (20)

The control matrix K 1s entered in four lines. Each
line should include the same number of elements.
In the first line, the names of the principal gener-

alized coordinates X;, X,, ..., X,,, kinematic excitations

b m?°
and nonstationary members are entered in any order.

In the second line, time ¢ derivatives of all the
values listed in the first line are provided; they are marked
with the letter D before any of such value. Under the name
of each value listed in the first line, the name of its deriva-
tive should be specified in the second line, i.e. the name of
a value mentioned in the first line and the name of its de-
rivative should be in the same column of the matrix K.

In the third line, names of the generalized outside
forces F(f) acting along the generalized coordinates x; shall
be written. The said names shall be written in those col-
umns with coordinate’s x; of the matrix K that correspond
to the directions of acting of the forces. Other elements of
the third line are equal to zero.

In the fourth line, it is specified that the functions
T, I1, @ included in Lagrange equations (1) should be dif-

ferentiated according to the coordinates X, X,, ..., X, and

their derivatives. In the elements of the line situated in the
columns of the names of the mentioned coordinates and
their derivatives, any positive whole numbers, such as 1, is
written. Other elements of the line are equal to zero.

For the example under discussion:

K=[ phix phiy Z z1 z2 z3 z4
Dphix Dphiy DZ Dzl Dz2 Dz3 Dz4

Mx My Pz O 0 0 0

1 1 1 0 0 0 01] 21

After the matrix K, the analytic (literal) expres-
sions of auxiliary coordinates &, and their derivatives 5 ;

are entered.

They are entered in lines according to the order
specified in the Egs. (3) and (4).

For the example under discussion

deltal=Z-11*phiy-12*phix;
Ddeltal=DZ-11*Dphiy-12*Dphix;
delta2=Z+11*phiy-12*phix;
Ddelta2=DZ+11*Dphiy-12*Dphix;
delta3=Z-11*phiy+12*phix;
Ddelta3=DZ-11*Dphiy+12*Dphix;
delta4=Z+11*phiy+12*phix;
Ddeltad4=DZ+11*Dphiy+12*Dphix; (22)

Then the analytic expressions of the functions 7,
11, @ are entered (on entering, they are marked as TM, PM,
FM, respectively). They consist of the sum of the sum-



monds of the line [1]. The summonds of each of said func-
tions with the auxiliary coordinates (when they are used)
are entered as summarized elements of the column of the
vector.

For the example under discussion

T™M=[
m*DZ/2
JIx*Dphix”"2
Jy*Dphiy”2
-JIxy*Dphix*Dphiy*2
m*DZ*2* (xs*Dphiy-ys*Dphix)
172
PM=k/2*[
deltal-z1
delta2-z2
delta3-z3
delta4-z4
1.72
FM=h/2*[
Ddeltal-Dz1
Ddelta2-Dz2
Ddelta3-Dz3
Ddelta4-Dz4
1.72 (23)
Then the original program ,,Functions® is called.
Functions

Then the numeral values of the parameters of the
dynamic model are entered. For the example under discus-
sion

m=5000
JIx=3600
Jy=6000
Jxy=600
xs=0.2
ys=0.05
11=1.35 %m
12=0.85 %m
k=80000 %N/m
h=1920 %N s/m

%kg
%kg -
%kg -
%kg -

m2
m2
m2
%m
%m

(24)

The Program Functions carries out the following
actions: develops the analytic (literal) expressions of the
functions 7, 11, @ (2) without auxiliary coordinates; differ-

entiates them according to coordinates X;, according their

derivatives X; and time ¢ (Eq. (1)); transforms them into
the operator form and solves in respect of the coordinates
X, , i.e. generates the Eq. (11); forms the matrices Mark,

Den and Denc (Table) with all the data required for forma-
tion of the structural diagram and Simulink-model of the
system.

In the matrix Den, the specific analytic (literal)
expressions of the coefficientsd, ;,d,,, g, in the parame-

ters of the dynamic model of the system under discussion
are provided, and in the matrix Denc their numeral values
are provided. The matrix Mark shows the order of disloca-
tions of the values in the matrices Den and Denc (each line
of the matrix Mark corresponds to the lines of the matrices
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with the same series number). Let’s analyze structure of
these matrices.

The four-column matrix Mark consists of n
groups of lines. Each i-th group of lines (i = 1, 2, ..., n)
conforms to the x; —th generalized coordinate in respect of
which the i-th Eq. (11) is solved. The number of lines of a
group is 7, =1+ k, +u, ; where k; — the number of the coor-

dinates X, in the right part of the i — th Eq.(11),

(1< k; <m—1), u; — the total number of generalized output

forces F; and kinematic excitations N;, in the same
Eq. (11) (0<u, <v, +1). The total number of all lines of

the matrix Mark is: w =1 +...+r,. Groups of the lines are

situated in this matrix in the same order as the coordinates
x; in the first line of the matrix X, i.e. the group of lines
that corresponds to the coordinate x; is in the beginning of
the matrix, then the group of lines that corresponds to the
coordinate x, follows and so on.

The first element of a line of any group of lines is
the number of the line in the matrix (the lines are num-
bered consecutively starting from the number 1 and ending
by the number ). Other three elements of the line depend
on the group the line belongs to and on its place in the
group.

Let’s suppose that we have the i-th group of lines.
All third elements of this group of lines (the third column
of the group) are the serial number of the coordinate x; in
the matrix K, i.e. the number ,,i“ (i =1, 2, ..., n ). The sec-
ond element of the first line of the group is the name of the
coordinate x; and the fourth element is symbolic inscription
»den showing that the line with such inscription is to be
used as a denominator of the coordinate x;.

The other lines of the group are usable for mark-
ing the names of the values included in the numerator of
the right part of the Eq. (11). The fourth element of all
these lines is the symbol ,num“ showing that the value
mentioned in the line is in the numerator of the right part
of the Eq. (11). The second element of the second line of
the group is the name of the generalized force F. Starting
from the third line, total k; lines are used for the names of
the coordinates included in the right part of the i-th
Eq. (11). The second elements of all said lines are names
of coordinates; the lines that correspond to the said coordi-
nates are situated in the same order as the names of the
said coordinates in the matrix K. The lines of the last, i.e. i-

th group (the number of them is v, - Eq. (9)) are used for

listing the kinematic excitations N;, that impact the system.
Their names are the second elements of the said lines.

In matrix Den, the analytic (literal) expressions of
the coefficients d, ;, d, ,, g, are provided; their dislocation

in this matrix is coordinated with dislocation of the ele-
ments of the second column of the matrix Mark. The said
coefficients are polynomials of the second degree in re-
spect of the operator p according to the Egs. (7), (8) and
(10) and are described by the following matrices lines

d; = [a,.,j b,; ci,j]
d;=la,; b, c; (25)
gi,e = [ai,e ’71’,6 é:i,e]

Three-column and y -line matrix Den consists of
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the lines (25); they are supplemented by the lines
fi=lo o 1] (26)

for description the individual coefficients at forces F; in

the Eq. (11); their analytic expressions are developed by
the investigator. The elements q,;,..., &, of the lines
Eq. (25) in the matrix Den are provided in the analytic (lit-

eral) form expressed in the parameters of dynamical model
of the system.

Table
The elements of the matrices Mark, Den and Denc found on solving the example
Mark Den Denc
[ 1, phix, 1,den] | [ Jx, 4*h*12"2, 4*k*12"2] | 3.6000e+003  5.5488e+003  2.3120e+005
[ 2, Mx, 1, num] [ O, 0, 1] 0 0 1
[ 3, phiy, 1, num] [ Jxy, 0, 0] | 6.0000e+002 0 0
[4,Z,1, num] [ m*ys, 0, 0] | 2.5000e+002 0 0
[ 5,21, 1, num] [ 0, -h*12, -k*12] 0 -1.6320e+003 -6.8000e+004
[ 6,22, 1, num] [ 0, -h*12, -k*12] 0 -1.6320e+003 -6.8000e+004
[ 7,23, 1, num] [ 0, h*I2, k*12] 0 1.6320e+003  6.8000e+004
[ 8,74, 1, num] [ 0, h*I2, k*12] 0 1.6320e+003  6.8000e+004
[ 9, phiy, 2,den] | [ Jy, 4*h*11"2, 4*k*11"2] | 6.0000e+003 1.3997¢ +004  5.8320e+005
[ 10, My, 2, num] [ O, 0, 1] 0 0 1
[ 11, phix, 2, num] [ Jxy, 0, 0] | 6.0000e+002 0 0
[ 12,7, 2, num] [ -m*xs, 0, 0] | -1.0000e+003 0 0
[ 13, z1, 2, num] [ 0, -h*Il1, -k*11] 0 -2.5920e+003 -1.0800e+005
[ 14, z2, 2, num] [ 0, h*Il, k*I1] 0 2.5920e+003  1.0800e+005
[ 15, 23, 2, num] [ 0, -h*Il, -k*11] 0 -2.5920e+003 -1.0800e+005
[ 16, z4, 2, num] [ 0, h*Il, k*I1] 0 2.5920e+003  1.0800e+005
[17,Z,3, den] [ m, 4*h, 4*k]| 5.0000e+003 7.6800e+003  3.2000e+005
[ 18, P3, 3, num] [ O, 0, 1] 0 0 1
[ 19, phix, 3, num] [ m*ys, 0, 0] | 2.5000e+002 0 0
[ 20, phiy, 3, num] [ -m*xs, 0, 0] | -1.0000e+003 0 0
[ 21, z1, 3, num] [ O, h, k] 0 1.9200e+003  8.0000e+004
[ 22, z2, 3, num] [ O, h, k] 0 1.9200e+003  8.0000e+004
[ 23, Z3, 3, num] [ O, h, k] 0 1.9200e+003  8.0000e+004
[ 24, z4, 3, num] [ O, h, k] 0 1.9200e+003  8.0000e+004

The name of the coordinate x,, force F; or kine-
matic excitation N;, written in the second elements (the
elements of the second column) of lines of the matrix Mark
corresponds to the one of the lines Egs. (25) or (26) of the
matrix Den (that includes one of the said names) dislocated
according to the same order as the lines of the matrix
Mark.

Thus, both the matrix Den and the matrix Mark
consist of n groups of lines. Each group includes 7; lines
and corresponds to one of the coordinates x; (i = 1, ..., n).
The first line of the i-th group of the matrix Mark (its sec-
ond element is the name of the coordinate x;) corresponds
to the line d;; of the same group of the matrix Den. The
second line includes the force F; and it corresponds to the
line f, of the matrix Den. Analogously, one of lines

Eq. (25) of the matrix Den corresponds to relevant other
lines of the i-th group of the matrix Mark.

Matrix Denc differs from matrix Den only by
numeral values of the coefficients a; , 8. provided in

the Eq. (25) instead of their analytic (literal) expressions.
When the data of the matrices Mark, Den, Denc
are available, structural diagram of the system under dis-
cussion is developed in accordance with the instructions of
MATLAB / Simulink set of programs and its simulation is
carried out. In addition, the data provided in the matrices
are sufficient for generation of the equations of the type
Eq. (11) for the systems under discussion that is required

for the application of various other methods of computa-
tion and research.

In addition to the data provided in the Table, pic-
tograms of blocks of transfer functions that present a basis
of the structure of Simulink-model of the object under dis-
cussion are developed.

For convenience of simulation, the Simulink-
model of the whole object is divided to subsystems that
correspond to relevant coordinates x, . In Fig. 4, a, the sub-

system that corresponds to the coordinate ¢, of the exam-

ple (Subsystem 2) is shown.

The name Trans is automatically classified to the
blocks of transfer functions; after it, a fraction follows; the
numerator and the denominator of the fraction specify the
numbers of the lines of the matrices Mark, Den, Denc used
in the block (Table).

Blocks of transfer functions are provided in a
compact form.

The pictogram of block Trans 2/1 in Fig. 4, a is
enlarged to show more clearly the mark Num(s)/Den(s)
(inside its contour) showing that the numerator and the
denominator of the transfer functions are lines of the ma-
trix.

The fraction following the word Trans, for exam-
ple, 2/1 (Fig. 4, a), shows the lines of the matrix Denc
where the values of the coefficients of the numerator and
the denominator of the transfer function are specified.



@E
M den|s

Trans2|1

A A

numys)

dens)

o jpumnis) Trans3[1,
3 Jm -

7 den(s
Trans4|1
-

»E

1 iden(s phix

num{s| Trans5[1

5 e »
22 {
Transg[1

MNumerator coeffidents:

[denc(2,:)]

numys}

)

den{s)

Denominator coeffidents:

[denc(1,:)]

o MU TransT|1
o >

24 idends L
Transg[1 SUM1

a b

Fig. 4 The Simulink-model (a) and the window for enter-
ing the parameters of the block of the transfer func-
tion Trans 2/1 (b) for the equation that corresponds
to the coordinate @, of the example
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Fig. 5 Preparation of the dynamical model of the example
for simulation: a — the whole enlarged Simulink-mo-
del; b — simulated changes of the coordinate z cau-
sed by abrupt changes of the road’s unevenness z,

In Fig. 4, b, the window for entering parameters
of block Trans 2/1 is shown (such entering considerably
reduces the probability of entering wrong coefficients of
the transfer function). In the column ,Numerator coeffi-

cients”, the program shows: [Denc(2,:)]. This means that
all elements of the second line of matrix Denc are used in
the numerator of the transfer function. In the column ,,De-
nominator coefficients”, the program shows: [Denc(1,:)].
This means that all elements of the first line of matrix
Denc are used in the denominator.

The connecting lines of the whole model and its
subsystems in Simulink-models are connected by the in-
vestigator using the graphical editor of Simulink set. The
fully connected system of the example is shown in
Fig. 5, a. The simulated transitional process obtained on an
abrupt change of the road unevenness z, =0.1m is shown

in Fig. 5, b.
5. Conclusions

1. The methodology of investigation of linear sta-
tionary dynamic models of the mechanical part of me-
chanical and mechatronic equipment in the environment
MATLAB/Simulink programs required for computer-aided
generation of structural diagrams (Simulink-models) is
provided.

2. On the base of the analytic (literal) expressions
of kinetic energy, potential energy, dissipation function
and generalized forces included in Lagrange equations of
second type, the literal or numerical expressions of transfer
functions included in the structural diagram are generated
in the computer-aided way.

3.In course of generation of the structural dia-
grams, data of independent value required for the genera-
tion of differential equations of the second degree for the
system under discussion and development of the normal
form of the said equations are obtained.
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V.-K. Augustaitis, V. Gican, N. Sesok, I. Iljin

LYGCIU IR STRUKTURINIU SCHEMU
KOMPIUTERIZUOTAS SUDARYMAS TIESINEMS
STACIONARIOMS MECHANINEMS DINAMINEMS
SISTEMOS MODELIUOTI

Reziumé

Masiny mechaninés dalies dinaminéms sistemoms
tirti, turint i§ sutelktyjuy elementy sudarytus juy dinaminius
modelius, tikslinga taikyti kompiuterini modeliavima nau-
dojant MATLAB/Simulink programas. Norint sudaryti
tokiy sistemy dinaminiy modeliy struktirines schemas
(Simulink-modelius), reikia idéti daug darbo. Straipsnyje
nagrin¢jama linearizuota stacionarioji mechaniné sistema,
kuri gali bati sudétingesnés (netiesinés, nestacionarios)
sistemos dalimi. Pateikta kompiuterizuota metodika tokios
sistemos Simulink-modeliui sukurti. Kompiuteriniu btidu
gaunamos §ig sistema aprasanciy diferencialiniy lygéiy ir |
Simulink-modelj jeinan¢iy perdavimo funkcijy analizinés
(raidinés) ir skaitinés iSraiskos. Simulink-modelis sudary-
tas tokiu budu, kad prie jo nesunkiai galima bty prijungti
sudétingesnés sistemos netiesiniy ir nestacionariyjy mazgy
perdavimo funkcijos. Duotas pavyzdys.

263

V.-K. Augustaitis, V. Gican, N. Sesok, I. Iljin

COMPUTER - AIDED GENERATION OF EQUATIONS
AND STRUCTURAL DIAGRAMS FOR SIMULATION
OF LINEAR STATIONARY MECHANICAL DYNAMIC
SYSTEMS

Summary

There are reasonable to use computer with
MATLAB/Simulink software for modeling of dynamic
systems of machine mechanic components, using lumped-
parameter systems of them. In order to build structural
schematics (Simulink blocks) of these dynamic models,
there is a lot of work. This paper is intended to analyze
linearized stationary mechanical system, which may be a
part of more complex (nonlinear, nonstationary) system.
There are presented methodology to build such Simulink
model in the paper. Here are given analytical expression of
differential equations and transfer functions for Simulink
as well as numerical values. Simulink model is built in
such way, that it is easy to attach necessary transfer func-
tions of nonlinear or/and nonstationary connections. Ex-
ample of such model is provided.

B.-K. Ayrycraiituc, B. ['muan, H. lllemoxk, 1. Unsna

KOMIIBIOTEPU3NPOBAHHOE COCTABJIEHUE
YPABHEHUI U CTPYKTYPHBIX CXEM JIJIA
MOJIEJIMPOBAHW JIMHEMHBIX
CTAIIMOHAPHBIX MEXAHUYECKUX
JUHAMMNYECKNX CUCTEM

Pes3womMme

Jlnist uceaenoBaHusl TUHAMHYECKUX CHUCTEM C CO-
CPEIOTOUCHHBIMHU TapaMeTpaMH 1iejecoo0pa3Ho TpUMe-
HaTh nporpammubiidi naker MATLAB/Simulink. Cocras-
JIEHUE CTPYKTYpHBIX cxeM (Simulink-mMozeneit) Takux cuc-
TeM TpeOyeT Goibioro o0béMa paboT. B crathe paccmar-
pHBaeTCs JIMHEAPU3UPOBaHHAsS CTAIlMOHAPHAS MeXaHHJe-
CKasi CHCTEMa, KOTOpasi MOKET OBITh YacThIO OOJee CI0X-
HOW (HEMMHEWHOW, HecTalMoHapHOW) cucTteMbl. llpex-
CTaBJICHa KOMITBIOTEPU3UPOBAHHAS METOAMKA Ul CO37a-
ausg Simulink-Mozfeny Takoil CUCTEMBI, ¢ IIOMOIILI0 KOTO-
POl moNTy4aroTcsl aHAJMTHYECKHE W YUCIEHHBIE BBIpake-
HUSI JUIS  TIepelaTodyHbix GyHKIMHA Mojenu u muddepeH-
LIUaJbHBIX ypaBHeHMH cucteMbl. Simulink-Moznens co3na-
Ha TakuM 00pa3oM, YTOObI K Hel OBLJIO HECTIOXKHO MpHCOe-
JVHUTDH TiepelaTouHble (QYHKIWUU OoJiee CIIOKHOM cucre-
Mbl. [IpencrapieH mpumep.
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