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1. Introduction 
 

Computer-aided methods of analysis and simula-
tion are widely used for the investigation on dynamic 
properties of mechanic, mechatronic and other equipment 
[1-12].  

In majority of cases, the application of computer-
aided simulation in the environment of MATLAB / Simu-
link programs for such investigation is purposeful [13, 14]. 
For this purpose, the equations for description of the dy-
namic processes of the equipment under investigation, 
hereinafter referred to as the dynamic system or shortly 
system, and the structural diagram of the system formed on 
the base of the said equations according to the dynamic 
model of the system with discrete elements (widely used 
for examination of automatic control systems) should be 
available. Such a diagram formed according to the re-
quirements of MATLAB/Simulink program package and 
“understandable” for a computer is referred to as Simulink-
model [13, 14]. There are no substantial differences be-
tween it and the structural diagram: if any of them is avail-
able, the other is easily found on its base.  

When a mechatronic system is examined, its elec-
trical part, such as electric drive, components of sensors 
and so on, usually are provided as already known structural 
diagrams [15]. Cases of formation of structural diagrams of 
the mechanical part of mechanical or mechatronic systems 
appear to be more complicated. Because of the wide vari-
ety of structures of mechanical systems, their structural 
diagrams are not predictable in any specific case, so their 
formation in cases of complicated systems requires consi-
derable attempts and errors are hardly avoidable if the 
process is not computerized.  

The purpose of the paper is provision of a meth-
odology of the application of MATLAB/Simulink program 
package to the available linearized mechanical system (or 
is a part of more complicated system) for computer-aided 
generation of equations describing movement of the sys-
tem using Lagrange equations of the second type, trans-
formation of the generated equations into the convenient 
structural diagram of the said system and Simulink-model, 
formation of literal and digital analytic expressions of 
transfer functions included in them.  

Software package MATLAB Simulink program is 
not directly intended for creation of the said model. How-
ever, there are enough resources to solve this problem, 
which is devoted to this work.  

The obtained structural diagram can be easily in-
tegrated in a structural diagram and Simulink-model of a 

more complicated system. In addition, the generated equa-
tions of the system are of independent value as well. 
 
2. Generation of the equations 
 

The equations describing movement of the linear 
mechanical dynamic system with lumped parameters re-
quired for the formation of structural diagram of the sys-
tem are obtained from Lagrange equations of the second 
type 
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where Π,T  are kinetic and potential energy of the system, 
respectively; Φ  dissipation function;  i-th generalized 
Lagrangian coordinate, shortly referred to as the coordi-
nate, and its time (t) derivative;  the generalized out-
side force acting along the coordinate . 
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ix
It can be stated that each of coordinates corre-

sponds to one equation of (1). In traditional case, the equa-
tion (1) include n generalized coordinates x

ix

i; their number 
n equals to the number m of degrees of freedom of the sys-
tem (n = m) when a structural diagram for of self-
contained mechanical system is generated of transformed 
Eq. (1). However, on generation of structural diagrams in 
more common case when the stationary linear mechanical 
system under discussion is a part (component) of a larger 
mechanical system with nonlinear or nonstationary com-
ponents, a mechatronic system and so on, it can be m > n, 
i.e. we’ll have n equations with m coordinates included in 
them and the structural diagram for such a system. Herein-
after, we’ll mark such coordinates by xs (s = 1, ..., i, ..., m). 
In such a case, the Eq. (2) will include k = m – n redundant 
coordinates. For the simulation of a system described by 
equations with redundant coordinates, the values of such 
redundant coordinates are set or found from the “rejected” 
part of the system by connecting its structural diagram to 
the structural diagram of the mechanical part under discus-
sion.  

It is notable that in both cases, i.e. when m = n 
and when m > n, the methodology of formation of struc-
tural diagrams and Simulink-models remains the same. 
Incorporating of auxiliary coordinates in the model let us 
assume analyzed system as a part of another more complex 
system, which may have nonlinear and nonstationary ele-
ments, electrical elements and so on. 
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In the case under discussion, kinetic energy T is a 
function of derivatives of coordinates  and (more rarely) 
a function of the coordinates  themselves; potential en-

ergy  is a function of coordinates , and dissipation 
function Ф – a function of derivatives . In addition, the 
expressions of 

sx

sx

Π sx
sx

ΦΠΤ ,,  can be direct functions of time t, 
when, for example, known kinematic excitations ( )tu z,i   
(z = 1, 2, …, d) are included in the said expressions 

( ) ( ) (, , ; , ; ,T T x x t x t x tΠ Π Φ Φ= = = )      (2) 

where ; are the totalities 
of coordinates and their derivatives . 

mx,...,x,xx 21= mx,...,x,xx 21=

sx sx
In many cases [16, 17], striving to facilitate the 

generation of analytic expressions of the functions 
ΦΠΤ ,,  for complicated systems, it is purposeful to use 

not only the generalized coordinates included in the 
Eq. (1), hereinafter referred to as the principal generalized 
coordinates, or shortly – to as the principal coordinates, 
but also auxiliary coordinates 

sx

jδ . They should be chosen 
in accordance with the below condition, i.e. they should be 
expressed unambiguously by the principal coordinates 

according to linear dependence in the following equa-
tions of connection 

sx

( )tx...xx jmm,j,j,jj γαααδ ++++= 2211      (3) 

( )tx...xx jmm,j,j,jj γαααδ ++++= 2211      (4) 

( )  l,...,,j 21=

where m,j,j ...,, αα 1  are constant coefficients formed of the 
parameters of the system’s dynamic model; ( )tγ  non-
stationary members being predictable functions of time t (a 
part of the said coefficients or all nonstationary members 
or any part of them can be equal to zero).  

When the auxiliary coordinates l...,,, δδδδ 21=  
are applied, we obtain the following expression instead of 
Eq. (2) 
 

( ) ( ), , , , ; , ,T T x x t x tδ δ Φ Φ δ= =  

( )t,,x δΠΠ =   (5) 
 

Before differentiation of the functions ΦΠ ,,T  
included in the Eq. (1), the auxiliary coordinates and their 
derivatives should be eliminated by using the Eqs. (3) and 
(4), i.e. ΦΠ ,,T  should be provided the expressions 
analogous to Eq. (2). 

If the auxiliary coordinates are properly chosen 
according to the Eq. (3), the analytic Eq. (5) of the func-
tions ΦΠ ,,T  developed by the investigator will be con-
siderably simpler, as compared to Eq. (2). Then elimina-
tion of the auxiliary coordinates and their derivatives as 
well as differentiation of the functions Eq. (2) shall be car-
ried out in a computer-aided way. 

When the final Eq. (2) of the functions 

F,,,T ΦΠ  after differentiation and other relevant proce-
dures are available, linear differential equations with con-
stant coefficients of a degree not higher than second (in 
some cases, linear algebraic equations) are obtained for 
description of the dynamic model of the system under dis-
cussion. As it was mentioned, each i-th generalized coor-
dinate  corresponds to i-th equation from the Eq. (1). 
After introducing the differentiation operator

ix
p d dt≡ , the 

equation will be transformed as follows: 
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where 
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polynomials of the second degree in respect of p; a ,b, c 
with relevant indexes − constant coefficients (any of them 
can be equal to zero); Fi(t) – the generalized outside force 
acting along the xi – th generalized coordinate; Hi(t) is the 
component of the generalized force acting along the xi – th 
generalized coordinate obtained on differentiation of the 
functions ΦΠ ,,T  in the cases of their direct dependence 
on time t (for example, when the equations (3) and (4) in-
clude nonstationary members jγ  and jγ );  are 
principal generalized coordinates (each of them corre-
sponds to one of the  equations (1)), and;   are 
redundant generalized coordinates when they are used. It is 
accepted that 

nxx ...,,1

mn xx ...,,1+
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where e,ie,ie,i ,, ξηα are constant coefficients; ( )tN e,i  is the 
known functions of time t, i.e. the nonstationary members 

)(tjγ included in the Eq. (3) or kinematic excitations 
( )tu z,i  included in the ΦΠ ,,T  Eqs. (2) and (5) but not 

assessed in the Eq. (3). 
The expressions of the generalized forces Fi(t) are 

developed by the investigator, so they are not discussed in 
details herein.  

For the formation of structural diagram, each 
Eq. (6) is solved in respect of the coordinate xi included in 
it 
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( ) ( ) ( ), 1 1 , 1 1 ,... ...i i i i i i i n nd p x d p x d p x− − + +− − − − −  

( ) (, 1 1 ,... ]i n n i m md p x d p x+ +− − − )  
( )n...,,,i 21=       (11) 
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According to the equations (11), the structural 
diagrams corresponding to them are formed; they are con-
nected into the complete typical structural diagram of the 
whole system shown in Fig. 1 and on the base of the latter, 
Simulink-model for simulation of the system is developed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 The typical structural diagram of the system under 

discussion formed on the base of the Eq. (11) 
 
3. The example 
 

Let’s suppose that low frequency vibrations of a 
vehicle moving on an uneven road are examined (Fig. 2). 
The vehicle is considered as absolutely solid body standing 
on elastic supports with damping; the supports simulate 
units of its wheels. The masses of the wheels and the sus-
pension are neglected. For generation of equations for de-

scribing movement of the vehicle, two systems of coordi-
nates are chosen. One of them, i.e. the system 

 is fixedly connected to the vehicle and 
moves together with it. The point of the origin of coordi-
nates of the said system of coordinates coincides with the 
center of stiffness of the vehicle located in the plane of 
fixing four elastic supports to the vehicle. In the plane, the 
points of fixation of the supports 1, 2, 3, and 4 are situated. 
All these points are situated in the same distance from the 
point of origin of coordinates  and are symmetrical in 
respect of it (their positions are defined by the distances  
and , respectively). The other (immovable) system of 
coordinates , upon the rest of the vehicle when 
it is affected by the force of gravity only coincides with the 
system  (in such a state, both systems of 
coordinates are shown in Fig. 2). It is conditionally sup-
posed that the velocity of the vehicle’s movement equals to 
zero and the uneven road is “moving” with its velocity 
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It is considered that vibrations of the vehicle in respect of 
the system of coordinates  are small. During 
the vibrations, it rotates by small angles 

Z,Y,X,O

yx ,ϕϕ  about the 
axes passing the point  and parallel to the axes X and Y ; 
in addition, it moves in vertical direction to the distance z 
along the axis of coordinates Z. For simplifications of the 
example, the shifts along the axes X, Y and rotation about 
the axis Z are neglected. It is considered that coordinates of 
the center S of the mass of the vehicle in the system of 
coordinates  are . On simulation of 
the wheels and units of their suspensions, all four elastic 
supports of the vehicle are considered alike (their coeffi-
cients of stiffness and resistance are k and h, respectively). 
It was supposed that vibrations of the vehicle are excited in 
a kinematic way by the road’s inequalities 

1O

1111 Z,Y,X,O sss z,y,x

( ) ( ) ( )tz,tz,tz 321  
and ( )tz4  that are known functions of time t (kinematic 
excitation). In addition, excitation of vibrations of the ve-
hicle by the forces and moments of forces that impact the 
engine is assessed as well; after reduction to the origin of 
coordinates of the system  the said forces and 
moments of forces are expressed by the vertical force 

1 1 1 1, , ,O X Y Z ,

( )tPz  and the moments  and  of rotational 
forces. The mass of the vehicle is m, its moments of inertia 
about the axes  are , respectively, and its 
combined moment of inertia is   (no other moments of 
inertia exist in the case under discussion).  

( )tM x ( )tM y

11 Y,X yx J,J

y,xJ

Thus, the dynamic model discussed upon in the 
example has three degrees of freedom and its movement is 
defined by the principal generalized coordinates z,, yx ϕϕ . 
The following specific values of the parameters of the dy-
namic model presented in the example were accepted: 

5000 kgm = ;  ;  ; 

;  

23600 kg mxJ = 26000 kg myJ =
2

, 600kg mx yJ = 1 1.35ml = ;  ; 2 0.85ml =

80000 N/mk = ;  1920 N s/mh = ;  ; 0.2 msx =

0.05msy = . 
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Fig. 2 The dynamic model of a vehicle moving on an uneven road 

 
Kinetic energy of the machine according to [18] 

without auxiliary coordinates 
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( )}2 s y s xmz x yϕ ϕ+ −    (12) 

 
For the simplification of the initial expression of 

potential energy  and dissipation function Π Φ , auxiliary 
coordinates are introduced. Let’s suppose that on vibra-
tions of the vehicle, the elastic elements used for simula-
tion of the wheels and their suspensions are deformed by 
the values 4321 δδδδ ,,,  that are considered auxiliary gen-
eralized coordinates. So, potential energy 
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The auxiliary coordinates are expressed by the 

principal ones using the Eq. (3) 
 

⎭
⎬
⎫

−++≅−−+≅
−+−≅−−−≅

41243123

2122121

zllz;zllz
zllz;zllz

yxyx

yxyx

ϕϕδϕϕδ
ϕϕδϕϕδ

 (14) 

 
After insertion of the values of the auxiliary coor-

dinates jδ  in the Eq. (13), potential energy expressed by 
principal coordinates only is found 
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The expression of dissipative function is found in 
an analogous way 
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Fig. 3 Structural diagram of the dynamic model of the ex-

ample 
 
The generalized outside forces 
 

( )tPF z=1 ; ( )tMF x=2 ;    (17) ( )tMF y=3

 
Then, using Lagrange Eq. (1), the equations of the 

vehicle’s movement in principal generalized coordinates 
z,, yx ϕϕ  (there are no auxiliary coordinates in the exam-

ple under discussion) are generated. The expressions of 
ΦΠΤ ,,  Eqs. (12), (15) and (16) included in the Eq. (1) 

are differentiated and if the generalized outside forces 
Eq. (17) are known, the differential equations of the vehi-
cle’s vibrations are found; from the latter, Eq. (11) type are 
obtained 
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where  
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The structural diagram shown in the Fig. 3 is 

formed on the base of the solutions of (18) and the typical 
structural diagram (Fig. 1). 
 
4. Computerized realization of the proposed  

methodology 
 

The application of the computerized methodology 
of computation of Eq. (11) type equations describing me-
chanical dynamic systems and the parameters of Simulink–
model formed on their base in literal and digital form can 
be divided to the following phases. 

1. Familiarization with the system, formation of 
its dynamic model, computation of the values of its pa-
rameters, choosing the principal generalized coordinates, 
choosing the auxiliary generalized coordinates (if they are 
used) generation of their Eqs. (3) and (4) in the principal 
generalized coordinates, generation of expressions of ki-
netic energy T, potential energy П and dissipative function 
Ф included in the Eq. 1), formation of expressions of the 
generalized outside forces Fi, kinematic excitations  
and  that affect the system. All materials are developed 
by the investigator. 

e,iN

z,iu

2. Entering the initial data in to a computer. The 
data to be entered: data names; control matrix K; names of 
auxiliary coordinates Eqs. (3) and, (4), if they are used, and 
their time t derivatives; analytic expressions of the func-
tions Т, П, Ф, numerical values of the parameters of the 
dynamic model.  

First of all, data names are entered. They are writ-
ten in lines; each line starts from the word „syms“. The 
order of entering is chosen freely. The entered data names 
are distributed in a line, for example, as follows. 

In the first line, all principal generalized coordi-
nates , the kinematic excitations  (if they 
are used) in the expressions of Т, П, Ф and nonstationary 
members 

mx...,,x,x 21 z,iu

jγ  included in the expressions of the auxiliary 
coordinates Eq. (3) are listed. 

In the second line, the derivatives of all values 
listed in the first line are provided; they are marked with 
the letter D before any of such value, for example, Dz, Dx 
and so on. 

In the third line, the names of all parameters in-
cluded in the dynamic model of the system under discus-
sion (all constants included in the expressions of the func-
tions Т, П, Ф, the connection Eq. (3), kinematic and out-
side excitations and generalized forces) are provided. 

In the fourth line, the names of generalized out-
side forces Fi(t), the differentiation operator p, and time t 
included in the equation (1) are provided. 

For the example under discussion, the data names 
are written as follows 

 
syms  phix phiy Z   z1 z2 z3 z4 %   
syms Dphix Dphiy DZ Dz1 Dz2 Dz3 Dz4  
syms  m Jx Jy Jxy  xs ys l1 l2  k h  
syms Mx My Pz p t      (20) 

 
The control matrix K is entered in four lines. Each 

line should include the same number of elements. 
In the first line, the names of the principal gener-

alized coordinates , kinematic excitations 
and nonstationary members are entered in any order. 

mxxx ...,,, 21

In the second line, time t derivatives of all the 
values listed in the first line are provided; they are marked 
with the letter D before any of such value. Under the name 
of each value listed in the first line, the name of its deriva-
tive should be specified in the second line, i.e. the name of 
a value mentioned in the first line and the name of its de-
rivative should be in the same column of the matrix K. 

In the third line, names of the generalized outside 
forces Fi(t) acting along the generalized coordinates xi shall 
be written. The said names shall be written in those col-
umns with coordinate’s xi of the matrix K that correspond 
to the directions of acting of the forces. Other elements of 
the third line are equal to zero.  

In the fourth line, it is specified that the functions 
Т, П, Ф included in Lagrange equations (1) should be dif-
ferentiated according to the coordinates  and 
their derivatives. In the elements of the line situated in the 
columns of the names of the mentioned coordinates and 
their derivatives, any positive whole numbers, such as 1, is 
written. Other elements of the line are equal to zero. 

nxxx ...,,, 21

For the example under discussion: 
 

K=[ phix  phiy  Z  z1  z2  z3  z4 
Dphix Dphiy DZ Dz1 Dz2 Dz3 Dz4   
Mx    My    Pz 0   0   0   0  
1     1     1  0   0   0   0 ]      (21) 

 
After the matrix K, the analytic (literal) expres-

sions of auxiliary coordinates jδ  and their derivatives jδ  
are entered. 

They are entered in lines according to the order 
specified in the Eqs. (3) and (4). 

For the example under discussion 
 

delta1=Z-l1*phiy-l2*phix; 
Ddelta1=DZ-l1*Dphiy-l2*Dphix; 
delta2=Z+l1*phiy-l2*phix; 
Ddelta2=DZ+l1*Dphiy-l2*Dphix;  
delta3=Z-l1*phiy+l2*phix; 
Ddelta3=DZ-l1*Dphiy+l2*Dphix; 
delta4=Z+l1*phiy+l2*phix; 
Ddelta4=DZ+l1*Dphiy+l2*Dphix;   (22) 

 
Then the analytic expressions of the functions Т, 

П, Ф are entered (on entering, they are marked as TM, PM, 
FM, respectively). They consist of the sum of the sum-
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monds of the line [1]. The summonds of each of said func-
tions with the auxiliary coordinates (when they are used) 
are entered as summarized elements of the column of the 
vector. 

For the example under discussion 
 

 TM=[  
    m*DZ^2 
    Jx*Dphix^2  
    Jy*Dphiy^2 
    -Jxy*Dphix*Dphiy*2 
    m*DZ*2*(xs*Dphiy-ys*Dphix) 
]/2 
 PM=k/2*[  
     delta1-z1 
     delta2-z2 
     delta3-z3 
     delta4-z4 
     ].^2 
 FM=h/2*[  
Ddelta1-Dz1 
      Ddelta2-Dz2 
      Ddelta3-Dz3 
      Ddelta4-Dz4 
].^2       (23) 

 
Then the original program „Functions“ is called. 

 
 Functions 

 
Then the numeral values of the parameters of the 

dynamic model are entered. For the example under discus-
sion 
 

m=5000  %kg  
Jx=3600 %kg.m2 
Jy=6000 %kg.m2 
Jxy=600 %kg.m2           
 xs=0.2     %m                                   
 ys=0.05    %m 
 l1=1.35    %m 
 l2=0.85    %m 
 k=80000 %N/m 
  h=1920 %N s/m                                (24) 

 
The Program Functions carries out the following 

actions: develops the analytic (literal) expressions of the 
functions Т, П, Ф (2) without auxiliary coordinates; differ-
entiates them according to coordinates , according their 

derivatives  and time t (Eq. (1)); transforms them into 
the operator form and solves in respect of the coordinates 

, i.e. generates the Eq. (11); forms the matrices Mark, 
Den and Denc (Table) with all the data required for forma-
tion of the structural diagram and Simulink-model of the 
system. 

ix

ix

ix

In the matrix Den, the specific analytic (literal) 
expressions of the coefficients ,  in the parame-
ters of the dynamic model of the system under discussion 
are provided, and in the matrix Denc their numeral values 
are provided. The matrix Mark shows the order of disloca-
tions of the values in the matrices Den and Denc (each line 
of the matrix Mark corresponds to the lines of the matrices 

with the same series number). Let’s analyze structure of 
these matrices. 

i,ij,i d,d e,ig

The four-column matrix Mark consists of n 
groups of lines. Each i-th group of lines (i = 1, 2, ..., n) 
conforms to the xi –th generalized coordinate in respect of 
which the i-th Eq. (11) is solved. The number of lines of a 
group is iii ukr ++=1 ; where ki – the number of the coor-

dinates  in the right part of the i – th Eq. (11), 
( ), u

sx
11 −≤≤ mki i – the total number of generalized output 

forces Fi and kinematic excitations Ni,e  in the same 
Eq. (11) ( 10 +≤≤ ii vu ). The total number of all lines of 
the matrix Mark is: nr...r ++= 1ψ . Groups of the lines are 
situated in this matrix in the same order as the coordinates 
xi in the first line of the matrix K, i.e. the group of lines 
that corresponds to the coordinate x1 is in the beginning of 
the matrix, then the group of lines that corresponds to the 
coordinate x2 follows and so on. 

The first element of a line of any group of lines is 
the number of the line in the matrix (the lines are num-
bered consecutively starting from the number 1 and ending 
by the number ψ ). Other three elements of the line depend 
on the group the line belongs to and on its place in the 
group. 

Let’s suppose that we have the i-th group of lines. 
All third elements of this group of lines (the third column 
of the group) are the serial number of the coordinate xi in 
the matrix K, i.e. the number „i“ ( i = 1, 2, ..., n ). The sec-
ond element of the first line of the group is the name of the 
coordinate xi and the fourth element is symbolic inscription 
„den“ showing that the line with such inscription is to be 
used as a denominator of the coordinate xi. 

The other lines of the group are usable for mark-
ing the names of the values included in the numerator of 
the right part of the Eq. (11). The fourth element of all 
these lines is the symbol „num“ showing that the value 
mentioned in the line is in the numerator of the right part 
of the Eq. (11). The second element of the second line of 
the group is the name of the generalized force Fi. Starting 
from the third line, total ki  lines are used for the names of 
the coordinates included in the right part of the i-th 
Eq. (11). The second elements of all said lines are names 
of coordinates; the lines that correspond to the said coordi-
nates are situated in the same order as the names of the 
said coordinates in the matrix K. The lines of the last, i.e. i-
th group (the number of them is  - Eq. (9)) are used for 
listing the kinematic excitations N

iv
i,e that impact the system. 

Their names are the second elements of the said lines. 
In matrix Den, the analytic (literal) expressions of 

the coefficients  are provided; their dislocation 
in this matrix is coordinated with dislocation of the ele-
ments of the second column of the matrix Mark. The said 
coefficients are polynomials of the second degree in re-
spect of the operator p according to the Eqs. (7), (8) and 
(10) and are described by the following matrices lines 

e,ii,ij,i g,d,d

 

[ ]
[ ]
[ ]⎪⎭

⎪
⎬

⎫

=
=
=

e,ie,ie,ie,i

i,ii,ii,ii,i

j,ij,ij,ij,i

g
cbad
cbad

ξηα
   (25) 

 

Three-column and ψ  -line matrix Den consists of 
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the lines (25); they are supplemented by the lines  
 

[ ]100=if    (26) 
 

for description the individual coefficients at forces Fi  in  

the Eq. (11); their analytic expressions are developed by 
the investigator. The elements e,ij,i ,...,a ξ  of the lines 
Eq. (25) in the matrix Den are provided in the analytic (lit-
eral) form expressed in the parameters of dynamical model 
of the system. 

 
Table 

The elements of the matrices Mark, Den and Denc found on solving the example  
 

Mark Den  Denc  
[ 1, phix, 1, den] [    Jx, 4*h*l2^2, 4*k*l2^2] 3.6000e+003 5.5488e+003   2.3120e+005 
[ 2, Mx, 1, num] [     0,        0,        1] 0 0 1 

[ 3, phiy, 1, num] [   Jxy,        0,        0] 6.0000e+002 0 0 
[ 4, Z, 1, num] [  m*ys,        0,        0] 2.5000e+002 0 0 

[ 5, z1, 1, num] [     0,    -h*l2,    -k*l2] 0 -1.6320e+003 -6.8000e+004 
[ 6, z2, 1, num] [     0,    -h*l2,    -k*l2] 0 -1.6320e+003 -6.8000e+004 
[ 7, z3, 1, num] [     0,     h*l2,     k*l2] 0 1.6320e+003 6.8000e+004 
[ 8, z4, 1, num] [     0,     h*l2,     k*l2] 0 1.6320e+003 6.8000e+004 

[ 9, phiy, 2, den] [    Jy, 4*h*l1^2, 4*k*l1^2] 6.0000e+003 1.3997e +004 5.8320e+005 
[ 10, My, 2, num] [     0,        0,        1] 0 0 1 

[ 11, phix, 2, num] [   Jxy,        0,        0] 6.0000e+002 0 0 
[ 12, Z, 2, num] [ -m*xs,        0,        0] -1.0000e+003 0 0 

[ 13, z1, 2, num] [     0,    -h*l1,    -k*l1] 0 -2.5920e+003 -1.0800e+005 
[ 14, z2, 2, num] [     0,     h*l1,     k*l1] 0 2.5920e+003 1.0800e+005 
[ 15, z3, 2, num] [     0,    -h*l1,    -k*l1] 0 -2.5920e+003 -1.0800e+005 
[ 16, z4, 2, num] [     0,     h*l1,     k*l1] 0 2.5920e+003 1.0800e+005 

[ 17, Z, 3, den] [     m,      4*h,      4*k] 5.0000e+003 7.6800e+003   3.2000e+005 
[ 18, P3, 3, num] [     0,        0,        1] 0 0 1 

[ 19, phix, 3, num] [  m*ys,        0,        0] 2.5000e+002 0 0 
[ 20, phiy, 3, num] [ -m*xs,        0,        0] -1.0000e+003 0 0 

[ 21, z1, 3, num] [     0,        h,        k] 0 1.9200e+003   8.0000e+004 
[ 22, z2, 3, num] [     0,        h,        k] 0 1.9200e+003   8.0000e+004 
[ 23, z3, 3, num] [     0,        h,        k] 0 1.9200e+003   8.0000e+004 
[ 24, z4, 3, num] [     0,        h,        k] 0 1.9200e+003   8.0000e+004 

 
The name of the coordinate xs, force Fi or kine-

matic excitation Ni,e written in the second elements (the 
elements of the second column) of lines of the matrix Mark 
corresponds to the one of the lines Eqs. (25) or (26) of the 
matrix Den (that includes one of the said names) dislocated 
according to the same order as the lines of the matrix 
Mark. 

Thus, both the matrix Den and the matrix Mark 
consist of n groups of lines. Each group includes ri lines 
and corresponds to one of the coordinates xi (i = 1, ..., n). 
The first line of the i-th group of the matrix Mark (its sec-
ond element is the name of the coordinate xi) corresponds 
to the line di,i of the same group of the matrix Den. The 
second line includes the force Fi and it corresponds to the 
line  of the matrix Den. Analogously, one of lines 
Eq. (25) of the matrix Den corresponds to relevant other 
lines of the i-th group of the matrix Mark. 

if

Matrix Denc differs from matrix Den only by 
numeral values of the coefficients   provided in 
the Eq. (25) instead of their analytic (literal) expressions. 

e,ii,i g,...,a

When the data of the matrices Mark, Den, Denc 
are available, structural diagram of the system under dis-
cussion is developed in accordance with the instructions of 
MATLAB / Simulink set of programs and its simulation is 
carried out. In addition, the data provided in the matrices 
are sufficient for generation of the equations of the type 
Eq. (11) for the systems under discussion that is required 

for the application of various other methods of computa-
tion and research.  

In addition to the data provided in the Table, pic-
tograms of blocks of transfer functions that present a basis 
of the structure of Simulink-model of the object under dis-
cussion are developed.  

For convenience of simulation, the Simulink-
model of the whole object is divided to subsystems that 
correspond to relevant coordinates . In Fig. 4, a, the sub-
system that corresponds to the coordinate 

ix

xϕ  of the exam-
ple (Subsystem 2) is shown. 

The name Trans is automatically classified to the 
blocks of transfer functions; after it, a fraction follows; the 
numerator and the denominator of the fraction specify the 
numbers of the lines of the matrices Mark, Den, Denc used 
in the block (Table). 

Blocks of transfer functions are provided in a 
compact form. 

The pictogram of block Trans 2/1 in Fig. 4, a is 
enlarged to show more clearly the mark Num(s)/Den(s) 
(inside its contour) showing that the numerator and the 
denominator of the transfer functions are lines of the ma-
trix. 

The fraction following the word Trans, for exam-
ple, 2/1 (Fig. 4, a), shows the lines of the matrix Denc 
where the values of the coefficients of the numerator and 
the denominator of the transfer function are specified. 
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      a             b 
 

Fig. 4 The Simulink-model (a) and the window for enter-
ing the parameters of the block of the transfer func-
tion Trans 2/1 (b) for the equation that corresponds 
to the coordinate xϕ  of the example 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a 
 
 
 
 
 
 
 
 
 
 
 

b 
 

Fig. 5 Preparation of the dynamical model of the example 
for simulation: a – the whole enlarged Simulink-mo-
del; b – simulated changes of the coordinate z cau-
sed by abrupt changes of the road’s unevenness z1

 
In Fig. 4, b, the window for entering parameters 

of block Trans 2/1 is shown (such entering considerably 
reduces the probability of entering wrong coefficients of 
the transfer function). In the column „Numerator coeffi-

cients”, the program shows: [Denc(2,:)]. This means that 
all elements of the second line of matrix Denc are used in 
the numerator of the transfer function. In the column „De-
nominator coefficients”, the program shows: [Denc(1,:)]. 
This means that all elements of the first line of matrix 
Denc are used in the denominator. 

The connecting lines of the whole model and its 
subsystems in Simulink-models are connected by the in-
vestigator using the graphical editor of Simulink set. The 
fully connected system of the example is shown in 
Fig. 5, a. The simulated transitional process obtained on an 
abrupt change of the road unevenness  is shown 
in Fig. 5, b. 

1 0.1 mz =

 
5. Conclusions 
 

1. The methodology of investigation of linear sta-
tionary dynamic models of the mechanical part of me-
chanical and mechatronic equipment in the environment 
MATLAB/Simulink programs required for computer-aided 
generation of structural diagrams (Simulink-models) is 
provided. 

2. On the base of the analytic (literal) expressions 
of kinetic energy, potential energy, dissipation function 
and generalized forces included in Lagrange equations of 
second type, the literal or numerical expressions of transfer 
functions included in the structural diagram are generated 
in the computer-aided way. 

3. In course of generation of the structural dia-
grams, data of independent value required for the genera-
tion of differential equations of the second degree for the 
system under discussion and development of the normal 
form of the said equations are obtained. 
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V.-K. Augustaitis, V. Gičan, N. Šešok, I. Iljin 
 
LYGČIŲ IR STRUKTŪRINIŲ SCHEMŲ 
KOMPIUTERIZUOTAS SUDARYMAS TIESINĖMS 
STACIONARIOMS MECHANINĖMS DINAMINĖMS 
SISTEMOS MODELIUOTI  

R e z i u m ė 

Mašinų mechaninės dalies dinaminėms sistemoms 
tirti, turint iš sutelktųjų elementų sudarytus jų dinaminius 
modelius, tikslinga taikyti kompiuterinį modeliavimą nau-
dojant MATLAB/Simulink programas. Norint sudaryti 
tokių sistemų dinaminių modelių struktūrines schemas 
(Simulink-modelius), reikia įdėti daug darbo. Straipsnyje 
nagrinėjama linearizuota stacionarioji mechaninė sistema, 
kuri gali būti sudėtingesnės (netiesinės, nestacionarios) 
sistemos dalimi. Pateikta kompiuterizuota metodika tokios 
sistemos Simulink-modeliui sukurti. Kompiuteriniu būdu 
gaunamos šią sistemą aprašančių diferencialinių lygčių ir į 
Simulink-modelį įeinančių perdavimo funkcijų analizinės 
(raidinės) ir skaitinės išraiškos. Simulink-modelis sudary-
tas tokiu būdu, kad prie jo nesunkiai galima būtų prijungti 
sudėtingesnės sistemos netiesinių ir nestacionariųjų mazgų 
perdavimo funkcijos. Duotas pavyzdys. 
 
 
 
 

V.-K. Augustaitis, V. Gičan, N. Šešok, I. Iljin 
 
COMPUTER - AIDED GENERATION OF EQUATIONS 
AND STRUCTURAL DIAGRAMS FOR SIMULATION 
OF LINEAR STATIONARY MECHANICAL DYNAMIC 
SYSTEMS 

S u m m a r y 

There are reasonable to use computer with 
MATLAB/Simulink software for modeling of dynamic 
systems of machine mechanic components, using lumped-
parameter systems of them. In order to build structural 
schematics (Simulink blocks) of these dynamic models, 
there is a lot of work. This paper is intended to analyze 
linearized stationary mechanical system, which may be a 
part of more complex (nonlinear, nonstationary) system. 
There are presented methodology to build such Simulink 
model in the paper. Here are given analytical expression of 
differential equations and transfer functions for Simulink 
as well as numerical values. Simulink model is built in 
such way, that it is easy to attach necessary transfer func-
tions of nonlinear or/and nonstationary connections. Ex-
ample of such model is provided. 

  
 

В.-К. Аугустайтис, В. Гичан, Н. Шешок, И. Ильин 
 
КОМПЬЮТЕРИЗИРОВАННОЕ СОСТАВЛЕНИЕ 
УРАВНЕНИЙ И СТРУКТУРНЫХ СХЕМ ДЛЯ 
МОДЕЛИРОВАНИЯ ЛИНЕЙНЫХ 
СТАЦИОНАРНЫХ МЕХАНИЧЕСКИХ 
ДИНАМИЧЕСКИХ СИСТЕМ 

Р е з ю м е 

Для исследования динамических систем с со-
средоточенными параметрами целесообразно приме-
нять программный пакет MATLAB/Simulink. Состав-
ление структурных схем (Simulink-моделей) таких сис-
тем требует большого объёма работ. В статье рассмат-
ривается линеаризированная стационарная механиче-
ская система, которая может быть частью более слож-
ной (нелинейной, нестационарной) системы. Пред-
ставлена компьютеризированная методика для созда-
ния Simulink-модели такой системы, с помощью кото-
рой получаются аналитические и численные выраже-
ния для  передаточных функций модели и дифферен-
циальных уравнений системы. Simulink-модель созда-
на таким образом, чтобы к ней было несложно присое-
динить передаточные функции более сложной систе-
мы. Представлен пример. 
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