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1. Introduction 

 

The bearings are one of the weaknesses of a rota-

ry machine for their support of the dynamic forces of a 

shaft. They are the most critical elements and therefore the 

elements to watch for the most [1, 2]. 

Much research has been performed in this field to 

determine at an early stage any form of cracks leading to 

chipping and then to ruin the bearing [3, 4]. In general 

three approaches are used for detection of bearing defects. 

The first is based on scalar measurements such as root 

mean square (RMS), crest factor and the kurtosis [5] which 

gives a reasonably global defect indication without the 

possibility of its location in the bearing. 

The second approach is based on the application 

of the algorithm of fast Fourier transform. However the 

total spectrum of the vibration signal (shaft and bearings) 

obtained does not show an obvious characteristic frequen-

cy of pulses trains generated by the defects. This problem 

was overcome by the high frequency resonance technique 

(HFRT) [6] which use a band pass filter  to isolate one of 

the resonant frequencies of a structure and then to elimi-

nate unwanted vibrations from other sources (e.g. the rota-

tion shaft). We then apply to a filtered signal a demodula-

tion by envelope detection. Finally we calculate the spec-

trum of the demodulated signal and low frequency lead to 

the characteristic frequency of defect. However, the latter 

method has some drawbacks. 

The user has to accurately know the position of 

the band pass filter around one resonance frequency. In 

addition this method is ineffective in the presence of a high 

noise levels. 

The third approach combines techniques based on 

time frequency demodulation with wavelets [7]. Pulses 

signal can be detected by high frequencies of the wavelet 

with good resolution [8]. Due to its complexity this tech-

nique is still very rarely applied in industry compared to 

the Fourier transform. 

In this paper we apply neural networks to locate 

and quantify the size of a defect on one element of a bear-

ing. The network's inputs are time indicators from a vibra-

tion signal measured on a mechanical component in pro-

gressive wear. It has two outputs one indicates the position 

of the defect and the other the size. 

It is critical to know the position of defect: the in-

ner ring, the outer ring or the bearing balls. This localiza-

tion and monitoring of flaw size is used to estimate the 

remaining operating life before replacement. This life time 

is different depending on each bearing element load [9]. 

With such tool, maintenance technicians will 

avoid stopping a machine too early to change a bearing, as 

it can still work without damaging equipment. This condi-

tion ensures the best performance of machinery while 

minimizing the cost of spare parts [10]. 

The ongoing monitoring of variables indicative of 

damage is tedious, as it a repetitive procedure established 

to interpret each iteration level of the selected indicators. 

Otherwise it is easier to the use of neural networks enable 

the automation of the defect monitoring process, easily 

providing the operator automated results [11]. 

 

2. Measurement of defects ball bearing 

 

"Case Western Reserve University (CWRU), 

Cleveland Ohio's" has such an appropriate test bench for 

experiments necessary for detection and monitoring of 

bearing defects [12]. Thanks to the computer center which 

provides access to data stored on tests ball bearing for 

normal and defective bearings. Vibration measurements 

were conducted using the test set-up pictured in Fig. 1. 

 

� 

Fig. 1 Bearing test rig 

 

Accelerometers are used to measure vibration in a 

radial plane. They are arranged on bearings on which are 

sewn, by electro-erosion, characterized point defects of a 

certain diameter and a certain depth (Fig. 2). 
 

 

Fig. 2 Point defect on a bearing 
 

The defects were inserted on the bearings of the 
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motor shaft. A single point of failure is produced by each 

operation bearing with a depth of 0.30 mm and diameters 

of default variables. 

Defects are inserted separately on the three ele-

ments of the bearing as follows: the outer ring, inner ring 

and rolling elements. The defects studied on the turnover 

of the coupling end (drive side) are characterized by the 

following parameters: 

- diameter of the defect = 0.20 and 0.50 mm; 

- depth of defect = 0.30 mm. 

 

3. Diagnostic system and bearing tracking defects 

 

Our project consists in developing a system to 

trace the source of the fault to estimate its severity and 

location, or to assess the absence of defect. 

Several studies have been made in the field. Re-

searchers have developed a system that can provide an 

output only capable of identifying the severity of the defect 

on a bearing using neural networks and genetic algorithms 

[13]. Other researchers have developed a neural network 

using time and frequency input variables as indicators 

associated with defects of the bearing. 

Three frequency parameters were selected:  

• the defect frequency of the outer ring; 

• the defect frequency of the inner ring; 

• the defect frequency of the rolling element. 

To these frequency parameters were added time 

indicators to form a neural network for locating the site 

and to determine the diameter of the defect [14]. 

From an experimental study on time indicators, it 

was observed that they vary with the size of the defect and 

its position on the bearings. They can therefore be used to 

monitor the development of the fault and locate its location 

on the bearing. This task of identification may also be 

obtained using spectral indicators. 

This system has the distinction of being simple to 

prepare as it uses time indicators calculated vibration sig-

nals directly without any treatment of temporal frequency 

which reduces computation time. In addition, this system is 

more easily adoptable in industry because its application is 

very simple. 

It was observed during our experimental study 

that the temporal indicators associated with defects of 

rolling elements (balls) are proportionally lower compared 

to the indicators associated with defects of rings. For this 

reason we have divided our system into two neural net-

works. The first network is used to diagnose faults of rings, 

and indicate their diameter, and may also indicate the pres-

ence of non defective rings. The second network treats the 

case of the rolling elements (balls), it has to diagnose the 

presence of the defect and indicate its diameter. It can also 

confirm the lack of defects. 

 

4. Configuration of neural networks 

 

The configuration of neural networks has been the 

crucial step in developing our system for locating and 

assessing the severity of the defect. It must be based on 

data inputs and outputs. The literature review on studies 

conducted in this area suggests the adoption of a multilayer 

neural network [11, 13]. Not to unnecessarily increase the 

complexity of the network, we decided to use a single 

hidden layer. 

The implemented neural network is composed of 

three layers: an input layer, a hidden layer and an output 

layer. 

Input layer: the number of neurons in input layer 

depends on the number of time indicators used in our case 

we have four and they are:  

- The RMS value given by the following expres-

sion: 

 
2
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1 eN

RMS
ne

V x n
N 

    , (1) 

where x(n) is the time measured vibration signal, Ne repre-

sents the number of samples from the signal. This value 

provides information on the overall level of vibration but 

provides no information on the defective mechanical com-

ponent. 

- The peak value. 

 1 epeak n NV sup x n   (2) 

- The crest factor CF of the vibration signal is de-

fined as the ratio between the peak and RMS value. 

It provides timely information on the degradation 

of the bearing, while remaining independent of the operat-

ing characteristics (the bearing size, load, speed, etc). 

The CF presents a drawback because it decreases 

as the defect develops. 
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- The Kurtosis: the vibration types or sinusoidal 

impulse generate all gaits of curves with different densi-

ties. The Kurtosis, which quantifies the difference, is given 

by: 
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with: x  the average value and x  the
 
standard deviation. 

The Kurtosis quantifies the flattening of the curve of prob-

ability density of the recorded signal. It gives great im-

portance to the high amplitudes while weighting the isolat-

ed events, unlike the crest factor. 

Output layer: the number of neurons is set to 2. A 

first output DC indicates the severity of the defect by cal-

culating its diameter. A second output Ei indicates its loca-

tion on the bearing if the defect exists; otherwise Ei indi-

cates the absence of defect. Index i is assigned as: 

i = 1, for the output corresponding to the rings: E1; 

i = 2, for the output corresponding to the balls: E2. 

Hidden layer: The numbers of neurons in hidden 

layer and activation functions were selected experimental-

ly; we chose the best performing model. 

This system takes into account the defect tracking 

in the database of neural networks based on measurements 

of various diameters for different defects. 

Neural networks are developed using vibration 

data recorded on healthy bearings and bearings with de-

fects. 
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4.1. Design of neural network specialized in the defects of 

rings 
 

The developments of neural networks are done 

experimentally. Such a network would have 4 input neu-

rons corresponding to the number of indicators used in the 

temporal network input and two output neurons since we 

want to calculate the diameter of the defect DC, and identi-

fy the defect type E1 , such as: 

if E1  1  defect on the outer ring; 

if E1  2  defect on the inner ring; 

if E1  0  no defect ring. 
Network experiments were performed with the 

number of neurons in hidden layer ranging from 1 to 10. 

Three transfer functions were considered: a linear function 

“purelin”, and two sigmoid functions, one for positive and 

negative output 'tansig', the other to output only positive 

“logsig”. 

Learning is performed for each configuration, 

with the following parameters: 

Maximum number of iterations (Epochs) = 100.  

Maximum gradient = 1e
-10

. 

Learning is stopped if any of these conditions is satis-

fied. 

Performance criteria of the neural network are to 

examine the performance of each neural network. The sum 

of squared errors (SSE) and the mean square error model-

ing (MSE) [13] associated with the diameter of the defect 

were derived as described below. 

The SSE is given by the following equation [15]: 

   
2

1

TN

m c
k

SSE y k y k


    , (5) 

where NT is the number of elements of the test set; ym is the 

actual measured values of the process to be modeled; yc is 

the values calculated by the model. 
 

 
Fig. 3 ANN specialized in defects in rings 

The MSE is written as follows: 

   
2

1

1 TN

m c
kT

MSE y k y k
N 

    . (6) 

The SSE and the MSE are calculated during the 

test phase, there decreasing is synonym that the neural 

network is performing. These two parameters are associat-

ed with the diameter of the defect because it is its size 

which strongly influences the decision of changing the ball 

bearing. Fig. 3 shows the selected ANN. 

 

 

Fig. 4 ANN specialized in defects of rolling elements 

 

4.2. Design of neural network specialized in the defects of 

rolling elements (BALL) 

 

The dedicated network defects in rolling elements 

has 4 input neurons which correspond to the number of 

time indicators used at the entrance of the network, and 

two output neurons since we want to calculate the diameter 

of the defect DC and identify the defect type E2, such as: 

if E2  1   defect on the rolling element; 

if E2  0   healthy bearing ball. 

The design of a neural network specific to the de-

fects of rolling elements is performed in the same way that 

the previous network shown. Figure 4 shows the selected 

ANN. 

 
4.3. Vibratory signals used for diagnosis and monitoring of 

drive end and fan end bearing defects 
 

The signals used in the applications of table 4 and 

table 5 originate from the database of CWRU. The signals 

were respectively collected from SKF 6205 drive end bear-

ing (Table 1) and SKF 6203 fan end bearing (Table 2) with 

different severities of inner race and outer race faults (Ta-
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ble 3). Drive end bearing specifications, including bearing 

geometry and defect frequencies are listed in the bearing 

specifications. 

Vibration data was collected using accelerome-

ters, which were attached to the housing with magnetic 

bases. Accelerometers were placed at the 12 o’clock posi-

tion at both the drive end and fan end of the motor housing. 

Data was collected for normal bearings, single-

point drive end and fan end defects. Digital data was col-

lected at 12000 samples/second for fan end bearing and at 

48000 samples/second for drive end bearing experiments. 

Data files are in Matlab format. 
 

Table 1 

Drive end bearing: 6205-2RS JEM SKF, deep groove ball 

bearing, size in mm 
 

Inside 

diameter 

Outside 

diameter 

Thickness Ball 

diameter 

Pitch 

diameter 

25 52 15 8 39 
 

Defect frequencies (multiple of running speed in Hz) 
 

Inner ring Outer ring Cage train Ball 

5.4152 3.5848 0.39828 4.7135 
 

Table 2 

Fan end bearing: 6203-2RS JEM SKF, deep groove ball 

bearing, size in mm 
 

Inside 

diameter 

Outside 

diameter 

Thickness Ball 

diameter 

Pitch 

diameter 

17 40 12 6.75 28.5 
 

Defect frequencies (multiple of running speed in Hz) 
 

Inner ring Outer ring Cage train Ball 

4.9469 3.0530 0.3817 3.9874 
 

Table 3 

Diameters and depths of the defects located on the drive 

end and fan end bearings 
 

Position of 

bearing 

Location fault Diameter, 

mm 

Depth, 

mm 

Drive end 

bearing 

Inner and outer 

ring and ball 
0.20 0.30 

Drive end 

bearing 

Inner and outer 

ring and ball 
0.35 0.30 

Drive end 

bearing 

Inner and outer 

ring and ball 
0.50 0.30 

Fan end  

bearing 

Inner ring 
0.20 0.30 

Fan end  

bearing 

Inner ring 
0.35 0.30 

Fan end  

bearing 

Inner ring 
0.50 0.30 

 

4.4. Application system for diagnosis and monitoring of 

drive end bearing defects 
 

Table 4 below provides an example on how to 

implement the system to diagnose and monitor the condi-

tion of bearings, with: 

DR means the diameter of the actual defect; 

DC means the calculated diameter of the defect; 

ER is the location of the actual defect; 

E1 is the location of the defect found by the network 

specializing in defects rings; 

E2 is the location of the defect found by the network 

specializing in defects of rolling elements. 

We considered the following cases of measures: 

Case a: Healthy bearing. 

The four inputs of neuron networks, RMS, peak, 

crest factor and kurtosis, are calculated from the temporal 

signal vibratory. Both networks, rings defect and rolling 

elements defect, give the output E1 = E2 = DC = 0 indicat-

ing that the bearing is healthy. 

Case b: Bearing with inner ring defect. 

The four time indicators listed before are calculat-

ed in this case on a vibratory signal measured on a bearing 

with a point defect on the inner ring. We find that the loca-

tion parameter E1 is very close to 2 meaning that the defect 

is in the inner ring and the calculated diameter corresponds 

to the actual diameter. 

Case c: Bearing with outer ring defect. 

The point defect is located in the third case on the 

outer ring; its diameter is 0.50 mm. Shocks appear clearly 

through the temporal signal that is used to calculate the 

time indicators. This case shows positive results as the 

calculated diameter DC = 0.53 mm is very close to the 

actual diameter of 0.50 mm. The defect location is also 

justified by the output E1 = 3. 

Case d: Bearing with rolling element defect. 

In the latter case the defect is made by electro-

erosion on a ball bearing. The first application of neural 

network, defect ring, provided for defect location 

E1 = 0.1325. We can consider that this result is close to 

zero and therefore we can assume that the defect is not on 

the outer ring or on the inner ring.  

 

4.5. Application system for diagnosis and monitoring of 

fan end bearing defects 

 

The location of the defect has an important influ-

ence on the lifetime of the defective mechanical element. 

A statistical study [11] showed that 45 % of the bearings 

affected by a defect on the internal ring were replaced 

against 25% of the bearings affected on the external ring. 

This finding implies that the propagation of a 

fault on the inner ring is almost twice as fast as a defect on 

the outer ring. For these reasons, we are interested in locat-

ing in what part of the bearing the defect is. 

Figs. 5, a-c illustrate three vibration signals meas-

ured on the bearings having respectively inner ring defects, 

made by electro-discharge, of 0.20, 0.35 and 0.50 mm 

diameter. As seen in the following figures the vibration 

amplitude increase with the size of the defects. 

From these three signals are determined the fol-

lowing scalar indicators: RMS value, Peak Value, Crest 

Factor and Kurtosis. The values of these indicators supply 

the neural networks whose outputs provide information on 

the location and size of the various defects (Table 5). 

The informations collected are decisive in the 

monitoring of the mechanical state of rotating machines 

and in particular the bearings. If the defect appears on the 

inner ring the monitoring will be done at close intervals. 
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Table 4 

Diagnosis examples on ball bearings (a, b, c, d) 
 

a - Healthy bearing  b - Inner race defect 

DR = 0 mm ER = 0  DR = 0.20 mm ER = 2 
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RMS value = 0.07 m/s
2 

Peak value = 0.25 m/s
2 

Crest factor = 3.4 

Kurtosis = 2.82 
 

  

RMS value = 0.29 m/s
2 

Peak value = 1.60 m/s
2 

Crest factor = 5.50 

Kurtosis = 5.54 
 

DC = 0 mm E1 = 0  DC = 0.20 mm E1 = 1.9996 
 

Since E1 = 0 => no default ring. 

We must check for any failure of rolling element by the 

2nd neural network. 
 

  

Since E1 = 1.9996 ≈ 2 => defect of the inner ring with a 

calculated diameter of the defect: 

DC = 0.20 mm 

DC = 0 mm E2 = 0   
 

Since E2 = 0 => bearing without defect 
 

  

 

c - Outer race defect  d - Ball defect 

DR = 0.50 mm ER = 3  DR = 0.20 mm ER = 0 
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RMS value = 0.56 m/s
2 

Peak value = 5.51 m/s
2 

Crest factor = 9.78
 

Kurtosis = 21.17 
 

 
 

RMS value = 0.14 m/s
2 

Peak value = 0.52 m/s
2 

Crest factor = 3.69 

Kurtosis = 3.04 
 

DC = 0.53 mm E1 = 3  DC = 0.13 mm E1 = 0.1325 
 

Since E1 = 3 => defect of the outer ring with a calculated 

diameter of the defect: DC = 0.53 mm. 

  

Since E1 = 0.1325 ≈ 0 => No defect ring. We must 

check for any failure of rolling element by the 2nd 

network. 
 

  DC = 0.20 mm E2 = 1.00 

 
 

 

Since E2 = 1 => defect in a rolling with a calculated 

diameter of the defect: DC = 0.20 mm 
 

 

 

 

 



464 

Table 5 

Diagnosis examples of Inner race defects 
 

Actual diameter of 

inner race defect 

DR, mm 

Scalar indicators ANN results 

RMS 

value 

Peak 

value 

Crest 

factor 

Kurtosis Calculated 

diameter of 

the defect 

DC, mm 

Type of defect 

E1 E2 

0.20 0.14 0.81 5.78 5.40 0.18 very close to 2 

so defect in 

inner ring 

Close to 0 no 

ball defect  0.35 0.18 1.12 6.22 5.65 0.36 

0.50 0.32 1.90 5.94 6.96 0.53 
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Fig. 5 Bearing inner race fault waveforms a- 0.20 mm, b- 

0.35 mm and c- 0.50 mm 

 

5. Conclusion 

 

The application of neural networks and vibration 

signal processing were used in locating and monitoring the 

progress of a defect on a ball bearing. 

The sum of squared errors and mean squared error 

are used as a benchmark of different ANN. 

Our system has demonstrated the efficacy of 

ANN for the diagnosis and monitoring of the progression 

of defects on a ball bearing. With the help of ANN, an 

operator may decide to intervene in a timely manner. 

This project also allowed us to verify the effec-

tiveness of ANN from the choice of the number of neurons 

and transfer functions used. The main advantage of neural 

networks is their ability to machine-learn, which allows 

solve complex problems without having to write complex 

rules. 

The system is developed by the pairing of time 

indicators from the vibration signals with neural networks. 

These indicators have the advantage of being very simple 

to use and highly effective in the diagnosis and monitoring 

of defects in ball bearings. 
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GUOLIŲ DEFEKTŲ VIETOS APTIKIMAS IR  

ĮVERTINIMAS VIRPESIŲ ANALIZĖS IR  

NEURONINIŲ TINKLŲ METODU 

 

R e z i u m ė 

 

Mašinų priežiūros kokybė turi didelę įtaką firmos 

darbui. Mašinų defektų vystymosi įvertinimas ir stebėsena 

gali sumažinti priežiūros sąnaudas minimizuojant neplani-

nes prastovas ir užtikrinant ekonomiškai pagrįstus nuosto-

lius. Mašinos būsena labai priklauso nuo besisukančių 

elementų, taigi ir nuo guolių. Virpesių matavimai padeda 

nustatyti, ar mašina yra  tinkama naudoti, ir laiku atlikti 

priežiūros darbus. Šio darbo tikslas sukurti dirbtiniu inte-

lektu pagrįstą sistemą, kuri leistų nustatyti guolių elementų 

defekto radimosi pradžią ir pagal virpesių signalų pokyčius 

nustatyti, ar tai didelis defektas. 
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LOCATION AND EVALUATION OF BEARINGS  

DEFECTS BY VIBRATION ANALYSIS AND NEURAL 

NETWORKS 

 

S u m m a r y 

 

The quality of maintenance has an important in-

fluence on firm performance. Detection and monitoring of 

the progression of the defects of machines can reduce 

maintenance costs by minimizing the number of unplanned 

shutdowns and ensuing economic losses.  
The state of a machine depends largely on the 

condition of rotating elements that compose it and espe-

cially bearings. 

The vibration measurements are used as indica-

tors of the health status of machines and timeliness of 

maintenance. The objective of this work is to establish a 

system based on artificial neural networks to know precise-

ly the position of an incipient defect on the bearing ele-

ments and quantify its severity, using indicators from vi-

bration signals. 

 

Keywords: maintenance, vibration, temporal indicators, 

Bearing, Artificial Neural Network (ANN). 

 

Received Mai 18, 2012 

Accepted August 21, 2013 

 

http://dx.doi.org/10.1006/mssp.2000.1330
http://www.neurones.espci.fr/

