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1. Introduction 

 

Due to the wide spread applications in engineer-

ing structures, composite members are receiving more 

attentions from the research communities, since they are 

stronger, stiffer, and more ductile than the sum of the indi-

vidual elements. Analysis of deformation and stress fields 

in composite laminates is of fundamental importance in 

experimental determination of the lamina properties and 

exact solutions are useful in developing a numerical model. 

Zhang et al. [1] illustrated a new procedure for obtaining 

the static exact solution of composite laminates with piezo-

thermo-elastic layers under cylindrical bending. Duc and 

Minh [3] presented a method to determine bending deflec-

tion of three-phase polymer composite plates consisting of 

reinforced glass fibers and titanium oxide particles. An 

investigation of the stochastic nonlinear bending response 

of a laminated composite plate resting on a two parameter 

Pastemak elastic foundation with Winkler cubic nonline-

arity subjected to transverse distributed static load was 

given by Singh et al. [4]. Sturzenbecher and Hofstetter [5] 

analyzed bending response of cross-ply laminated compo-

sites based on models of Lekhnitskii and Ren. Cetkovic 

and Vuksanovic [6] used an original MATLAB computer 

code to perform finite element solution for bending, free 

vibrations and buckling of laminated composite and sand-

wich plates using a layerwise displacement model. Dash 

and Singh [7] used a higher order shear deformation theory 

to investigate a transverse bending of laminated composite 

plates in Green-Lagrange sense accounting for the trans-

verse shear and large rotations. Shiyekar and Kant [9] ap-

plied higher order shear deformation theory to analyze 

piezoelectric fiber reinforced composites under bi-

directional bending. Higher order shear and normal de-

formable plate theory and a meshless method was used by 

Xiao et al. [10] to analyze static infinitesimal deformations 

of thick laminated composite elastic plates under different 

boundary conditions. Kant and Swaminathan [13] also 

used higher order refined theory to present an analytical 

solution to static loading of simply supported composite 

and sandwich plates. Andrade et al. [8] presented geomet-

rically nonlinear static and dynamic analysis of laminated 

composite plates and shells using the eight-node hexahe-

dral element with one-point integration and compared out-

puts with results obtained by other authors using different 

element types. Xu and Wu [11] illustrated a two-

dimensional analytical solution for simply supported com-

posite beams with interlayer slips by consideration of shear 

deformation effects. Kant et al. [12] presented a novel 

semi-analytical model for accurate estimation of stresses 

and displacements in composite and sandwich laminates. 

Their results were seen to compare well with the available 

three dimensional elasticity and analytical solutions. Shen 

[2] give the nonlinear analysis for bending of simply sup-

ported functionally graded nanocomposite plates subjected 

to a transverse uniform or sinusoidal loads in thermal envi-

ronments. For this purpose, he used a higher order theory 

to derive governing equations. Also Mousavi and Tahani 

[14] presented an analytical solution for bending of moder-

ately thick radially functionally graded sector plates with 

general boundary conditions using Kantorovich method. 

In spite of the abundant literature on the subject, 

the choice of mechanical response of composite plates 

under different types of loading in thermal environments 

with general configuration and boundary condition is criti-

cal issues. Classical lamination theory is used to derive 

governing equations and the Navier-type solution is ap-

plied to solve them for simply supported boundary condi-

tions. Three types of mechanical loadings and two types of 

thermal distribution are considered to investigate the effect 

of loading, temperature service, geometry ratio and me-

chanical properties on static bending of laminated compo-

sites. A finite element code using ANSYS is also devel-

oped to evaluate accuracy of the presented solution. 

 

2. Theoretical formulation 
 

2.1. Displacement and strains 

 

A rectangular plate of sides a and b with thickness 

h, shown in Fig. 1. 

 

 

Fig. 1 Geometry of simply supported rectangular laminated 

plates used in the analytical solutions 

Based on classical lamination plate theory, the 

following displacement field can be assumed: 
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   0, , ,x y z x y  , (3) 

where u0, v0, w0 are the displacements along the coordinate 

lines of a material point on xy-plane. 

The von Karman strains associated with the dis-

placement field in static loading can be computed using the 

strain-displacement relations for small strains: 
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Note that the transverse strains are identically ze-

ro in classical plate theory. The first three strains have the 

form: 
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If the temperature increment varies linearly, con-

sistent with the mechanical strains, we can write: 

     0 1T x,y,z T x, y zT x, y   . (6) 

And the total strains are of the form: 
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2.2. Equilibrium equations 

 

By using Eqs. (7) and (4) the constitutive equa-

tions are obtained as follows: 
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where Aij are extensional stiffnesses, Dij the bending stiff-

nesses and Bij the bending-extensional coupling stiffnesses, 

which are defined in terms of the transformed laminate 

stiffnesses 
ijQ  as: 
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Also  TN  and  TM  are thermal force result-

ants: 
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Equations of equilibrium can be derived using 

variational principle which is not explained in details here 

(see [15]). Three equilibrium equations are as follows: 
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2.3. Boundary conditions 

 

The Navier solutions can be developed for rectan-

gular laminates with two sets of simply supported bounda-

ry conditions. Even for these boundary conditions, not all 

laminates permit the Navier solution. The two types of 

simply supported boundary conditions on the displace-

ments and stress resultants used in classical lamination 

plate theory (CLPT) are given below [15]. 

Simply supported (SS-1): 
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Simply supported (SS-2): 
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The Navier solutions using SS-1 boundary condi-

tions can be obtained only for laminates whose stiffnesses 

A16, A26, B16, B26, Dl6, D26, and A45 are zero. Thus, the Na-

vier solutions for the SS-1 boundary conditions can be 

developed for laminates with a single generally orthotropic 

layer, symmetrically laminated plates with multiple spe-

cially orthotropic layers, and antisymmetric cross-ply lam-

inated plates. Similarly, the Navier solutions using SS-2 

boundary conditions can be obtained only for laminates 

whose stiffnesses A16, A26, B11, B12, B22, B66, D16, D26, and 

A45 are zero, i.e., for laminates with a single generally or-

thotropic layer, symmetrically laminated plates with multi-

ple specially orthotropic layers, and antisymmetric angle-

ply laminated plates. [15]. In all cases of this study, non-

linear terms are omitted. 
 

2.4. Navier solution methodology 
 

The displacement boundary conditions of simply 

supported in (17-18) are satisfied by assuming the follow-

ing form of the displacements: 
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where a/m   and b/n   and , ,mn mn mnU V W  are 

coefficients to be determined. 

Considerations of Eqs. (19)-(21), shows that the 

mechanical transverse load q and thermal forces should 

also be expanded in double sine series. Thus: 
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And the temperature increment is expanded as: 
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By expansion of generalized displacements and 

loads in a double trigonometric series in terms of unknown 

parameters, Eqs. (13)-(15) can be cast in differential opera-

tor form: 

1011 12 13

12 22 23 0 2

13 23 33 0 3

0

0

T

T

T

fuc c c

c c c v f

c c c q f

     
       

       
              

, (30) 

where coefficients cij are defined by: 
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Eq. (30) are solved using the method of static 

condensation. This method allows the elimination of a 

selected set of variables and retains a desired set of varia-

bles. In order to this, the coefficients associated with the 

in-plane displacements are eliminated and those related 

with the transverse deflection are retained. Finally coeffi-

cients of unknown , ,mn mn mnU V W  are determined. (for more 

details about this method, see Ref. [15]) Solution of 

Eq. (30) for each m, n = 1, 2,… gives , ,mn mn mnU V W , which 

can be used to compute the final solution. 

 

2.5. Determination of stresses 

 

The in-plane stresses in each layer of a laminate 

are calculated from constitutive relations. Accounting for 

mechanical and thermal effects: 
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xz z
dz C x y

x y




 

 
    

 
 

 ; (34) 

 2 ,
k

k k
z xy yyk k

yz z
dz C x y

x y

 


 

 
    

 
 

 ; (35) 

 3 ,
k

kk
z yzk kxz

xz z
dz C x y

x y




 

 
    

 
 

 , (36)
 

where ,k k

xx yy   and 
k

xy  are known from Eq. (33) and 
k

iC are 

functions to be determined using the boundary conditions 

and continuity of stresses at layer interfaces. 

 

3. Results and discussion 

 

3.1. Mechanical loading 

 

In all examples, material properties of the plate 

are assumed as: 

13 2311 12
12

22 22 22 22

25,  0 5, 0 2 ,  0 3
G GE G

. . . .
E E E E

      (37) 

In this study, three types of loads including uni-

form, center point and sinusoidal distributed loads in me-

chanical loading are considered. 

Uniform distributed load (UDL):   0,q x y Q .  

Center point load (CPL): 

  0, at 2,   2q x y Q x a / y b /   . (38) 

Sinusoidal distributed load (SSL): 

     0,q x y Q sin x / a cos y / b  . 

The length-to-thickness ratio (i.e., a/h) is assumed 

to be 10 in all numerical examples. Furthermore, in the 

mechanical loading results the various non-

dimensionalized parameters used are: 

 

 

 

 

3 4

2 0

xy 0

2 2

yy 0

2 2

xx 0

deflection:

shear stress:

transverse stress:

longitudinal stres

   ;

  ;

  ;

  .s:

xz

yy

xx

E h Q a

h Q b

h Q a

h Q b

 

 

 

 



 


 




 (39) 

All results presented in this section are compared 

with results of other numerical and analytical studies avail-

able in the literature as well as those obtained from the 

commercial finite element code ANSYS. Composite plates 

have been modeled in ANSYS by using three-dimensional 

8-node layered elements which allows up to 250 different 

material layers in the thickness direction in each element 

without much increase of counting time. Mechanical prop-

erties of a unidirectional laminate at room temperature are 

used as initial values in finite element method. In this 

model, manual mesh is used and also the mesh is refined 

till no significant change in displacements and stresses are 

obtained. As mentioned before, the simply supported  

boundary conditions (SS-1) place a restriction on the lami-

nate scheme of composite plates. First cross-ply lamination 

is selected for both mechanical and thermal loading. 
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Table 1 

Transverse deflections and stresses in square laminates subjected to uniformly distributed transverse load (UDL),  

sinusoidal load (SSL) or central point load (CPL)*
 

 

CPL 
 

SSL 
 

UDL  

(0/90)k 

xy
 

yy
 

xx
 210 xy

 
yy

 
xx

 210 xy
 

yy
 

xx
 210  

0.196 6.087 0.759 3.989 0.049 0.724 0.086 0.995 0.079 1.174 0.148 1.614 Analytical 

k = 1 0.199 6.819 0.798 4.087 0.051 0.733 0.092 1.062 0.083 1.186 0.156 1.734 FEM 

0.193 6.821 0.801 4.666 0.052 0.715 0.084 1.063 0.093 1.076 0.126 1.695 Reddy [15] 

1.53 12.02 5.13 2.45 4.08 1.24 6.97 6.73 5.06 1.02 5.40 6.92 Diff, %  

0.091 4.265 0.291 1.910 0.023 0.489 0.036 0.470 0.037 0.792 0.059 0.763 Analytical 

k = 2 0.096 4.386 0.302 2.029 0.025 0.490 0.038 0.510 0.039 0.826 0.061 0.801 FEM 

0.093 4.495 0.329 2.210 0.025 0.486 0.035 0.506 0.044 0.736 0.054 0.808 Reddy [15] 

5.49 2.83 3.78 6.23 8.69 0.20 5.55 8.51 5.40 4.29 3.38 4.98 Diff, %  

0.080 4.353 0.272 1.953 0.020 0.496 0.030 0.416 0.033 0.805 0.049 0.674 Analytical 

k = 4 0.082 4.502 0.274 1.958 0.023 0.497 0.033 0.425 0.038 0.831 0.052 0.699 FEM 

0.082 4.555 0.272 1.953 0.022 0.495 0.029 0.447 0.039 0.749 0.044 0.715 Reddy [15] 

2.50 3.42 0.73 0.25 15.00 0.20 10.00 2.16 15.15 3.22 6.12 3.70 Diff, %  

     *      2, 2, 2 ,  2, 2, 2 ,   , , 2
xx yy xy

a / b / h / a / b / h / a b h /     

 

Table 1 contains nondimensionalized deflections 

and stresses for antisymmetric cross-ply laminates under 

different types of mechanical loads. Also the differences 

between analytical and finite element model are illustrated 

in percentage for each case. From these results, it can be 

concluded that, for the same laminate thickness, antisym-

metric cross-ply laminates with four or more layers are 

more desirable than two layer laminates because of reduc-

tion in deflections and stresses. This behavior is due to the 

bending-stretching coupling coefficients (Bij) which are 

dominant in case of two layers.  

 

 

Fig. 2 Nondimensionalized center transverse deflection 

versus plate aspect ratio of simply supported (SS-1) 

laminates 

 

Fig. 2-4 shows the effect of bending-stretching 

coupling and plate aspect ratio on the transverse deflection 

and stresses for a given z0 under various types of mechani-

cal loads. For comparison, results of symmetric laminates 

are also included. 

The magnitude of deflections and stresses of 

symmetric laminates (0/90/90/0) are about two to three 

times that of antisymmetric (0/90/0/90) laminates for 

a/b > 1. For the uniformly distributed load there corre-

sponds an aspect ratio, around a/b = 2.25 for (0/90)2 and 

a/b = 3.5 for (0/90)s for which the deflection is the maxi-

mum of all aspect ratios. The effect of coupling coeffi-

cients is to increase the stresses. These coupling coeffi-

cients decrease in magnitude with the increase in the num-

ber of layers in antisymmetric cross-ply laminates and the 

laminate essentially behaves like an especially orthotropic 

plate. The dependence of the coupling effect on the modu-

lus ratio is illustrated in Fig. 5 for SSL and UDL. 

 

 

Fig. 3 Nondimensionalized normal stress versus plate as-

pect ratio of simply supported (SS-1) laminates 

 

 

Fig. 4 Nondimensionalized normal stress versus plate as-

pect ratio of simply supported (SS-1) laminates 
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Fig. 5 Nondimensionalized center transverse deflection 

versus modulus ratio for simply supported cross-ply 

laminates under two types of loads 
 

Distribution of the nondimensionalized maximum 

normal stress and transverse shear stress is shown in Fig. 6. 

These components are calculated through the thickness of 

antisymmetric cross-ply and orthotropic laminates under 

sinusoidal loadings.  

The stress concentration is reduced in eight-layer 

cross-ply laminates than the two-layer one. So the latter 

plates experience larger stresses. Thus, the effect of the 

bending-stretching coupling present in two-layer plates on 

stresses is to increase the magnitude of stresses. 

 
Fig. 6 Nondimensionalized maximum normal stress and 

transverse shear stress versus plate thickness under 

sinusoidal loading (SSL) 
 

As discussed before, one of the lamination 

scheme which admits Navier solution for simply supported 

boundary conditions (SS-2) is antisymmetric angle-ply 

which is selected in this study. The effect of bending-

extension coupling and the dependence of the coupling on 

the modulus ratio can be seen from the deflections and 

stresses presented in Table 2 for antisymmetric angle ply 

laminates (-45/45)k for k = 1, 2, and 4, and subjected to 

center point load and uniformly distributed load. For each 

case, differences between analytical and finite element 

method is also calculated in percentage. 
 

Table 2 

Transverse deflections and stresses in square laminates subjected to uniformly distributed transverse load (UDL) and  

central point load (CPL)* 

CPL UDL   

1

2

20
E

E
 1

2

10
E

E
 1

2

20
E

E
 1

2

10
E

E
  (-45/45)k 

xx 210 xx 210 xx 210 
xx 210   

0.136 4.059 0.202 5.473 0.354 1.205 0.307 1.818 Analytical 

k = 1 0.141 4.060 0.211 5.481 0.355 1.214 0.311 1.822 FEM 

- - - - 0.340 1.190 0.308 1.759 Reddy [15] 

3.670 0.02 4.450 0.140 0.280 0.750 1.280 0.220 Diff, %  

0.088 2.272 0.158 3.852 0.217 0.621 0.221 1.161 Analytical 

k = 2 0.092 2.274 0.171 3.872 0.221 0.622 0.230 1.172 FEM 

- - - - 0.205 0.542 0.214 0.999 Reddy [15] 

4.540 0.08 8.220 0.520 1.84 0.160 4.070 0.940 Diff, %  

0.084 2.047 0.155 3.586 0.192 0.469 0.220 1.053 Analytical 

k = 4 0.087 2.051 0.167 3.590 0.195 0.473 0.229 1.058 FEM 

- - - - 0.202 0.477 0.211 0.902 Reddy [15] 

3.570 0.190 7.740 0.110 1.560 0.850 4.090 0.470 Diff, %  

                        *      2, 2, 2 ,   2, 2, 2 ,   , , 2
xx yy xy

a / b / h / a / b / h / a b h /     
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Fig. 7Nondimensionalized maximum transverse deflection 

versus plate aspect ratio under sinusoidal loading 

(SSL) 

 

 

Fig. 8 Nondimensionalized maximum transverse deflection 

versus lamination angle for antisymmetric angle-ply 

laminates under sinusoidal load 

 

 

Fig. 9 Nondimensionalized maximum transverse deflection 

versus plate ratio for antisymmetric angle-ply lami-

nates under different types of loading 

 

Fig. 7 contains a plot of the nondimensionalized 

deflection versus plate aspect ratio for simply supported 

(SS-2) antisymmetric angle-ply laminates (-45/45)k under 

sinusoidal load. Orthotropic plate is also included for com-

parison. Fig. 8 contains   as a function of the lamination 

angle θ for square laminates (–θ
 
/
 
θ)k under sinusoidal load. 

The material properties used are the same as previous. 

Clearly, the bending-extension coupling is quite significant 

for two-layered plates, but the coupling decrease very rap-

idly as the number of layers is increased. Trend of chang-

ing   is for a two-layer plate is different from four and 

eight layer ones. Two layer angle-ply laminates have in-

creasing trend versus variation of lamination angle while 

this behavior is decreasing for four and eight layer plates. 

Maximum deflection takes place for lamination angle of 

about 27° for two-layer plates. Also the magnitude of de-

flections of orthotropic laminates was about two to three 

times that of antisymmetric angle-ply laminates for a/b > 3 

under sinusoidal loading. 
 

 

Fig. 10 Nondimensionalized center transverse deflection 

versus modulus ratio for simply supported angle-

ply laminates under sinusoidal loads 
 

 

 

Fig. 11 Nondimensionalized maximum transverse shear 

stress versus plate thickness under sinusoidal load-

ing (SSL) 
 

Distribution of nondimensionalized transverse de-

flection versus plate aspect ratio for different types of load-

ing are plotted in Fig. 9. From these results, it can be con-

cluded that, for the same laminate thickness, antisymmetric 
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angle-ply laminates with four or more layers are more 

desirable than two layer laminates because of reduction in 

deflections and stresses. This behavior is due to the bend-

ing- extension coupling coefficients which are dominant in 

case of two layers. 

Lastly, nondimensionalized transverse deflections 

as a function of the modulus ratio for square laminates 

under sinusoidal transverse load are presented in Fig. 10. 

The effect of coupling is significant for all modulus ratios 

except for those close to unity. 

Distribution of the nondimensionalized transverse 

shear stress is shown for multi layer antisymmetric angle-

ply and orthotropic laminates under sinusoidally distribut-

ed transverse loads in Fig. 11. Unlike in antisymmetric 

cross-ply laminates, the stress xz  is not zero at 

(x, y) = (a
 
/
 
2, 0), although small in magnitude compared to 

that at (x, y) = (0, b
 
/
 
2). Note that through-thickness varia-

tions are significantly altered when the number of layers is 

increased (for the same total laminate thickness). 
 

3.2. Thermal loading 
 

In the case of thermal loading, thermal properties 

of composite plates are assumed as: 

6 o 6 o

11 226 10  1/ C,   27 10  1/ C      . (40) 

Also two types of thermal loads including uni-

form and linear distributed temperature through the 

thickness are considered as follows: 

 

   

 

     

0

0 1

uniform distributed temperature UDT :

linear distributed temperature L

,

D

,

T

, ;

, , , ,

:

T x y z T x y

T x y z T x y zT x y ,








 




  

 (41) 

where T0 and T1 are assumed to be 100 and 10°C respec-

tively. Stress free temperature is assumed T = 0°C. 

In numerical results, nondimensionalized parame-

ters for thermal loading are: 

 
 

 
 

3 3 4

2

xz 1 11

yy 1 11

xx 1 11

deflection:

shear stress:

transverse stress:

longitudinal s

   ;

100  ;

10 ;

t 1re : 0ss

xz

yy

xx

E h T a

a E T h

E T

E T .

 

  

  

  



 


 


 

 (42) 

In thermal loading, because of the presented re-

sults were not found in the open literature, all predictions 

are compared with results of commercial finite element 

code ANSYS. Table 3 listed results of transverse deflec-

tions and stresses in square laminates subjected to uniform-

ly and linear distributed temperature in thermal loads 

which are compared with finite element outputs. Also the 

difference between these two methods is reported in per-

centage for better evaluation of the results. 
 

Table 3 

Transverse deflections and stresses in square laminates subjected to UDT and LDT* 
 

LDT 
 

UDT  

(0/90)k 

xy yy 
xx  xy 

yy 
xx   

0.382 1.752 1.826 0.234 0.936 1.516 0.129 0.087 Analytical 
k = 1 

0.384 1.755 1.828 0.236 0.968 1.518 0.132 0.088 FEM 

0.520 0.170 0.100 0.850 3.410 0.130 2.320 1.140 Diff, %  

0.392 1.732 1.732 0.109 0.431 1.473 0.480 0.020 Analytical 
k = 2 

0.395 1.737 1.739 0.112 0.433 1.475 0.484 0.022 FEM 

0.760 0.280 0.400 2.750 0.690 0.130 0.830 10.00 Diff, %  

0.393 1.730 1.732 0.107 0.436 1.467 0.568 0.009 Analytical 
k = 4 

0.395 1.731 1.732 0.108 0.439 1.472 0.571 0.010 FEM 

0.500 0.050 0.000 0.930 0.680 0.340 0.520 11.11 Diff, %  

                                
*      2, 2, 2 ,  2, 2, 2 ,  , , 2xx yy xya / b / h / a / b / h / a b h /     

 

Figs. 12 and 13 show the distribution of trans-

verse shear stress through the thickness of the composite 

plates under different types of distributed temperature in 

thermal loading. For comparison, results of orthotropic 

laminates are also included. 

In the case of eight-layer laminates, minimum 

stress concentration was found for both linear and uniform 

distributed temperature. Only difference is that for linear 

distributed temperature, the normal transverse shear stress-

es are not zero in bottom of the plates which is due to dif-

ferent temperatures at top and bottom of the plates. 

Distribution of normal stresses through the thick-

ness of bending-stretching coupling for a given z0 is com-

pared for various types of thermal loadings (UDT and 

LDT) in Fig. 14. 

 

Fig. 12 Nondimensionalized maximum transverse shear 

stress versus plate thickness under UDT 
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Fig. 13 Nondimensionalized maximum transverse shear 

stress versus plate thickness under LDT 

 

 

Fig. 14 Comparison of nondimensionalized maximum 

normal stresses versus plate thickness under uniform 

and LDT 

 

Also variation of transverse deflection versus 

plate aspect ratios for linear distributed temperatures is 

illustrated in Fig. 15. It can be concluded that, magnitude 

of maximum transverse deflection for two-layer cross ply 

is about three or four times greater than four-layer type. 

Thus, the effect of the bending-stretching coupling present 

in two-layer plates on transverse deflection is to increase 

the magnitude of deflection. 

 

 

Fig. 15 Distribution of transverse deflection versus plate 

aspect ratios for linear distributed temperatures 

 

 

4. Conclusions 

 

Navier solution was applied using classical lami-

nated theory to analysis cross-ply and angle-ply composite 

laminated plates with simply supported boundary condi-

tions. Laminates were considered under different types of 

mechanical and thermal loads. For mechanical analysis, 

sinusoidal, uniform distributed and center point loads and 

in the case of thermal loadings, uniform and linear distrib-

uted temperatures were used. Results which was not found 

in open literature, were compared with commercial finite 

element analysis ANSYS. Following comments can be 

highlighted: 

1. It can be concluded that for the same laminate 

thickness, antisymmetric laminates with four or more lay-

ers were more desirable than two layer laminates because 

of reduction in deflections and stresses for all cases. This 

behavior was due to the bending-stretching coupling coef-

ficients for cross-ply and bending-extension coupling coef-

ficients for angle-ply laminates, which was dominant in 

case of two layers. 

2. Also the magnitude of deflections and stresses 

of symmetric cross-ply laminates was about two to three 

times greater than that of antisymmetric cross-ply lami-

nates for a/b > 1 under sinusoidal loading. These ratios in 

case of uniform distributed loads were 2.25 and 3.5 for 

symmetric and unsymmetrical cross-ply laminates respec-

tively.  

3. The effect of coupling coefficients is to in-

crease the stresses. These coupling coefficients decrease in 

magnitude with the increase in the number of layers in 

antisymmetric cross-ply laminates and the laminate essen-

tially behaves like an especially orthotropic plate. 

4. Maximum transverse shear stress is reduced 

by increasing number of layer in cross-ply laminates. So 

that maximum shear stress in eight-layer laminates de-

creased about two times in compare with orthotropic 

plates.  

5. Maximum deflection takes place for lamina-

tion angle of about 27° for two-layer plates. Also the mag-

nitude of deflections of orthotropic laminates was about 

two to three times that of antisymmetric angle-ply lami-

nates for a/b > 3 under sinusoidal loading. 

6. Unlike in antisymmetric cross-ply laminates, 

the stress xz  is not zero at (x, y) = (a
 
/
 
2, 0), although 

small in magnitude compared to that at(x, y) = (0, b
 
/
 
2). 

Note that through-thickness variations are significantly 

altered when the number of layers is increased (for the 

same total laminate thickness). 

7. In the case of eight-layer laminates, minimum 

stress concentration was found for both linear and uniform 

distributed temperature. Only difference is that for linear 

distributed temperature, the normal transverse shear stress-

es are not zero in bottom of the plates which is due to dif-

ferent temperatures at top and bottom of the plates. 

8. Finally it was found that in all cases, finite el-

ement outputs were in good agreement with theoretical 

analysis results. 
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M. A. Torabizadeh, A. Fereidoon 

 

SKIRTINGŲ TIPŲ PAPRASTŲ KOMPOZICINIŲ LA-

MINATŲ, VEIKIAMŲ TERMOMECHANINIŲ NAVJĖ 

LENKIMO APKROVŲ, TYRIMAI 

 

R e z i u m ė 

 

Remiantis klasikine laminuotų plokštelių teorija 

(KLPT), atliktas analitinis ir skaitinis įvairių mechaninių ir 

terminių apkrovų veikiamų paprastai laminuotų plokštelių 

tyrimas. Įvertintas šių plokštelių skersinis ir sukamasis 

poslinkis. Atsižvelgiant į tai, Navjė metodas pritaikytas 

paprastai atremtai stačiakampei laminuotai plokštelei, o 

baigtinių elementų kodas, naudojant ANSYS programą, 

pritaikytas gauto sprendinio tikslumui nustatyti. Taip pat 

yra ištirta kompozicinių laminuotų plokštelių laminavimo 

schemos, temperatūros, geometrijos ir mechaninių savybių 

įtaka esant statinei lenkimo apkrovai. Gauti rezultatai gerai 

sutapo su pateiktais literatūroje. 

M.A. Torabizadeh, A. Fereidoon 

NAVIER-TYPE BENDING ANALYSIS OF GENERAL 

COMPOSITE LAMINATES UNDER DIFFERENT 

TYPES OF THERMOMECHANICAL LOADING 

S u m m a r y 

An analytical and numerical solution for general 

laminated composite plates under different types of me-

chanical and thermal loading is presented based on classi-

cal lamination plate theory (CLPT). General lamination 

was evaluated by assumption of cross-ply and angle-ply 

laminated plates. In order to this, Navier-type method is 

applied for simply supported rectangular laminates and a 

finite element code using ANSYS is also developed to 

investigate the accuracy of the presented solution. Effects 

of lamination scheme, temperature service, geometry ratio 

and mechanical properties of composite laminates on static 

bending of laminated composite are also investigated and 

good agreement is found between evaluated results and 

those available in open literature. 

 

Keywords: Navier-type, composite plates, mechanical 

loading, thermal effects. 
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