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Nomenclature 

 

A - characteristic velocity, B - reciprocal of characteristic 

length, B0 - magnetic field coefficient, Kg/(s
2
A); C - con-

centration, mol/m
3
; Cp - specific heat at constant pressure, 

J/(kg
 
K); C∞ - ambient concentration, mol/m

3
; Cf - skin-

friction coefficient, D - mass diffusivity, m
2
/s; E - recipro-

cal of the product of characteristic length and time, f - di-

mensionless stream function, g - dimensionless microrota-

tion, g* - acceleration due to gravity, m/s
2
; j - dimensional 

micro-inertia density, kg/m
3
;   - dimensionless micro-

inertia density, k - thermal conductivity, W/(m
 
K);  

k1 - mean absorption coefficient, 1/m; L - buoyancy pa-

rameter, mw - wall couple stress, Pa/m; M - magnetic pa-

rameter, M1 - the ratio (temperature/length), Km
-1

;  

Mw - non-dimensional couple stress on the wall, N - cou-

pling parameter, N1 - ratio (concentration/length), mol/m
4
; 

Nu - dimensionless Nusselt number, Pr - Prandtl number, 

qr - radiative heat flux, W/m
2
; R - thermal radiation param-

eter, W; R* - rate of chemical reaction, mol/(ms);  

Sc - Schmidt number, Sh - Sherwood number, T - tempera-

ture of the fluid, K; T∞ - ambient temperature, K;  

U(x) - ambient velocity, m/s; u, v - velocity components in 

the x - and y - directions respectively, m/s; x, y - cartesian 

coordinates along the plate and normal to it, m; α - thermal 

diffusivity, m
2
/s; βT - coefficient of thermal expansion, K

-1
; 

βC - coefficient of concentration expansion, K
-1

; γ - spin-

gradient viscosity, m
2
/s; δ -  non-dimensional chemical 

reaction parameter, η - similarity variable, m; θ - dimen-

sionless temperature, 𝜅 -thermal conductivity of the fluid, 

W/(mK); λ - non-dimensional spin-gradient viscosity,  

𝜇 - viscosity of the fluid, kg/(ms); υ - kinematic viscosity, 

m
2
/s;  𝜌 - density of the fluid, kg/m

3
; σ - electrical conduc-

tivity, s
3
A

2
/( kgm

3
.); σ* - Stefan-Boltzmann constant, 

W/(m
2
K

4
); τw - wall shear stress, Pa;  - dimensionless 

concentration, ψ - stream function, 𝜔 - microrotation com-

ponent, kg.m
2
/s; w - condition at wall, ∞ - condition at 

infinity, ' - differentiation with respect to η.  

 

1. Introduction 

 

Mixed convection flows are of great interest be-

cause of their various engineering, scientific, and industrial 

applications in heat and mass transfer. Mixed convection 

of heat and mass transfer occurs simultaneously in the 

fields of design of chemical processing equipment, for-

mation and dispersion of fog, distributions of temperature, 

moisture over agricultural fields, groves of fruit trees, and 

damage of crops due to freezing and pollution of the envi-

ronment. Extensive studies of mixed convection heat and 

mass transfer of a non-isothermal vertical surface under 

boundary layer approximation have been undertaken by 

several authors. The majority of these studies dealt with 

the traditional Newtonian fluids. It is well known that most 

fluids which are encountered in chemical and allied pro-

cessing applications do not satisfy the classical Newton's 

law and are accordingly known as non-Newtonian fluids. 

Due to the important applications of non-Newtonian fluids 

in biology, physiology, technology, and industry, consider-

able efforts have been directed towards the analysis and 

understanding of such fluids. A number of mathematical 

models have been proposed to explain the rheological be-

havior of non-Newtonian fluids. Among these, the fluid 

model introduced by Eringen [1] exhibits some microscop-

ic effects arising from the local structure and micro motion 

of the fluid elements. Further, they can sustain couple 

stresses and include classical Newtonian fluid as a special 

case. The model of micropolar fluid represents fluids con-

sisting of rigid, randomly oriented (or spherical) particles 

suspended in a viscous medium where the deformation of 

the particles is ignored. Micropolar fluids have been shown 

to accurately simulate the flow characteristics of polymeric 

additives, geomorphologic sediments, colloidal suspen-

sions, haematological suspensions, liquid crystals, lubri-

cants etc. The mathematical theory of equations of mi-

cropolar fluids and applications of these fluids in the theo-

ry of lubrication and in the theory of porous media are pre-

sented by Lukaszewicz [2]. The heat and mass transfer in 

micropolar fluids is also important in the context of chemi-

cal engineering, aerospace engineering and also industrial 

manufacturing processes. The problem of mixed convec-

tion heat and mass transfer in the boundary layer flow 

along a vertical surface submerged in a micropolar fluid 

has been studied by a number of investigators [3-7]. 

In recent years, several simple boundary layer 

flow problems have received new attention within the 

more general context of magnetohydrodynamics (MHD). 

Several investigators have extended many of the available 

boundary layer solutions to include the effects of magnetic 

fields for those cases when the fluid is electrically conduct-

ing. The study of MHD flow for an electrically conducting 

fluid past a heated surface has important applications in 

many engineering problems such as plasma studies, petro-

leum industries, MHD power generators, cooling of nucle-

ar reactors, the boundary layer control in aerodynamics, 

and crystal growth. In addition, there has been a renewed 
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interest in studying MHD flow and heat transfer in porous 

media due to the effect of magnetic fields on flow control 

and on the performance of many systems using electrically 

conducting fluids. The problem of MHD mixed convection 

heat and mass transfer in the boundary layer flow along a 

vertical surface submerged in a micropolar fluid has been 

studied by several investigators. Kim and Fedorov [8] con-

sidered the case of mixed convection flow of a micropolar 

fluid past a semi-infinite moving vertical porous plate with 

varying suction velocity normal to the plate in the presence 

of radiation. Seddeek et al. [9] investigated the analytical 

solution for the effect of radiation on flow of a magneto-

micropolar fluid past a continuously moving plate with 

suction and blowing. Mahmoud et al. [10] analyzed the 

effects of slip and heat generation/absorption on MHD 

mixed convection flow of a micropolar fluid over a heated 

stretching surface. Hayat et al. [11] studied the effects of 

heat and mass transfer on the mixed convection flow of a 

MHD micropolar fluid bounded by a stretching surface 

using Homotopy analysis method. Das [12] considered the 

effects of partial slip on steady boundary layer stagnation 

point flow of an electrically conducting micropolar fluid 

impinging normally towards a shrinking sheet in the pres-

ence of a uniform transverse magnetic field. 

Radiation effects on convective heat transfer and 

MHD flow problems have assumed an increasing importa- 

nce in electrical power generation, astrophysical flows, 

solar power technology, space vehicle re-entry and other 

industrial areas. Since the solution for convection and radi-

ation equation is quite complicated, are few studies about 

simultaneous effect of convection and radiation for internal 

flows. Ghaly [13] discussed the effect of radiation on heat 

and mass transfer over a stretching sheet in the presence of 

a magnetic field. Raptis et al. [14] studied the effect of 

radiation on two-dimensional steady MHD optically thin 

gray gas flow along an infinite vertical plate taking into 

account the induced magnetic field.  

Chemical reaction effects on heat and mass trans-

fer are of considerable importance in hydrometallurgical 

industries and chemical technology. Research on combined 

heat and mass transfer with chemical reaction and thermo-

phoresis effect can help to design for chemical processing 

equipment, formation and dispersion of fog, distribution of 

temperature and moisture over agricultural fields as well as 

groves of fruit trees, damage of crops due to freezing, food 

processing, cooling towers, chemically-reactive vapour 

deposition boundary layers in optical materials processing, 

catalytic combustion boundary layers, chemical diffusion 

in disk electrode modelling and carbon monoxide reactions 

in metallurgical mass transfer and kinetics. Deka et al. [15] 

have examined the effect of homogeneous first-order 

chemical reaction on the flow past an impulsively started 

infinite vertical plate with uniform heat flux and mass 

transfer. Chamkha [16] have analyzed the MHD flow of 

uniformly stretched vertical permeable surface in the pres-

ence of heat generation/absorption and a chemical reaction. 

The problem of chemically reactive species of non-

Newtonian fluid in a porous medium over a stretching 

sheet was investigated by Akyildiz et al. [17]. Bakr [18] 

considered the steady and unsteady MHD micropolar flow 

and mass transfers flow with constant heat source in a ro-

tating frame of reference in the presence of the first-order 

chemical reaction, taking an oscillatory plate velocity and a 

constant suction velocity at the plate. 

Motivated by the investigations mentioned above, 

the aim of this investigation is to consider the effects of 

transverse magnetic field, coupling number, radiation and 

first order chemical reaction on the mixed convection heat 

and mass transfer along a vertical plate with variable wall 

temperature and concentration conditions embedded in a 

micropolar fluid. The governing system of partial differen-

tial equations is transformed into a system of non-linear 

ordinary differential equations using similarity transfor-

mations. This system of nonlinear ordinary differential 

equations is solved numerically using Keller - box method 

given in Cebeci and Bradshaw [19]. The effects of various 

parameters on the skin friction coefficient, wall couple 

stress are given in the form of a table and the effects of 

various parameters on the heat and mass transfer rates are 

presented graphically. 

 

2. Mathematical formulation 

 

Consider a steady, laminar, incompressible, two-

dimensional mixed convective heat and mass transfer 

along a semi infinite vertical plate embedded in a free 

stream of electrically conducting micropolar fluid with 

velocity U(x), temperature T∞ and concentration C∞. 

Choose the co - ordinate system such that x - axis is along 

the vertical plate and y - axis normal to the plate. The phys-

ical model and coordinate system are shown in Fig. 1. The 

plate is maintained at temperature Tw(x) and concentration 

Cw(x). These values are assumed to be greater than the am-

bient temperature T∞ and concentration C∞ at any arbitrary 

reference point in the medium (inside the boundary layer). 

A uniform magnetic field of magnitude B0 is applied nor-

mal to the plate. The magnetic Reynolds number is as-

sumed to be small so that the induced magnetic field can 

be neglected in comparison with the applied magnetic 

field. The fluid has constant properties except the density 

in the buoyancy term of the balance of momentum equa-

tion. The fluid is considered to be a gray, absorbing emit-

ting radiation but non-scattering medium and the Rosse-

land approximation [20] is used to describe the radiative 

heat flux in the energy equation. The radiative heat flux in 

the x - direction is considered negligible in comparison to 

the y - direction. The viscous dissipation and the Joule 

heating effects are assumed to be negligible in the energy 

equation. Also, it is assumed that there exists a homoge-

nous chemical reaction of first-order with rate constant R
*
 

between the diffusing species and the fluid. 

Using the Boussinesq and boundary layer appro-

imations, the governing equations for the micropolar fluid 

are given by [21, 3-7]: 

0
u v

x y

 

 
  ; (1) 

   

       

2

2

2

0*

T C

u u d u
u v U x U x

x y dx yy

B
g T T C C U x u

       

    


 


 


    

      ; (2) 

2

2
2

u
j u v

x y yy

      
   

  

   
      

   
; (3) 
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2

2

1 r

p

qT T T
u v

x y C yy

  


   
   ; (4) 

 
2

2

*C C C
u v D R C C

x y y

  

  
    . (5) 

 

Fig. 1 Physical model and coordinate system 

where u and v are the components of velocity along x - and 

y - directions respectively, p is the pressure, ω is the com-

ponent of microrotation whose direction of rotation lies in 

the xy - plane, g
*
 is the gravitational acceleration, T is the 

temperature, C is the concentration, βT is the coefficient of 

thermal expansion, βC is the coefficient of solutal expan-

sion, Cp is the specific heat capacity, B0 is the coefficient 

of the magnetic field, µ is the dynamic coefficient of vis-

cosity of the fluid, qr is the radiative heat flux, ρ is the den-

sity, κ is the vortex viscosity, j is the micro-inertia density, 

γ is the spin-gradient viscosity, σ is the magnetic permea-

bility of the fluid, α is the thermal diffusivity, D is the mo-

lecular diffusivity and R
*
 is rate of chemical reaction. 

The boundary conditions are: 

0 vu ,  wT T x ,  wC C x      at   0y ; (6a) 

 u U x , 0 , T T , CC   as     y ,  (6b) 

where the subscripts w and ∞ indicates the conditions at 

wall and at the outer edge of the boundary layer, respec-

tively. The boundary condition ω = 0 in Eq. (6a), repre-

sents the case of concentrated particle flows in which the 

micro  elements close to the wall are not able to rotate, due 

to the no - slip condition. 

The radiative heat flux qr is described by the Ros-

seland approximation such that: 

4

1

4

3

*

r

T
q

k y

 


  , (7) 

where σ
*
 and k1 are the Stefan - Boltzmann constant and 

the mean absorption coefficient respectively. We assume 

that the differences of the temperature within the flow are 

sufficiently small such that T
4
 may be expressed as a linear 

function of the temperature. This is accomplished by ex-

panding in a Taylor series about T∞ and neglecting higher - 

order terms, thus: 

4 3 44 3T T T T   . (8) 

Using Eqs. (7) and (8) in the last term of Eq. (4), 

we obtain: 

32 2

2 2

1

16

3

*

p

TT T T T
u v

x y C ky y

   


   

   . (9) 

The continuity Eq. (1) is satisfied by introducing 

the stream function   such that: 

y
u







;  

x
v







. (10) 

In order to explore the possibility for the ex-

istance of similarity, we assume: 

   

 
   

 
   

1

1

; ; ;

; ;

; ,

a b e

l

w

w

m

w

w

Ax f Bx y Ex g

T T
T x T M Bx

T x T

C C
C x C N Bx

C x C

    

 

 











  


    
 


   

 

 (11) 

where U(x) = ABxn, a, b, e, l, m and n are constants, A, B, 

E, M1, N1, are, yet unknown, constants. Substituting (10) 

and (11) in (2), (3), (4) and (9), we obtain: 

 

   

 

2 22 2 2 2 1 2 2 2 1 3 3

2

0
1 1 ;

a b n a b

b e * l m n a b

T C

A B x a b f ' aff '' A B nx AB x f '''

B
BEx g' g M x N x ABx ABx f '

 




   

 

   

 

     
 

        (12) 

    1 2 2 2 22a b e b e e a bABEx ef ' g afg' B Ex g'' Ex g AB x f ''
j j

 

 

        ; (13) 

  
3

1 2 2

1 1

1

16

3

a b l b l

p

T
ABM x lf ' af ' M B x ''

C k


   



    
 

   
  

; (14) 

  1 2 2

1 1 1

a b m b m * mABN x mf ' af ' DN B x '' R N x         , (15) 
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where the prime denotes the differentiation with respect to 

η. It is found that similarity exists only if: 

2 2 1 2 1 3

;

1 2 2 ;

1 2 ;

1 2 .

a b n a b b e l

m n a b

a b e b e e a b

a b l b l

a b m b m m

         


   


        
    


      

  (16) 

These relations give: 

b = 0, a = e = l = m = n = 1. (17) 

Hence, appropriate similarity transformations are: 

   

 
   

 
   

1

1

; ; ;

; ;

; .

w

w

w

w

A x f By Exg

T T
T x T M Bx

T x T

C C
C x C N Bx

C x C

    

 

 











   


    
 




  
 

 (18) 

Making use of the dimensional analysis, the con-

stants A, B, E, M1 and N1 have, respectively, the dimen-

sions of velocity, reciprocal of length, the reciprocal of the 

product of length and time, the ratio of (tempera-

ture/length) and of the ratio (concentration/length) and are 

defined as below: 

 

1
1 4

2 14
1 2

1

4
1

2

; ;

.

*
* T

T

*

T

M g
A M g B

M g
E


 








      
  


 
  
  

 (19) 

In view of (17) and (19) substituting (18) into 

Eqs. (12) – (15), we obtain: 

 

 

21

1 1

1 1 0;

N
f ''' g' f ' L

N N

ff '' M f '

 
   

       
    

      (20) 

  2 0;
1

N
g g f f g fg

N
 

 
        

 
 (21) 

 
1

3 4 0
3

R f f
Pr

        ; (22) 

1
0f f

Sc
         , (23) 

where 



Pr  is the Prandtl number, 

D
Sc


  is the 

Schmidt number, 





j
  is the spin-gradient viscosity, 






N ,  0 1N   is the Coupling number, 

1

1

M

N
L

T

c




  is the buoyancy parameter, 

2

2

0

B

B
M




  is the 

magnetic field parameter, 
2

1

jB
  is the micro-inertia 

density, 
1

34

kk

T
R

*




 is the radiation parameter and 

2B

*R


 

 

is the chemical reaction parameter. The primes 

denote differentiation with respect to similarity variable η. 

The boundary conditions (6) in terms of f, g, θ and 

  becomes: 

       

 

0 0; 0 0; 0 0; 0 1;

0 1 at 0;

f f ' g 

 

    


  

  (24a) 

     

 

1; 0; 0;

0 .

f g

as



 

       


   

  (24b) 

3. Skin friction and wall couple stress 

 

The wall shear stress and wall couple stress: 

 
0 0

, .w w

y y

u
m

y y

  
    

 
 

   
      
   

 (25) 

The dimensionless wall shear stress 
2

2

A
C w

f



 , 

wall couple stress 
2A

Bm
M w

w


 , where A is the characteris-

tic velocity, are given by: 

 
2

0
1

fC f x
N

 
  

 
 and  0 ,wM g x





 
  

 
 (26) 

where x  = B x. 

 

4. Heat and mass transfer rates 

 

The heat and mass transfers from the plate respec-

tively are given by: 

4

10 0

4

3

*

w

y y

T T
q k

y k y

  

 
 

  
     

   
 and  

0

m

y

C
q D

y






 
   

 
. (27) 

The non-dimensional rate of heat transfer, called 

the Nusselt number 
 


TTBk

q
Nu

w

w  and rate of mass 

transfer, called the Sherwood number 

 


CCBD

q
Sh

w

m
x  are given by: 

 
4

0 1
3

R
Nu '

 
   

 
 and  0Sh '  . (28) 
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5. Results and discussion 

 

The flow Eqs. (20) and (21) which are coupled, 

together with the energy and concentration Eqs. (22) and 

(23), constitute non-linear non-homogeneous differential 

equations for which closed-form solutions cannot be ob-

tained. Hence, the governing Eqs. (20) to (23) are solved 

numerically using the Keller-box implicit method [19]. 

This method has been proven to be adequate and give ac-

curate results for boundary layer equations. In the present 

study, the boundary conditions for η at ∞ are replaced by a 

sufficiently large value of η where the velocity, microrota-

tion, temperature and concentration approach zero. The 

value of η∞ is taken as 6 and a grid size of η as 0.01. In 

order to study the effects of the coupling number N, mag-

netic field parameter M, thermal radiation parameter R, 

chemical reaction parameter δ, Prandtl number Pr and 

Schmidt number Sc on the physical quantities of the flow, 

the remaining parameters are fixed as L = 1, λ = 1 and 

  = 0.1. The values of micropolar parameters λ and   are 

chosen so as to satisfy the thermodynamic restrictions on 

the material parameters given by Eringen [1]. 

 

0.0 0.3 0.6 0.9
0.66

0.77

0.88

0.99

R = 0.02;  = 1.0

 

 

Nu

N

 M = 0.0

 M = 1.0

 M = 2.0

 M = 3.0

 

a 

 

b 

Fig. 2 Effect of Magnetic parameter on a) heat transfer 

rate; b) mass transfer rate 

 

Fig. 2 depict the variation of heat and mass trans-

fer rates (Nusselt number Nu and Sherwood number Sh) 

with coupling number N for different values of magnetic 

parameter M. The coupling number N characterizes the 

coupling of linear and rotational motion arising from the 

micromotion of the fluid molecules. Hence, N signifies the 

coupling between the Newtonian and rotational viscosities. 

As N → 1, the effect of microstructure becomes signifi-

cant, whereas with a small value of N the individuality of 

the substructure is much less pronounced. As κ → 0 i.e., 

N →0, the micropolarity is lost and the fluid behaves as 

nonpolar fluid. Hence, N → 0 corresponds to viscous fluid. 

It is observed from Figs. 2, a and 2, b that the both Nusselt 

number and Sherwood number decrease as coupling num-

ber increases. It is noticed that the heat and mass transfer 

rates are more in case of viscous fluids. Therefore, the 

presence of microscopic effects arising from the local 

structure and micromotion of the fluid elements reduce the 

heat and mass transfer rates. Further, it is seen that both the 

Nusselt number and Sherwood number are increasing as 

the magnetic parameter is increasing. This is due to the 

motive force created by traverse magnetic field which 

tends to accelerate the flow. 

 

 

a 

 

b 

Fig. 3 Effect of Radiation parameter on a) heat transfer 

rate; b) on mass transfer rate 

 

The effect of radiation parameter on heat and 

mass transfer coefficient is displayed in Figs. 3, a and 3, b. 

It is noticed from these figures that both the Nusselt num-

ber and Sherwood number increase with the increase in the 

radiation parameter. Higher values of radiation parameter 

R imply higher values of wall temperature. Consequently, 

the temperature gradient and hence Nusselt number and 

Sherwood number increase. 

The variation of heat and mass transfer coeffi-

cients with coupling number for different values of chemi-

cal reaction parameter δ is depicted in Figs. 4, a and 4, b. It 

is clear from these figures that an increase in the chemical 

reaction parameter δ, leads to a decrease in the Nusselt 

number and an increase in the Sherwood number. Increase 
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in the values of chemical reaction parameter δ implies 

more interaction of species concentration with the momen-

tum boundary layer and less interaction with the thermal 

boundary layer. Hence, chemical reaction parameter has 

more significant effect on Sherwood number than it does 

on Nusselt number.  

 

 

a  

 

b 

Fig. 4 Effect of Chemical reaction parameter on a) heat 

transfer rate; b) on mass transfer rate  
 

Figs. 5, a and 5, b show the variation of heat and 

mass transfer coefficients with Prandtl number Pr. It is 

interesting to note that the Nusselt number is increasing 

whereas the Sherwood number is decreasing as Prandtl 

number increases. The reason is that smaller values of Pr 

are equivalent to increasing the thermal conductivities, and 

therefore heat is able to diffuse away from the heated plate 

more rapidly than for higher values of Pr. Hence in the 

case of smaller Prandtl numbers as the boundary layer is 

thicker and the rate of heat transfer is reduced. 

The effect of Schmidt number on the heat and 

mass transfer coefficients is plotted in Figs. 6, a and 6, b. It 

is clear that the Nusselt number is decreasing while the 

Sherwood number is increasing with increasing values of 

Sc. The Schmidt number embodies the ratio of the momen-

tum to the mass diffusivity. The Schmidt number therefore 

quantifies the relative effectiveness of momentum and 

mass transport by diffusion in the hydrodynamic (velocity) 

and concentration (species) boundary layers. Its effect on 

the species concentration has similarities to the Prandtl 

number effect on the temperature. That is increase in the 

values of Sc cause the velocity and species concentration 

and its boundary layer thickness to decrease significantly. 

 

a 

 

b 

Fig. 5 Effect of Prandtl number on a) heat transfer rate;  

b) mass transfer rate 

 

 

a 

 

b 

Fig. 6 Effect of Schmidt number on a) heat transfer rate; b) 

mass transfer rate 
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Table 1 shows the effects of the coupling number 

N, Prandtl number Pr, Schmidt number Sc, the magnetic 

parameter M, radiation parameter R and chemical reaction 

parameter δ on the non - dimensional skin friction Cf and 

the dimensionless wall couple stress Mw. It is seen from 

this table that both the skin friction and the wall couple 

stress decrease with increasing coupling number N. For 

increasing value of N, the effect of microstructure becomes 

significant; hence the wall couple stress decreases. The 

skin friction coefficient decreases and the wall couple 

stress increases with increasing Prandtl number and 

Schmidt number. Also, the effect of magnetic parameter is 

to increase the skin friction coefficient and decrease the 

wall couple stress. Further, it is observed that the skin fric-

tion coefficient is increasing and wall couple stress is de-

creasing with increase in the value of radiation parameter. 

The increase in chemical reaction parameter decreases the 

skin friction coefficient and increases the wall couple 

stress. 

 

Table 1 

Effect of skin friction and wall couple stress for various 

values of N, Pr, Sc and M 

N Pr Sc M R δ f’’(0) -g’(0) 

0.0 1.0 0.2 1.0 0.02 1.0 2.39348 0.00000 

0.3 1.0 0.2 1.0 0.02 1.0 1.96198 0.03005 

0.6 1.0 0.2 1.0 0.02 1.0 1.42737 0.09077 

0.9 1.0 0.2 1.0 0.02 1.0 0.61107 0.28577 

0.5 0.01 0.2 1.0 0.02 1.0 1.76858 0.07088 

0.5 0.1 0.2 1.0 0.02 1.0 1.72412 0.06863 

0.5 1.0 0.2 1.0 0.02 1.0 1.62226 0.06451 

0.5 10 0.2 1.0 0.02 1.0 1.52651 0.06221 

0.5 100 0.2 1.0 0.02 1.0 1.46377 0.06140 

0.5 1.0 0.2 1.0 0.02 1.0 1.62685 0.06470 

0.5 1.0 0.4 1.0 0.02 1.0 1.59272 0.06340 

0.5 1.0 0.6 1.0 0.02 1.0 1.57242 0.06272 

0.5 1.0 0.8 1.0 0.02 1.0 1.55810 0.06228 

0.5 1.0 1.0 1.0 0.02 1.0 1.54712 0.06197 

0.5 1.0 0.2 0.0 0.02 1.0 1.45336 0.06276 

0.5 1.0 0.2 1.0 0.02 1.0 1.62685 0.06470 

0.5 1.0 0.2 2.0 0.02 1.0 1.78148 0.06624 

0.5 1.0 0.2 3.0 0.02 1.0 1.92248 0.06752 

0.5 1.0 0.2 1.0 0.0 1.0 1.62563 0.06466 

0.5 1.0 0.2 1.0 0.5 1.0 1.64952 0.06546 

0.5 1.0 0.2 1.0 1.0 1.0 1.66530 0.06604 

0.5 1.0 0.2 1.0 1.5 1.0 1.67698 0.06650 

0.5 1.0 0.2 1.0 0.0 0.0 1.64977 0.06557 

0.5 1.0 0.2 1.0 0.5 1.0 1.62685 0.06470 

0.5 1.0 0.2 1.0 1.0 2.0 1.60994 0.06409 

0.5 1.0 0.2 1.0 1.5 3.0 1.59666 0.06363 

 

6. Conclusions 

 

In this paper, mixed convection heat and mass 

transfer in an electrically conducting micropolar fluid over 

a vertical plate with wall temperature and concentration 

conditions in the presence of a first order chemical reaction 

and radiation is considered. A uniform magnetic field is 

applied normal to the plate. Using the similarity variables, 

the governing equations are transformed into a set of ordi-

nary differential equations and numerical solution for these 

equations has been presented. The higher values of the 

coupling number N (i.e., the effect of microrotation be-

comes significant) result in lower Nusselt number and 

Sherwood number compared to the Newtonian fluid case. 

The numerical results indicate that the skin friction coeffi-

cients as well as rate of heat and mass transfers in the mi-

cropolar fluid are lower compared to that of the Newtonian 

fluid. 
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D. Srinivasacharya, M. Upender 

 

ŠILUMINĖS SPINDULIUOTĖS IR CHEMINĖS 

REAKCIJOS POVEIKIS MIŠRIAI  

MAGNETOHIDRODINAMINEI ŠILUMOS  

KONVEKCIJAI IR MASĖS PERNEŠIMUI  

MIKROPOLINIAME SKYSTYJE  

 

R e z i u m ė 

 

Šiame straipsnyje tiriamos mišrios konvekcijos ši-

lumos srauto ir masės pernešimo charakteristikos vertika-

lioje plokštelėje su kintančia sienelės temperatūra ir kon-

centracija mikropoliniame skystyje esant pirmos eilės 

cheminei reakcijai ir šiluminei spinduliuotei. Pastovaus 

dydžio magnetinis laukas yra nukreiptas statmenai į plokš-

telę. Pagrindinės netiesinės dalinių išvestinių diferenciali-

nės lygtys ir jų ribinės sąlygos yra transformuotos į susietų 

netiesinių paprastų diferencialinių lygčių sistemą naudojant 

panašumo transformacijas, o po to skaitmeniškai išspręstos 

Kelerio dėžutės metodu. Šilumos perdavimo greitis Nusel-

to skaičiaus terminais ir konvekcinis su difuzine mase per-

davimo santykis Šervudo skaičiaus terminais prie plokšte-

lės yra pavaizduoti grafiškai. Plėvelės trinties koeficientas, 

sienelės sąryšio įtempiai pateikti lentelės pavidalu esant 

skirtingoms magnetinių parametrų reikšmėms, sąryšio 

skaičiui, spinduliuotės bei cheminės reakcijos paramet-

rams, Prandtlio bei Šmidto skaičiams. 

 

 

D. Srinivasacharya, M. Upender 

 

THERMAL RADIATION AND CHEMICAL  

REACTION EFFECTS ON MHD MIXED  

CONVECTION HEAT AND MASS TRANSFER IN A  

MICROPOLAR FLUID 

S u m m a r y 

This paper analyzes the flow heat and mass trans-

fer characteristics of the mixed convection on a vertical 

plate with variable wall temperature and concentration in a 

micropolar fluid in the presence of a first order chemical 

reaction and radiation. A uniform magnetic field of magni-

tude is applied normal to the plate. The governing nonline-

ar partial differential equations and their associated bound-

ary conditions are transformed into a system of coupled 

nonlinear ordinary differential equations using similarity 

transformations and then solved numerically using the Kel-

ler - box method. The rate of heat transfer in terms of 

Nusselt number and the ratio of convective to diffusive 

mass transport in terms of Sherwood number at the plate 

are presented graphically. The skin-friction coefficient, the 

wall couple stress are shown in a tabular form for different 

values of magnetic parameter, coupling number, radiation 

parameter, chemical reaction parameter, Prandtl number 

and Schmidt number. 

 

Keywords: mixed convection, micropolar fluid, MHD, 

radiation, chemical reaction, heat mass transfer. 
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