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1. Introduction 

 
The delamination of the composites depends on 

its matrix and changes mechanical characteristics of rein-
forced elements during deformation. The mechanical be-
havior of laminated composites during compression is the 
case when the bending moment appears besides the axial 
forces. The thread experiences normal stresses and shear 
stresses [1-3]. Similar works were done while analyzing 
interfaces of I-beam shelves and walls [4] columns [5] 
beams [6], and cases of bar buckling depending on their 
geometry [6, 7, 9]. J. Brewer and P. Langace, M. Fenske 
and A. Vizzini [9 - 11] suggested the measuring criteria of 
delamination. Authors [11, 12] were solving the problems 
of composite fracture. However, the problem of investigat-
ing composite delamination remains topical, because the 
investigations and evaluations of thread remain difficult. 

Composite fracture measuring elasticity charac-
teristics for separate layers is analyzed by E. Saouma [13], 
Z. Gürdal [14]. With mechanical characteristics of separate 
layers known the measuring of composite fracture is possi-
ble. This allows selecting optimal lamination materials 
while producing bars of significant resistance. 

 
2. Delamination of laminated bars during buckling 

 
In case of buckling, Fig. 1 according to Euler’s 

formula, the critical buckling force is presented as follows 
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where  is critical buckling force;  is modulus of elas-
ticity;  is length of bar;  is minimum moment of iner-
tia. 
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Fig. 1 Bar buckling scheme. 

The important characteristic of material is com-
posite modulus of elasticity . It is calculated in the fol-
lowing way [15] 
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where t  is thickness of a layer, indexes  and mean 
cover, thread and filling respectively. 
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The modulus of elasticity  is accepted as resin. 
Also the composite  is received experimentally. 
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The limitary shear stresses limτ  are calculated in 

the following way [15] 

 1 2
2lim Ysinτ θ σ=  (3) 

where Yσ  is yield stress; θ  is angle of the layers with re-
gard to stretching axis. 

The lateral displacement is calculated as follows 
[16] 
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where  is lateral displacement; w x  is coordinate in the 
longitudinal direction of the bar;  is maximum lateral 
displacement in the middle part of the bar during delamina-
tion. 

maxw

Thus, when the plate is compressed by F  force, 
the transverse forces  are obtained in the following way 
[16] 
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In order to evaluate composite strength, various 
criteria are applied. One of the simplest is Tresca criterion, 
which evaluates normal stresses and shear stresses [10] 
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where xσ  is normal stresses; xyτ  is shear stresses. 
It is important that normal stresses yσ  in the di-

rection of axis y and shear stresses yzτ  on the plane yz are 
quite small and may not be considered. 

Then 
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where A  is area of cross-section; M  is bending moment; 
 is elasticity modulus of the laminated bar. effE

Normal stresses are calculated in the following 
way 
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where  and  are volumes of resin and reinforced ele-
ments, and n  is the ratio of elasticity moduli of reinforce-
ment and matrix. 
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According to the strength criterion of Mises [15] 

Yxyx στσ =+ 22 3   (10)     

where Yσ  is yield stress. 
Authors of this paper apply polynomial strength 

criteria [18] 
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Then the Eq. (11) is as follows 
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The stresses 21,σσ  are obtained as 
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When the strength criterion is put in the form [17] 
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the boundary conditions 
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We write 
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According to the experimental tests [17] strength 
criterion Eq. (17) corresponds the experimental results 
better than criterion Eq. (13) and even more precisely than 
criteria Eqs. (7) and (11). 

However, the polynomial strength criteria show 
formal approximation of experimental data in the coordi-
nates of principal axes. These criteria become more com-
plex in other coordinates. Therefore, the tensoric strength 
criteria are applied. For example, when the orthotropic 
material moves from the principal axes 1 and 2 to the 
turned axes 1´ and 2΄ at the angle , the strength 
criterion is presented  in the following way 
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When the boundary conditions are applied to ob-
taining constants, based on the Eq. (16), we obtain 
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This criterion differs from the criterion Eq. (17) 
because new constant  cannot be obtained, according 
to the conditions of Eq. (16). 
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Acording the tensoric criterion [18], which is pre-
sented in the following way 
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where  are constants materials; 21, mm μσY  is strength limit 
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(at xσ  and ), i. e. xyτ tY ,1 σσ =  while stretching, and while 

compressing when 3σ  stress is used, 1+=σμ  and 

cY ,3 σσ = . 
Then criterion Eq. (20) is presented in the follow-

ing way 
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With criterion Eq. (21) given in nonlinear form 
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In order to solve the delamination problem of a 
composite, authors of the paper apply strength criterion 
Eq. (23). Considering Eqs. (3) and (23), the strength crite-
rion is presented in the following way 
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From where ; . 43 =m 34 −=m
Thus, the strength criterion Eq. (23) is presented 

in the following way 
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Applying strength criterion in buckling the fol-
lowing value is calculated 
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where bx,σ is buckling stresses; bcr ,σ is critical buckling 
stresses.  

However, in order to observe fracture case while 
buckling the following values are necessary as cYbcr ,, σσ = . 
That way considering Eq. (9) after taking buckling force 

from the Eq. (1) and performing the operations, the follow-
ing formula is obtained 
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This formula determines the relation between val-
ues of length  and shear angle crL crθ  with straight bar or 
bar made from composite being buckled. 
 
3. Regularities of spreading interlayer fracture 

 
Interlayer of laminar material suffers normal yyσ  

and tangential xyτ  stresses in Fig. 2. 

 
 

Fig. 2 Fracture geometry at layer junction 

Referring to studies of Victor E. Saouma [13], in 
case of flat deformation relative fracture energy G  is cal-
culated as follows 
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1E , are moduli of layer elasticity; 2E 1ν , 2ν  are 
Poisson’s ratios for the layer; ,  are intensity ratios 
for layer stresses; 

1K 2K
ε is variable calculated as follows 
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β  is parameter of elasticity loss calculated as fol-
lows 
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where 1μ , 2μ  are shear moduli for layers. 
Stress intensity ratios  and calculated as 

follows [18] 
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Marked ( )2cos log a Bε = ; ( )2 2sin log a Cε ε = ; 

( )2sin log a Dε = ; ( )2 2cos log a Hε ε = ; ( )cosh Jπε = . 
The following equations are presented 
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Considering that buckling presents critical stress-
es calculated after the Eq. (30) 
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Eqs. (36) and (37) presented as follows 
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Therefore, values  considering Eq. (30) are ob-
tained as follows 
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After certain operations in Eq. (40) the following 
equation is obtained 
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Eq. (40) has a short form presented as the 
following equation 
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Further, dependence of fracture energy on angleθ  
is analyzed. 

Several edge cases are: 
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4. Determination of strength and fracture  

characteristics 
 

In order to perform experimental tests, the com-
posite bar of thickness 12 mm was chosen. Laminated by 

mm50.tv = cover, resin thickness , and fiber-
glass thickness . This makes relative volume of 

filling , and one of matrix  is 0.35. Modulus 

of elasticity are the following: filling is , res-

in is 

mm2=mt
mm7=ft

620.V f = rV

GPa45=fE

GPa11=mE , cover . Thus, total 
modulus of elasticity received from the Eq. (2) makes 

GPa11== mv EE
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GPa8930.E = .  and  proportion is 
. According to ASTM D 638, sample 

width is 12.7 mm, 

fE mE
094.E/En mf ==

MPa 3000, =cYσ . 
Cross-section area is  

6 2152.4 10 mA −= ⋅ .  
Area moment of inertia  

49
3

min m10048.2
12

−⋅===
bhII ef . 

Strength limit of compression  
, , 3000 MPacr c Y cσ σ= =   

and . 2mN63 ⋅=efEI
Entered the values of experimental and calculated 

parameters into the formula (29) the following is obtained: 

241.28 1 2cr cr crL sin cosθ θ= +   (44)  In such a way, having different values of critical delamination an

Table 
Dependencies of critical delamination angles and plate 

lengths 
 

No. crθ , degrees crL , m 
1 0 1.28 
2 5 1.286 
3 10 1.308 
4 28 1.3705 
5 30 1.39 
6 32 1.367 
7 40 1.103 
8 45 1.076 

 
According to Table, maximum critical length of 

the bars is received with the delamination angle . 030
With this angle maximum resistance stratification 

is obtained, and minimum resistance stratification with 
.  45=θ
Minimum critical length given by , and 

critical value of fracture energy are applied in this case. 
Further, fracture regularities are analyzed.  

45=θ

With  Eq. (42) presents 45=θ crL

( )2 2
,0.6666 0.125c cr bG Z aσ σ= + x   (45)      

with bcrx ,σσ = , 

aZG bcrc
2

,792.0 σ=    (46)       

Consequently, critical value of fracture energy is 
described by material characteristics Z and b,crσ , that de-
pends on fracture length . dependence for ana-
lyzed glass plastic bar presented in Fig. 3. 

a aGc −

The obtained dependences allow measuring criti-
cal values of relative energy with various approximate 
thread lengths and active stress known. Therefore, practical 
observing thread length and known active stresses allows 
foreseeing after critical energy value if the fracture spreads 
further causing construction failure or the thread remains 
constant (Fig. 4)..  

 
Fig. 3 Dependence of critical fracture energy on thread 

length 

With constGc =  stresses xσ  depend on thread  
in Fig. 4. 

a

 

 

Fig. 4 Dependence of fracture stresses on thread length 

5. Conclusions 
 
1. Delamination of composite constructional ele-

ments is determined by normal and shear stresses in the 
thread. 

2. Strength criteria used to evaluate composite 
strength are too complex because of big number of con-
stants and their difficult determination. 

3. The nonlinear strength criterion suggested by 
the author in case of complex state of stresses allows ob-
taining engineeringly simple dependency between critical 
delamination angles and critical bar lengths at buckling. 

4. According to the experimental and calculation 
data, minimum critical length of the bar at buckling is ob-
tained with the delamination angle 45°. 

5. Measuring elasticity characteristics for separate 
layers critical fracture energy is calculated after suggested 
formulas.  

6. Having critical values of fracture energy further 
possibilities of fracture are foreseen after thread length and 
stresses.  
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A. Žiliukas, A. Malatokienė 

LAMINUOTO STAČIAKAMPIO STRYPO IRIMAS PO 
KLUPDYMO 

R e z i u m ė 

 Kompozitinių konstrukcinių elementų atsisluoks-
niavimas nustatomas pagal normalinius ir šlyties įtempius. 
Darbe autoriai siūlo taikyti netiesinį stiprumo kriterijų  
esant sudėtingiems įtempiams. Po klupdymo laminuoto 
strypo plyšio plitimas aprašomas sudėtiniais irimo kriteri-
jais. Parodoma irimo energijos priklausomybė nuo sluoks-
nių mechaninių charakteristikų bei tarpsluosknio pasiprie-
šinimo šlyčiai. Gauti teoriniai sprendiniai patvirtinti ekspe-
rimentiniais tyrimais, nagrinėjant stikloplastikį.  

A. Ziliukas, A. Malatokiene 

FRACTURE OF LAMINATED RECTANGULAR BAR 
AFTER BUCKLING 
 
S u m m a r y 

The delamination of composite constructional 
elements is determined by normal stresses and shear stres-
ses. The non-linear strength criterion is suggested by the 
authors in case of complex state of stress. Fracture of lami-
nate bar after buckling is described by mixed fracture 
spreading regularities. Dependence of fracture energy on 
mechanical characteristics of the layers and shear resistan-
ce of the interlayer is presented. The obtained theoretical 
values are based on experimental investigation of glass 
plastic. 
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