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Nomenclature 

 

Da - Darcy number; L - length of conical tube, mm;  

Q - Darcy velocity, ms
-1

 ; R0 - entrance radius, mm;  

RL - exit radius, mm; Rp - radius of the plug flow region, 

mm; p - pressure, N/m
2
; r - radius, mm; uB - slip velocity, 

ms
-1

; uav - average velocity, ms
-1

; vz - velocity component 

in z - direction, ms
-1

; k - permeability; z - flow axis;  - slip 

parameter; μ0 - coefficient of viscosity at the interface, 

kgm
-1

s
-1

; τ0 - yield stress, N/m
2
 ; τrz - shear stress, N/m

2
. 

 

1. Introduction 

 

The blood vessel can be idealized as a tube with 

tissue space as circular porous bed (Vide Guha and Chua-

dhury, 1985).The rotating viscometer data of Rand et al. 

[1], Bugliarello et al. [2] and Chien et al. [3] suggest the 

non-Newtonian behaviour of blood. Lew et al. [4] suggest-

ed chyme as a non-Newtonian material having plastic-like 

properties. In view of this the biofluid flow in a living 

body can possess the non-Newtonian behaviour in general. 

In order to have a better understanding of blood flow in 

arteries and veins and chyme flow in stomach. It is neces-

sary to consider the biofluid to be an yield stress fluid. One 

of the models for yield stress fluids is Bingham model. 

Hence the study of Bingham fluid flow through a conical 

tube with permeable wall is of considerable importance in 

medicine.  

Bird et al [5] investigated the Bingham fluid flow 

in a rigid circular tube. Rathy [6] studied the flow of a 

Bingham fluid in a channel and in an annulus with imper-

meable walls. Vajravelu et al. [7] made a study on the 

Bingham fluid in a circular tube with permeable wall. The 

velocity field is obtained using Beavers and Joseph [8] slip 

condition at the permeable wall. Buckingham-Reiner equa-

tion for the flow is obtained.  

The Bingham fluid flow between two permeable 

beds is discussed by Goverdhan et al. [9].The flow in the 

channel is assumed to be governed by Bingham model. 

The flow in the permeable beds is governed by Darcy’s 

law. The velocity distribution is obtained. Some results are 

deduced and discussed. Comparini [10] discussed a one-

dimensional model for the time dependent flow of a Bing-

ham fluid between two parallel plates. The global existence 

and uniqueness of classical solution to the problem is 

proved. 

Ravana et al. [11] studied the free surface flow of 

a Bingham fluid in an inclined channel over a permeable 

bed. The flow in the channel is described by Bingham 

model, whereas the flow in the permeable bed is according 

to Darcy’s law. The velocity field, the shear stress, the 

mass flow rate and its fractional increase are obtained.  

The problem of rotational motion of a Bingham 

fluid in the gap between two coaxial cylinders, the outer 

one being at rest and the inner one moving at given angular 

velocity is solved by Comparini [12]. 

Narahari [13] discussed unsteady flow of a Bing-

ham fluid between two permeable beds having different 

permeabilities. The velocity distribution in the porous and 

non-porous regions are obtained. Some deductions are 

made and the results are discussed.  

Sankara Reddy et al. [14] made a detailed study 

on the Bingham fluid flow in an inclined channel bounded 

by two permeable beds. The velocity distribution in the 

porous and non-porous regions are obtained. The tempera-

ture variation with Ec.Pr is discussed. 

Viswanatha Reddy et al. [15] made a study on 

Bingham fluid flow in an annulus. The velocity field, the 

mass flow rate and its fractional increase are obtained. The 

results are deduced and discussed. Helical flow of a power-

law fluid in a thin annulus with permeable walls is investi-

gated by Vajravelu et al. [16]. It is observed that velocity 

increases due to permeable nature of the annulus.  

In this paper, Bingham fluid flow through a coni-

cal tube with permeable wall is investigated. The velocity 

distribution, the volume rate of flow and its fractional in-

crease are obtained. The results are deduced and discussed 

through graphs. 

 

2. Mathematical formulation  

 

Consider the flow of a Bingham fluid through a 

conical tube of length L with permeable wall. The flow 

takes place due to pressure gradient, and the porous medi-

um is homogeneous with permeability k. The flow sur-

rounded by the porous medium is governed by the Bing-

ham model, and the flow in the porous medium is gov-

erned by the Darcy’s law. 
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Fig. 1 Physical model: conical tube 
 

The tube has a radius R0 at the entrance and radius 

RL at the exit (Fig. 1). The tube radius at any distance z 

from the inlet is given by  
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  0
0

LR R
R z R z

L

 
   

 
. (1) 

The flow is axi-symmetric. Cylindrical polar co-

ordinate system is used. The following assumptions are 

made in deriving the governing equations: 

- the flow is steady and incompressible; 

- the flow is in axial direction; 

- all physical quantities except the pressure are function 

of z only; 

- the body forces are negligible. 

In view of the above assumptions, the governing 

equations and boundary conditions of the flow take the 

following form: 

 

2.1. Governing equation 

 
1

rz

d dp
r

r dr dz


 
  

 
, (2) 

where 

0 0= z
rz

dv

dz
    . (3) 

2.2. Boundary conditions 

=r z  finite at = 0r ; (4) 

= 0zdv

dr
 at = pr R ; (5) 

=z Bv u  at r R ; (6) 

 =z
B

dv
u Q

dr k


  at =r R , (7) 

where 

=
k dp

Q
dz

 . (8) 

By integrating equation Eq. 2 and using the 

boundary condition (4), we obtain: 

=
2

rz

dp r
a

dz


 
 
 

. (9) 

Substituting (9) in (3), we get: 

=
2

z
0 0

dv dp r

dz dz
 

 
  

 
, (10) 

where 0 , rz , , k , uB, Q, 0 , avu , zv , p and Rp are the 

yield stress, Shear stress, slip parameter, permeability, slip 

velocity, Darcy velocity, coefficient of viscosity at the in-

terface r = 0, average velocity, velocity component in  

z- direction, pressure and radius of the plug flow region. 

 

2.3. Dimensionless equations 

 

The flow physical parameters are made dimen-

sionless as follows: 
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2.3.1. Radius equation 

 

Eq. (1) takes the form (* are omitted here after): 

 1 1LR R - z  . (11) 

2.3.2. Governing equation 

 

Eq. (10) takes the form (* are omitted here after): 

1
=

2

0 zdv P

r r dr


 , (12) 

where =
dp

P
dz

 . 

 

2.3.3. Dimensionless boundary conditions  

 

Eqs. (4)-(8) take the form (* are omitted here af-

ter): 

= 0zdv

dr
 at pr R ; (13) 

z Bv u  at r R ; (14) 

 =z
B a

dv
u D P

dr k


  at =r R , (15) 

where 
2

0

a

k
D

R
 . 

 

3. Solution of problem 

 

Solving (12) and using the boundary condition 

(14) we obtain the velocity field around the plug flow re-

gion as: 

   
22

1 0=
4

B

P
v r R r R u     , (16) 

when pR r R   . 

Using (15) in (16), we get the slip velocity at the 

porous wall as: 

0

2

a

B a

P D R
u D

P






 
   

 
. (17) 

Using (13) in (16), we obtain the relation between 

p  and pR  as: 
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02
pR

P


 . (18) 

Taking = pr R  in Eq. (16) and using the relation 

(18), we get the velocity field in the plug flow region as: 

 
2

2 =
4

p B

P
v R R u   , (19) 

when 0 pr R  . 

The flow in the porous region ( pr R ) is gov-

erned by the Darcy law which is given by: 

aQ PD . (20) 

4. Deductions 

 

Case (a): when   = 1R z  and the permeability pa-

rameter 1k   in the Eqs. (16), (17) and (19) we get the 

velocity field outside the plug flow region pr R : 

   2

1 0= 1 1
4

B

P
v r r u     , (21) 

and that in the plug flow region pr R . 

 
2

2 = 1
4

p

P
v R  , (22) 

which are in agreement with those of Bird et al (1960). 

 

Case (b): when   = 1R z , the Eqs. (16), (17) and 

(19) we get the velocity field for the flow of a Bingham 

fluid flow through a circular pipe with permeable wall as 

follows: 

2

1 0 0
4

B

P
v r r u      , (23) 

when 1pR r  ; 

01

2

a

B a

P D
u D

P






 
   

 
; (24) 

 
2

2 = 1
4

p B

P
v R u  , (25) 

when pr R . These equations agree with those of Va-

jravelu and Sreenadh (1987). 

 

Case (c): when   = 1R z  as 0 0  , the velocity 

field for the flow with permeable wall is given by: 

2=
4 4

z B

P P
v r u   , (26) 

when 1pR r  . 

1
= -

2

a

B a

P D
u D



 
 
 

. (27) 

These results are in a good agreement with those 

of Sreenadh and Arunachalam (1983). 

 

5. Volume rate flow 

 

The Volume rate of flow for the flow of a Bing-

ham fluid flow through a conical tube is: 

   

2 21

2 10 0 0 0

20
1 2             

8 8

pR R

B

Q v rdrd v rdrd

p
B B u R

 
 




  

  

   

, (28) 

where 4 4 3

1 3 4p pB R R RR    and 3 3 2

2 2 3p pB R R RR   . 

When the permeability parameter  k 0  (i.e., 

0aD  ) (28) reduces to: 

   1 0
1 2

8 3

p
Q B B


  , (29) 

where 4 4 3

1 3 4p pB R R RR    and 3 3 2

2 2 3p pB R R RR   . 

 

6. Fractional increase 

 

The fractional increase in the volume rate of flow 

of the Bingham fluid through a conical tube with permea-

ble wall over what it would be if the wall of the tube were 

impermeable is: 

  2
4 3B 3 4

8 3

1 1
0

p p1
0 210

Q Q u R
F R RR

BPBQ 


   



, (30) 

where 
4 4 3

1 3 4p pB R R RR    and 3 3 2

2 2 3p pB R R RR   . 

 

7. Discussion of the results 

 

The velocity profiles are shown in Figs. 2 - 12 for 

different values of τ0, Darcy number Da, P = 10 and  = 1. 

It is observed that the velocity attains maximum value at 

r = 0 and decreases with the increment in r. 

For fixed r and Da, the velocity decreases due to 

increase in z. The slip velocity at the permeable wall de-

creases with the increment in the value of Da. On compar-

ing the velocity profiles for permeable and impermeable 

conical tubes, it is found that the velocity is enhanced due 

to the permeability of the wall of the conical tube. It is also 

observed that the velocity remains constant from the axis 

(i.e., r = 0) up to some value of r (which is the Plug flow 

region) and then decreases to a value at the permeable wall 

(which is the non Plug flow region). 

For fixed r and τ0, the velocity increases with dec-

rement in Da. As Da decreases the gap between the velocity 

curves becomes smaller for any fixed τ0. For larger τ0, there 

is an increase in plug flow region. From Fig. 13 it is ob-

served that, for the fixed Darcy number Da, the velocity 

decreases along the axis with the increase in τ0. It is the 

other way at the permeable wall. 
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Fig. 2 Velocity profiles for z = 0, τ0 = 0.1 
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Fig. 3 Velocity profiles for z = 0, τ0 = 0.5 
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Fig. 4 Velocity profiles for z = 0, τ0 = 0.8 
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Fig. 5 Velocity profiles for z = 0, τ0 = 1.1 
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Fig. 6 Velocity profiles for z = 0.4, τ0 = 0.1 
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Fig. 7 Velocity profiles for z = 0.4, τ0 = 0.5 
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Fig. 8 Velocity profiles for z = 0.4, τ0 = 0.8 
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Fig. 9 Velocity profiles for z = 0.4, τ0 = 1.1 
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Fig. 10 Velocity profiles for z = 1, τ0 = 0.1 
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Fig. 11 Velocity profiles for z = 1, τ0 = 0.5 
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Fig. 12 Velocity profiles for z = 1, τ0 = 0.8 
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Fig. 13 Velocity profiles for Da = 0.1 

The fractional increase in volume rate of flow is 

numerically evaluated and is depicted in Fig. 14. It is ob-

served that for a fixed Darcy number Da, the fractional 

increases with yield stress τ0. 
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Fig. 14 Fractional increase 

 

6. Conclusion 

 

In this work, we have investigated a Bingham flu-

id flow through a conical tube with permeable wall. The 

velocity distribution, the volume rate of flow and its frac-

tional increase are obtained. The Velocity profiles obtained 

for different values of the yield stress, and a fixed Darcy 

number, pressure gradient along the flow equal to 10 and 

slip parameter equal to 1, show that the velocity attains 

maximum value on the tube axis and decreases with the 

increment of the rayon.  

For a fixed rayon and fixed pressure gradient 

along the flow, the velocity decreases along the z-axis 

(when z increase). The slip velocity at the permeable wall 

decreases with the increment in the value of the Darcy 

number. The comparison between the velocity profiles for 

permeable and impermeable conical tubes shows that the 

velocity is enhanced due to the permeability of the wall of 

the conical tube. The velocity remains constant in the Plug 

flow region and decreases in the non Plug flow region.  

For fixed radius and fixed yield stress, the veloci-

ty increases with decrement in the Darcy number. As Dar-

cy number decreases the gap between the velocity curves 

becomes smaller for any fixed yield stress. For larger yield 

stress, there is an increase in plug flow region. For fixed 

Darcy number, the velocity decreases along the axis flow 

with the increase in yield stress. It is shown that for a fixed 

Darcy number, the fractional increases with yield stress.  
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N. Sad Chemloul 

ANALITINĖ BINGHAMO SKYSČIO SRAUTO 

TEKĖJIMO KŪGINIU VAMZDŽIU STUDIJA 

R e z i u m ė 

Tiriamas Binghamo skysčio srauto tekėjimas kū-

giniu vamzdžiu su pralaidžiomis sienelėmis. Srautas teka 

dėl slėgių gradiento, kai korėta terpė yra homogeninė, o jos 

skvarbos koeficientas yra k. Srautas, apsuptas korėtos ter-

pės, nusakomas Binghamo modeliu, o srautas korėtoje ter-

pėje – Darsio dėsniu. Nustatytas greičio pasiskirstymas, 

srauto tūrio koeficientas ir nežymus jo padidėjimas. Rezul-

tatai pateikiami ir aptariami naudojantis grafais. 
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ANALYTICAL STUDY OF BINGHAM FLUID FLOW 

THROUGH A CONICAL TUBE 

 

S u m m a r y  

 

Bingham fluid flow through a conical tube with 

permeable wall studied. The flow takes place due to pres-

sure gradient, and the porous medium is homogeneous 

with permeability k. The flow surrounded by the porous 

medium is governed by the Bingham model, and the flow 

in the porous medium is governed by the Darcy’s law. The 

velocity distribution, the volume rate of flow and its frac-

tional increase are obtained. The results are deduced and 

discussed through graphs.  
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