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1. Introduction 

 

The study of a high-speed deformation of struc-

tural materials is very important due to wide opportunities 

of its application in engineering. It should be accounted for 

in the assessment of the dynamic strength of structures 

under impact and shock loads either under technological 

operating conditions, or in emergency or critical situations. 

Detailed analysis of the high-speed deformation is also 

required in the derivation of processing parameters for 

formation and strengthening of structural elements with 

highly intensive energy sources. One of the distinctive fea-

tures of these processes is dynamic properties of materials 

[1], which primarily concern theoretical foundations of 

materials science and, in particular, the study of the phe-

nomenon of formation of dissipative structures under im-

pact supply of deformation energy [2]. 

Although in general case the problem involves 

complicated, geometrically and physically nonlinear me-

chanical models [3], many important relations and effects 

that precede irreversible deformations can be observed and 

studied using linear models of elasticity [4]. 

This paper considers corresponding elastic prob-

lem for a plate with boundary conditions, which differ 

from traditional ones: instead of shear stress, correspond-

ing components of displacement vector are equal to zero at 

surfaces, which are loaded with normal tension. This 

change in boundary conditions allowed agreeing the math-

ematical formulation of the problem with the experimental 

conditions during studies of the dynamic response of rec-

tangular samples to impact loading [2] and to avoid tradi-

tional mathematical difficulties that arise while considering 

two-dimensional elastic problems for a rectangular domain 

[5]. 

 

2. Problem formulation and solution strategy 

 

Consider a rectangular plate of a size 2 2h l  at x1 

and y1, respectively (Fig. 1). At the time 0t   the plate is 

loaded with a normal tension  p t  applied to its fixed 

edges 1x l  . Boundaries 1y h   are traction-free during 

the entire deformation process. The following dimension-

less variables and constants are introduced: 1x x / l , 

1y y / l , 0x h / l ,  2

1 2 2c / c /      , 1c t / l   

where c1 and c2 are the phase velocities of longitudinal and 

transverse waves for considered material of the plate, λ and 

 are elastic moduli (Lame constants). 
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Fig. 1 Sketch of the problem 
 

In terms of these variables, assuming that before 

the time 0t   the plate was at rest, the problem has the 

following mathematical formulation: 
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where  , , x yx y u x u y        is the volumetric 

expansion,  , ,xu x y   and  , ,yu x y   are the components 

of elastic displacement vector, and 
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are the components of stress and strain tensors, respective-

ly. 

From the conditions (4), accounting for: 
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it follows that 

   1 21, , 1, ,xx y y         . (7) 
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The Laplace integral transform for a time variable 

[6] and a finite Fourier cosine transform for a spatial varia-

ble x [7] can be applied to Eq. (1). Accounting for sym-

metry of the problem, zero initial conditions (3), relations 

(7) and conditions (4), Eq. (1) writes as: 
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    , (8) 

where  2 1 2, 0,1,2,n n / n    , and  ,n y s   

     
1

1 0

, ,ncos x x y exp s d dx    




    is Laplace and 

Fourier dual transform. 

Applying the same dual transform to Eq. (2) one 

obtains: 
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where        
1

1 0

, , ,n n yv y s cos x u x y exp s d dx   




   . 

Accounting for the fact, that the function  ,n y s  

is even with respect to the argument y, the solution of 

Eq. (7) is as follows: 
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with 
2 2

1 n s   . 

Accounting for (10), the solution of Eq. (9) writes 

as: 
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Two quantities  nA s  and  nB s  can be obtained 

based on the boundary conditions (5), which dual Laplace 

and Fourier transform writes as 

 2

0

0

2 2 0, ;

0, .

n
n

n
n n

du
y y

dy

du
v y y

dy

 




     



    


 (13) 

Accounting for Eqs. (10)-(12), from Eq. (13) one 

obtains 
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where 
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Finally, accounting for obtained values of  nA s  

and  nB s  the transforms of transient displacements are 

equal to 
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Inverse Laplace transform is obtained using the 

partial fraction expansions theorem [6, 8]. For this purpose 

one should first consider the first expression in Eq. (15) 

and solve it for singular points of the denominator. It is 

obvious that the roots of the equation 1 0   are not the 

singular points of the denominator, therefore consider the 

following equation: 
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The roots of the characteristic Eq. (16) are purely 

imaginary and complex conjugate. Therefore, it is conven-

ient to change variables with s i  to obtain 

2 2

1 n     and 2 2 2

2 n     , respectively. It is 

obvious that the roots n,k  depend on the discrete parame-

ter n , therefore, there are three possible cases of there 

location: 

1 10 ; ;n,k n n n,k n n,k n              . (17) 

For the first interval, the characteristic equation 

preserves its form (16) and has finite number of the roots 

1n,k , . 

As for the interval 
1

n n,k n      , the charac-

teristic equation writes as: 
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for 2 2 2

2 n     . Eq. (18) has a finite number k2 of the 

roots 2n,k , . 

And, respectively, for the interval n,k n   the 

equation 
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for 2 2

1 n     has an infinite number of the roots 

3n,k , . 

To obtain the inverse of Eq. (15) using the partial 

fraction expansions theorem, one should evaluate the de-

rivative of the denominator [6, 8]. To apply this, consider a 

derivative of the expression for  , s   for different inter-

vals of location of the roots of the characteristic equation: 
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The second expression in Eq. (15) besides the 

roots of the characteristic equation (16) has singular points 

placed at the roots of the equation 1 0  : s i  . Ac-

counting for this, the final expressions for transient com-

ponents of the displacement vector write as: 
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where  

     
0

,f p t sin t dt


     . (24) 

Eq. (23) expresses exact closed-form solution of 

the transient dynamic problem of elasticity for a rectangu-

lar plate under arbitrarily time-dependent external load. 

The components of strain and stress tensors are 

evaluated by applying strain-displacement and stress-strain 

relations (6) to the obtained displacement components 

(23). Also it can be shown that all series in the solution 

(23) converges uniformly, therefore differentiation opera-

tors used in derivation of stress and strain tensors can be 

applied directly under the sum sign. 

Particularly, to evaluate stresses at the arbitrary 

point of the plate based on Eqs. (6) and (23) one obtains 

the following formulae 
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3. Numerical results 

 

In practice, dynamic impact loading is always 

continuous in time, and increase faster or slower from zero 

value to the limiting one. Therefore, the high-speed in-

crease in load is approximated with a relation 

    
2

1p t p* exp at   , which can be expressed in 

terms of the dimensionless time   as follows 

    
2

01p p exp     , (28) 

where  0 1l a / c    is a loading rate, 
*p  is a dimension-

al parameter (Pa). This relation allows agreeing initial and 

boundary conditions, and also it allows accurate approxi-

mation of the real dependence of dynamic load on time in 

many practically important cases (Fig. 2). 

 

Fig. 2 Dependence of the applied load on the dimension-

less time 

Numerical calculations are held for a plate made 

of aluminum alloy 2024-Т3 [9], which Young modulus and 

Poisson ration are equal to 6 9E .  GPa, 0 3.  , respec-

tively. One should note that the value of the dimensionless 
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time 1   correspond to the time 0 02 mst .  for the 

length of the plate, which equals 2 0 3 ml . . 

Evaluating the integral (24) for the load-time de-

pendence given by Eq. (28) one obtains explicit expression 

for the function  ,f   : 
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Fig. 3 shows the time dependence of the dimen-

sionless longitudinal stress *

xx / p  at the point, which is 

located at the symmetry axis of the plate ( 0 5, 0x . y  ). 

The stress is calculated by means of Eqs. (25) and (29) for 

different values of the parameter 0  (loading rate). 

 

Fig. 3 Longitudinal stress in the plate obtained for different 

values of the loading rate 

One can see in Fig. 3 that the time dependence of 

the longitudinal stress essentially depends on the parameter 

0 : for 0 0 2.   this dependence is quasi-static one (re-

peats time dependence of the external load), and for 

0 10   it practically coincides with vibrations caused by 

the abrupt (shock) loading    *p p S  . Increase in 

the parameter 0  also causes increase in the amplitude of 

vibrations and decrease in time of the arrival of the fist 

wave-front. 

The same conclusions can be made for dynamic 

distributions of the dimensionless transverse stress at the 

same point (Fig. 4) and the dimensionless shear stress at 

the point 0 5, 0 15x . y .   (Fig. 5) depending on the pa-

rameter 0 . 

However, unlike previous results, the influence of 

the parameter 0  on the amplitude of vibrations is more 

significant: the increase in the loading rate parameter from 

the value of 0 1   to 0 5   causes increase in the ampli-

tude of transverse stress up to three times, and increases 

the shear stress up to two times. At the same time the lon-

gitudinal stress increases at only 40–45%. 

 

Fig. 4 Transverse stress in the plate obtained for different 

values of the loading rate 

 

Fig. 5 Shear stress in the plate obtained for different values 

of the loading rate 

Besides, one can see that maximal magnitude of 

the longitudinal stress is much higher than corresponding 

of transverse and shear stresses. In this context, one can 

arise a question about the difference between the obtained 

distributions of longitudinal stress and the corresponding 

one, which is obtained by neglecting the change of elastic 

field parameters in the y direction (one-dimensional mod-

el). 

In the case of the one-dimensional model, based 

on relations (28), the longitudinal stress in the plate are 

defined by the following formula: 
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 (30) 

Fig. 6 presents the comparative analysis of distri-

butions of the dimensionless longitudinal stress inside the 

plate, obtained based on Eqs. (25) and (30) for 0 5  . 

One can see in Fig. 6 that the error of calculations 

obtained based on the one-dimensional model does not 

exceed 10-15% comparing to the two-dimensional one. 

Accounting for the abovementioned results for shear and 

transverse stresses, this allows using a simple one-

dimensional model in the applied engineering analysis. 

 



625 

-1 -0.5 0 0.5 1

-0.2

0

0.2

-1 -0.5 0 0.5 1

-0.2

0

0.2

-1 -0.5 0 0.5 1

-0.2

0

0.2

-1 -0.5 0 0.5 1

-0.2

0

0.2

-1 -0.5 0 0.5 1

-0.2

0

0.2

-1 -0.5 0 0.5 1

b

-0.2

0

0.2

-1 -0.5 0 0.5 1

-0.2

0

0.2

ta
u
=

0
.5

-1 -0.5 0 0.5 1

-0.2

0

0.2

ta
u

=
1

.0

-1 -0.5 0 0.5 1

-0.2

0

0.2

ta
u

=
1
.5

-1 -0.5 0 0.5 1

-0.2

0

0.2

ta
u

=
2

.0

-1 -0.5 0 0.5 1

-0.2

0

0.2

ta
u

=
2

.5

-1 -0.5 0 0.5 1

a

-0.2

0

0.2

ta
u

=
3

.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

 

Fig. 6 Distribution of longitudinal stress in the plate for different moments of time obtained based on the two-dimensional 

(a) and one-dimensional (b) models 

4. Conclusions 

 

Using the Laplace transform for the time variable 

this paper solves the transient dynamic problem of elastici-

ty for a rectangular plate in the form of double trigonomet-

ric series. The solution, which models the high-speed elas-

tic deformation of materials, is obtained with the assump-

tion that the surfaces, which are loaded with normal ten-

sion, are constrained such that during the transient defor-

mation tangential stresses are equal to zero at these surfac-

es. This assumption allowed bypassing traditional mathe-

matical problem, which is raised in the study of transient 

dynamic problems for finite two-dimensional domains, and 

allowed further application of Fourier integral transform 

for the spatial variable. 

Based on the obtained analytic solution the nu-

merical analysis of the transient stress dependence on the 

loading rate is held for a rectangular plate made of the 

aluminum alloy 2024-T3. It is observed that the increase in 

the loading rate essentially increases the magnitude of vi-

brations, and only slightly influence their frequency. Vi-

brations have harmonic behavior, since the mathematical 

model used does not consider damping. 

Based on the comparative analysis of the obtained 

solution with the corresponding solution of the one-

dimensional problem it is shown that for the considered 

load and boundary conditions the difference between the 

results of both approaches is insignificant, therefore, one 

can use a simpler one-dimensional model in the applied 

engineering analysis. 
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H. Sulym, V. Hutsaylyuk, Ia. Pasternak, I. Turchyn 

TAMPRIOS STAČIAKAMPĖS PLOKŠTELĖS ĮTEMPIŲ 

IR DEFORMACIJŲ BŪVIS ESANT DINAMINĖMS 

APKROVOMS 

R e z i u m ė 

Darbe, siekiant modeliuoti eksperimentinių pa-

vyzdžių tamprųjį įtempių ir deformacijų būvį, esant greita-

veikei apkrovai, išspręstas stačiakampės plokštelės, ap-

krautos laikui bėgant kintančia tempimo apkrova, tampru-

mo teorijos uždavinys. Taikant integralinių pakeitimų už-

davinio sprendimo metodiką, ištirta apkrovos greičio įtaka 

pereinamiesiems aliuminio lydinio plokštelės įtempiams. 

Aptariama galimybė supaprastintą vienmatį modelį panau-

doti inžineriniuose tyrimuose. 

 

 

H. Sulym, V. Hutsaylyuk, Ia. Pasternak, I. Turchyn 

STRESS-STRAIN STATE OF AN ELASTIC 

RECTANGULAR PLATE UNDER DYNAMIC LOAD 

S u m m a r y 

This paper considers a dynamic problem of elas-

ticity for a rectangular plate under time-dependent tensile 

load, and uses it in modeling of transient stress-strain state 

of experimental samples under high-speed dynamic over-

loading. 

The solution of the problem is obtained using the 

integral transform approach. Based on this solution the 

paper studies the influence of loading rate on the transient 

stress in plate made of the aluminium alloy. It discusses the 

possibility of application in engineering analysis of a sim-

pler one-dimensional model, which is also adopted. 

 

Keywords: dynamic problem of elasticity, integral trans-

form, loading rate. 
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