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Stress-strain state of an elastic rectangular plate under dynamic load
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1. Introduction

The study of a high-speed deformation of struc-
tural materials is very important due to wide opportunities
of its application in engineering. It should be accounted for
in the assessment of the dynamic strength of structures
under impact and shock loads either under technological
operating conditions, or in emergency or critical situations.
Detailed analysis of the high-speed deformation is also
required in the derivation of processing parameters for
formation and strengthening of structural elements with
highly intensive energy sources. One of the distinctive fea-
tures of these processes is dynamic properties of materials
[1], which primarily concern theoretical foundations of
materials science and, in particular, the study of the phe-
nomenon of formation of dissipative structures under im-
pact supply of deformation energy [2].

Although in general case the problem involves
complicated, geometrically and physically nonlinear me-
chanical models [3], many important relations and effects
that precede irreversible deformations can be observed and
studied using linear models of elasticity [4].

This paper considers corresponding elastic prob-
lem for a plate with boundary conditions, which differ
from traditional ones: instead of shear stress, correspond-
ing components of displacement vector are equal to zero at
surfaces, which are loaded with normal tension. This
change in boundary conditions allowed agreeing the math-
ematical formulation of the problem with the experimental
conditions during studies of the dynamic response of rec-
tangular samples to impact loading [2] and to avoid tradi-
tional mathematical difficulties that arise while considering
two-dimensional elastic problems for a rectangular domain

[5].
2. Problem formulation and solution strategy

Consider a rectangular plate of a size 2hx 2l at x;
and y,, respectively (Fig. 1). At the time t=0 the plate is

loaded with a normal tension p(t) applied to its fixed
edges x, ==l. Boundaries y, =*h are traction-free during

the entire deformation process. The following dimension-
less variables and constants are introduced: x=x/1,

y=y. /1, % =h/l, k*=c/c,=(A+2u)l u, t=ct/I
where ¢; and c, are the phase velocities of longitudinal and
transverse waves for considered material of the plate, A and
u are elastic moduli (Lame constants).

< yl >
P ] ‘—ixl 0 2h > PO
< >
21

Fig. 1 Sketch of the problem

In terms of these variables, assuming that before
the time t=0 the plate was at rest, the problem has the
following mathematical formulation:
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where 6(x,y,7)=2u,/dx+4u, /Ay is the volumetric

expansion, U, (x,y,z) and u,(x,y,z) are the components
of elastic displacement vector, and
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are the components of stress and strain tensors, respective-

ly.
From the conditions (4), accounting for:

0
Q(il, y,r) = [%+%j

it follows that
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The Laplace integral transform for a time variable
[6] and a finite Fourier cosine transform for a spatial varia-
ble x [7] can be applied to Eq. (1). Accounting for sym-
metry of the problem, zero initial conditions (3), relations
(7) and conditions (4), Eq. (1) writes as:

d’ n 2 2\n n+1 2§n =
v -(&+5%)0,=(-1) o (s), ®)
where & =7z(2n+1)/2,n=012..., and 6,(y,s)=

1 0
= [cos(&,x)[0(x,y,r)exp(~sr)drdx is Laplace and
-1 0

Fourier dual transform.
Applying the same dual transform to Eq. (2) one
obtains:

dav
dy

dé,
dy '

g+, =) ®

1 ©
where , (y,s)= [cos(&x)[u, (x,y,7)exp(-sr)dzdx.
-1 0

Accounting for the fact, that the function 6, (y,s)

is even with respect to the argument y, the solution of
Eq. (7) is as follows:

6, (y.s)= A, (s)cosh(yy)+ . (10

with 3, = \JE2+57 .

Accounting for (10), the solution of Eq. (9) writes

) (-1 25,p(s)
ﬂK2712

as:
v,(y,s)=8, (s)sinh(yzy)+i/—§A1 (s)sinh(ry) (11)

with y, =& +x°s% .
Another component a,(y.s)=

1 ®©
= [sin(&,x)[u, (x,y,7)exp(~st)dzdx of the displace-
-1 0

ment vector can be obtained with the account of the rela-

1 (- dvn)
tion U, =—| 6, as:
Sn dy

B, (5)&, 7, cosh(y,y)—

(s)cosh(r,y)+ 2P ()

2,2
1

(12)

Two quantities A, (s) and B, (s) can be obtained

based on the boundary conditions (5), which dual Laplace
and Fourier transform writes as

(x*-2)8, =0, y ==Y,

. (13)
£V +—L=0, y=1ty,.
Vi dy y=1Y,

Accounting for Egs. (10)-(12), from Eq. (13) one
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obtains
( B Sz(fnz+722)Sinh(72yo)ﬁn(s)_
Ale)= 74 (5 s) ’ (14)
Bn( ):_2§n Smh 7/1y0 pn /[71 é S :'
where

A(f,s) :4557172 Sinh(7/1yo)COSI’](?/zyo)_(égn2 +722)2 X

B ()~ (-1)"2¢, (K‘22—2) p(s) |
UK

xcosh(7,Y, )sinh(7,Y,).

Finally, accounting for obtained values of A, (s)

and B, (s) the transforms of transient displacements are
equal to

V, (v:8) =747 (& + 72 )sinh (7, )sinh (.Y ) -
—2&2 sinh (7, ) sinh(3,Y) | By

0 (y,s)=| —— 450 i . (1)
un(y,s) = (K2 —2)5.1 + A [27172 Smh(71yo)

xcosh(y,y) (& +73 )Si“h(7zyo)005h(71y)]) 7; '

Inverse Laplace transform is obtained using the
partial fraction expansions theorem [6, 8]. For this purpose
one should first consider the first expression in Eqg. (15)
and solve it for singular points of the denominator. It is
obvious that the roots of the equation y, =0 are not the

singular points of the denominator, therefore consider the
following equation:

4E2y,, sinh(7,Y, )cosh (7, Y, ) —

(& +72) cosh (s, )sinh (7,Y,) = (16)

The roots of the characteristic Eq. (16) are purely
imaginary and complex conjugate. Therefore, it is conven-
ient to change variables with s=in to obtain

n=y&-n" and ;/2=«f§n2—1c2772 , respectively. It is

obvious that the roots 7,, depend on the discrete parame-

ter &,, therefore, there are three possible cases of there
location:

0<

<KkTEL KTE < 17)

77n,k nn,k Sgn' 77n,k >§n'

For the first interval, the characteristic equation
preserves its form (16) and has finite number of the roots

77n,k,l '
As for the interval x&, <|n,,|<&,, the charac-
teristic equation writes as:

45;127/1772 Sinh(71Yo)Cos(772y0)_

(& +72) cosh(3,Y,)sin(7,Y,) = O, (18)
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for 7,=x*n* —&? . Eq. (18) has a finite number k, of the ~ for 7, —Jn* =& has an infinite number of the roots

roots 7, , - Thka
And, respectively, for the interval |.,|>¢& the To obtain the inverse of Eq. (15) using the partial
. ’ fraction expansions theorem, one should evaluate the de-
equation rivative of the denominator [6, 8]. To apply this, consider a
o~ ~ derivative of the expression for A(£,s) for different inter-
45;127172 Sm(71yo)cos(72yo)+ ) P (§ ) . .
) a2 ) o vals of location of the roots of the characteristic equation:
+(&2+73 ) cos(7Yo)sin(7,¥,) =0, (19)
& . da ~ : Y o <r
0<|77|£?”, ds EAl(n’k):i”]n,k,l 4&; _ZS'nh(71YO)COSh(72YO)+ 1S|nh(7/ly0)COSh(7/2yo)+
s=tmn k1 1 2
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The second expression in Eq. (15) besides the  counting for this, the final expressions for transient com-
roots of the characteristic equation (16) has singular points  ponents of the displacement vector write as:
placed at the roots of the equation y, =0: s==i&. Ac-
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where

f(n7)= (24)

p(z—t)sin(nt)dt.

O ey

Eqg. (23) expresses exact closed-form solution of
the transient dynamic problem of elasticity for a rectangu-
lar plate under arbitrarily time-dependent external load.

The components of strain and stress tensors are

0

evaluated by applying strain-displacement and stress-strain
relations (6) to the obtained displacement components
(23). Also it can be shown that all series in the solution
(23) converges uniformly, therefore differentiation opera-
tors used in derivation of stress and strain tensors can be
applied directly under the sum sign.

Particularly, to evaluate stresses at the arbitrary
point of the plate based on Egs. (6) and (23) one obtains
the following formulae

O'XX(X,y,r):4(1—2/K2>Z( -1)" ¢ x
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3. Numerical results p(r)/ p*
=20

In practice, dynamic impact loading is always fo
continuous in time, and increase faster or slower from zero 0.75
value to the limiting one. Therefore, the high-speed in-
crease in load is approximated with a relation 0.5 1
p(t):p*(l—exp(—at))z, which can be expressed in 0.25 -
terms of the dimensionless time ¢ as follows 4

0 0.25 0.5 075 * 1

(28)

_TOT))Z )

where 7, =(Ixa)/c, is aloading rate, p" is a dimension-

al parameter (Pa). This relation allows agreeing initial and
boundary conditions, and also it allows accurate approxi-
mation of the real dependence of dynamic load on time in
many practically important cases (Fig. 2).

p(z)=p" (1—exp(

Fig. 2 Dependence of the applied load on the dimension-
less time

Numerical calculations are held for a plate made
of aluminum alloy 2024-T3 [9], which Young modulus and
Poisson ration are equal to E=6.9 GPa, v=0.3, respec-
tively. One should note that the value of the dimensionless



time =1 correspond to the time t=0.02 ms for the
length of the plate, which equals 21=0.3 m.

Evaluating the integral (24) for the load-time de-
pendence given by Eq. (28) one obtains explicit expression

for the function f (7,7):

« |1 2nexp(-t,7r) mnexp(—2z,r
f(n,r):p{—— 2( 20 )+ 2( 20 )+
n n°+r, n° +4c

ot a3,

772+z'§ _172+4z'g n

+Sin(77r)( 27, 27, J} (29)

n*+4t; nt+1}

Fig. 3 shows the time dependence of the dimen-
sionless longitudinal stress o, / p~ at the point, which is
located at the symmetry axis of the plate (x=0.5, y=0).

The stress is calculated by means of Egs. (25) and (29) for
different values of the parameter z, (loading rate).

0. (050,7)/ p"

2

0 - T T V T T o
0 2 4 6 8 10
Fig. 3 Longitudinal stress in the plate obtained for different
values of the loading rate

One can see in Fig. 3 that the time dependence of
the longitudinal stress essentially depends on the parameter
7,: for 7,=0.2 this dependence is quasi-static one (re-
peats time dependence of the external load), and for
7, >10 it practically coincides with vibrations caused by

the abrupt (shock) loading p(z)=p’S, (7). Increase in

the parameter z, also causes increase in the amplitude of
vibrations and decrease in time of the arrival of the fist
wave-front.

The same conclusions can be made for dynamic
distributions of the dimensionless transverse stress at the
same point (Fig. 4) and the dimensionless shear stress at
the point x=0.5, y=0.15 (Fig. 5) depending on the pa-
rameter z,.

However, unlike previous results, the influence of
the parameter 7, on the amplitude of vibrations is more
significant: the increase in the loading rate parameter from
the value of 7, =1 to r, =5 causes increase in the ampli-
tude of transverse stress up to three times, and increases

the shear stress up to two times. At the same time the lon-
gitudinal stress increases at only 40—45%.

O'W(IJ.S,O,'L')/])'
0.4

Fig. 4 Transverse stress in the plate obtained for different
values of the loading rate

-0.01

-0.02

0 2 4 6 8 10

Fig. 5 Shear stress in the plate obtained for different values
of the loading rate

Besides, one can see that maximal magnitude of
the longitudinal stress is much higher than corresponding
of transverse and shear stresses. In this context, one can
arise a question about the difference between the obtained
distributions of longitudinal stress and the corresponding
one, which is obtained by neglecting the change of elastic
field parameters in the y direction (one-dimensional mod-
el).

In the case of the one-dimensional model, based
on relations (28), the longitudinal stress in the plate are
defined by the following formula:

M —23(-1) {i_

2¢, exp(—ror) N

D & &+
exp (-2
n zp( TZOT) +cos(&,7)x
n + 0
2 1
[ 2% __& 2__}
gn +T0 §n +4T0 §n

2ty, 21,
2 2 2 2
gn + 410 §n + To

+sm(gnf){ ﬂcos(fnx)- (30)

Fig. 6 presents the comparative analysis of distri-
butions of the dimensionless longitudinal stress inside the
plate, obtained based on Egs. (25) and (30) for 7, =5.

One can see in Fig. 6 that the error of calculations
obtained based on the one-dimensional model does not
exceed 10-15% comparing to the two-dimensional one.
Accounting for the abovementioned results for shear and
transverse stresses, this allows using a simple one-
dimensional model in the applied engineering analysis.
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Fig. 6 Distribution of longitudinal stress in the plate for different moments of time obtained based on the two-dimensional

(a) and one-dimensional (b) models

4, Conclusions

Using the Laplace transform for the time variable
this paper solves the transient dynamic problem of elastici-
ty for a rectangular plate in the form of double trigonomet-
ric series. The solution, which models the high-speed elas-
tic deformation of materials, is obtained with the assump-
tion that the surfaces, which are loaded with normal ten-
sion, are constrained such that during the transient defor-
mation tangential stresses are equal to zero at these surfac-
es. This assumption allowed bypassing traditional mathe-
matical problem, which is raised in the study of transient
dynamic problems for finite two-dimensional domains, and
allowed further application of Fourier integral transform
for the spatial variable.

Based on the obtained analytic solution the nu-
merical analysis of the transient stress dependence on the
loading rate is held for a rectangular plate made of the

aluminum alloy 2024-T3. It is observed that the increase in
the loading rate essentially increases the magnitude of vi-
brations, and only slightly influence their frequency. Vi-
brations have harmonic behavior, since the mathematical
model used does not consider damping.

Based on the comparative analysis of the obtained
solution with the corresponding solution of the one-
dimensional problem it is shown that for the considered
load and boundary conditions the difference between the
results of both approaches is insignificant, therefore, one
can use a simpler one-dimensional model in the applied
engineering analysis.
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H. Sulym, V. Hutsaylyuk, la. Pasternak, I. Turchyn

TAMPRIOS STACIAKAMPES PLOKSTELES JTEMPIU
IR DEFORMACIJY BUVIS ESANT DINAMINEMS
APKROVOMS

Reziumé

Darbe, siekiant modeliuoti eksperimentiniy pa-
vyzdziy tampryjj jtempiy ir deformacijy buvj, esant greita-
veikei apkrovai, iSsprestas staCiakampés plokstelés, ap-
krautos laikui bégant kintan¢ia tempimo apkrova, tampru-
mo teorijos uzdavinys. Taikant integraliniy pakeitimy uz-
davinio sprendimo metodika, istirta apkrovos greicio jtaka
pereinamiesiems aliuminio lydinio plokstelés jtempiams.
Aptariama galimybé supaprastintg vienmatj modelj panau-
doti inzineriniuose tyrimuose.

H. Sulym, V. Hutsaylyuk, la. Pasternak, I. Turchyn

STRESS-STRAIN STATE OF AN ELASTIC
RECTANGULAR PLATE UNDER DYNAMIC LOAD

Summary

This paper considers a dynamic problem of elas-
ticity for a rectangular plate under time-dependent tensile
load, and uses it in modeling of transient stress-strain state
of experimental samples under high-speed dynamic over-
loading.

The solution of the problem is obtained using the
integral transform approach. Based on this solution the
paper studies the influence of loading rate on the transient
stress in plate made of the aluminium alloy. It discusses the
possibility of application in engineering analysis of a sim-
pler one-dimensional model, which is also adopted.

Keywords: dynamic problem of elasticity, integral trans-
form, loading rate.
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