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Natural oscillations of single span beam placed on cylindrical supports
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1. Introduction

Oscillations of a beam supported by a motionless
hinges is a classical problem and have universally accepted
solution. But in some cases beam can be simply placed on
a support surface and line of contact will change its loca-
tion. We assume the circular cylindrical shape of supports
(Fig. 1). When radius r is small such support can be ap-
proximately replaced by hinge, but if r is much more than
length of the beam, variation of the contact line can signif-
icantly influence oscillations of the beam. When alterna-
tion of the contact line position is significant and when it
can be ignored is investigated in this paper.

It is proved that nonlinear mechanical systems
with an analytical first integral allow periodic solutions
which tend towards linear normal vibration modes as am-
plitudes tend to zero. Mechanical systems with soft nonlin-
earity are comprehensively covered by Kauderer [1]. Non-
linear statics and dynamics of a beam sliding on two knife
edge supports is investigated by Somnay, lbrahim [2]
Somnay, lbrahim, Banasic [3]. To simplify the dynamic
modelling the mass is concentrated at the center of the
beam and exact solution is given in terms of elliptic func-
tions. Dynamic formulation for sliding beams that are de-
ployed or retrieved through prismatic joint are presented
by Vu-Quoc, Li [4]. The channel orifice is moving toward
the beam, or beam can be sliding when joint is motionless.
Geometrically similar problem is investigated by Turnbull,
Perkin, Schulch [5], where a beam or string is contacting a
circular surface of radius r. Behavior of frictional contact
support of a vibrating beam is studied by Ahmadian, Jalali,
Pourahmadian [6]. The frictional shear force at the support
is identified using its nonlinear normal modes. The nonlin-
ear normal vibration modes are discussed by Mikhlin [7].
Zajaczkowski, Lipinski, Yamada [8], [9] investigated sta-
bility of Euler-Bernoulli beams subjected to periodic slid-
ing motions. The complex nature of instability is revealed.

In this paper damping is neglected. Dependence
of velocity on deflections in a phase plane and dependence
of deflection on time are investigated.

2. Equation of motion
The first mode of oscillating beam usually is of
fundamental importance. If the line of a beam coincides

with the sine curve deflections of the beam can be deter-
mined

u(x,t)+u, =[uc (t)+uA]cos”TX, ()

where u, (t) and u, are deflections of the midpoint C and
tangent point A (Fig. 1). Positive displacement of A is as-
sumed to be down: u, =r(1-cosg,). If positive angle of

the sine clockwise then

du . X u. +u
tan(p:—d—:z(uc+uA)sm”T and tan(pA:ﬂ%.
X X

the exact equation is

curve is
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tance between tangent points in equilibrium position. Dy-
namic distance between the tangent points:
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and dependence of any beam point is expressed from
Eq. (1):

u(x,t
( )=(q+za2q2jcosﬂ—x—zaqz. 4
b 4 4

Only of the second degree of the relative dis-
placement g° will be taken into account in this investiga-
tion.

Fig. 1 Beam placed on cylidrical supports


http://dx.doi.org/10.5755/j01.mech.20.3.6365

+l, /2
Kinetic energy of the beam T=— I a’dx,

v -, /2
where m is mass of the beam, |, — length of the beam and
I, =1 at any moment. Therefore I, —1=24I,>0, where

Al, is dependent on time cantilever length, also assumed
to be small. When velocity u=du/dt from Eq. (4) is cal-

culated dependence of | on time Eq. (3) also should be
considered. Kinetic energy of the cantilevers can be calcu-
lated assuming that it is a portion of the sine curve or as an
absolutely rigid straight line: outcome within the set accu-
racy is the same. Kinetic energy of the beam:

myl; ¢* 2.2
== 7(l+claq—cza a*), (5)
where  m,=m/l, is mass per unit length,
2
¢ =r-2-1142, ¢, =11- %27 _o 7111,
2 60
Potential energy of the beam:
Bl (oY . ELZ( oz LY
=— [|=—=|dx==—"2|q+Zaq*|, (6
2 _,/Z(ax2 2 2° (q 4 q ) (©)

where El is the stiffness and distance | is presented in
Eqg. (3). The first natural circular frequency of the simply

2
hinged beam A :T_Z fﬂ , therefore the potential energy
(0] mO

ml¥ ., g c c
Eq.(6) [7=—224>21|1-22gq+-2a%g® |, where
a. (6) 5 2 3 X+

_ _ 2
c :367”:2.144, = LAT30TH T 554, La-
grange’s equation for the beam is:
G(1+caq—c,a’q’ )+ 6% (0.5¢, —c,a’q) +
+4%q(1-caq + ¢, g ) =0. @)

Mechanical system is conservative in spite of the
term, dependent on velocity.

3. Velocities and displacements

If radius of the cylinder r — 0 and supports can
be assumed as a hinges Eq. (7) is ¢+A°q=0 and after

substitution ¢ =q(dq/dq) the first integral s
4’ +A%q> = or
¢ . q Go
—+—=1, g,=—-=const. 8
4 O 77 ©
If relative displacement of the beam center point
X= q._ .iq is applied the velocity Z—)t( =+1\J1-x* and
4 G
¢ dx
therefore  At=- J' = = arccosx, X=cos At. The
/2 1-x
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positive sign presents solution x =sinx.
Nonlinear differential Eq. (7) when q is consid-
ered as a function of time can be transformed to the linear

equation of g2 as function of variable g. Let independent
variable is z = aq, the function w = z* and Eq. (7) is mul-

tiplied by {1+ ZC—Z ZJ. Then the equation of beam motion
G
is:
dW 2 2 2
E(l+blz+b32 )+clw+2/1 z(l—bzz—b4z ):0, 9)
where

b =¢+2c,/c, b, =¢;—2¢,/c; , by =c,,
b, =(2c,c,/c,)—c,. A particular solution of the inhomo-

geneous equation w, = B, +B,z+B,z* +B,z°.

.2 9
1-x* —cax+n,ax’ +%

22 = aszxz _771352)(4: (10)

cB,+B, =0;
6B, +2B, =-21%
,,  butthe term
b,B, +6,B, +3B, = 21°b,;
2b,B, +6,B, = 24%h,,

satisfies Eq. (9) if

3b,B,z* is neglected and 6 =b +c, 6,=2b+c,
6, =3b, +c,. Solution of this linear equations is
B, =24°x;, B, =24%x,, B, =—24°(1+2x,)/6, ,
B,=-B/c, where i, = (b6, +b,) 6, —b,4,,

Ox, =b, —2b,x,, n,=60,0,—2b,(36,+6,). Particular
(10)
+22%7% (k, +K,2) . Homogeneous differential Eq. (9) can
be expressed as:

solution is  expressed  w, =B, (1-cz)+

d—W(1+ $,2)(1+s,z)+cw=0,

o (11)

where 1+b,z+b,z? =(1+s5,2)(1+s,2), therefore s, and s,

are roots of the equation s*—bs+h, =0. The exact solu-

tion of (11) is w, =C,F(2), where

F(0)-(

related by ch(z)+(1+blz+b322)F’(z)=O. By differen-
tiation of this identity derivatives of the higher order can

l+sz
1+s,z

-a/(s1-52)
] . Derivative and the function are

be deduced and Taylor’s formula gives
F(z)=1-cz+c6,2°/2-cn, 2% /6+cm, 2°/24— ...
where 7,=66,-2b,. The general  solution

w=C,F(z)+w,(z) of the inhomogeneous Eq. (9) satis-
fies the initial value w,=2=a’q®> when q=0 if
C, =w, —B, . After substitution the general solution and
the first integral is:



-2

G

1-x* —cax+n,ax + 5

22 aszxz _7713'52)(4’ (12)

where a, = aq, can be considered as the principal parame-

ter to assess the magnitude of a term. Factors cy,
1, 1+2x,

2b, 11+ 2k, c,0,
770:[92_ 3j 2 171 ) T
1

0 2
the variable x =q/q, takes the values approximately from
the interval [-1, +1].
If a, =0 equation coincides with Eq. (8), because

+ 2K

3 and

1

x_4a

A

tor a_, next are two last terms with factor a’ . Roots of the
polynomial:

. Second in importance are the two terms with fac-
Uo

2
S

P(x) :1_Clasx_(l_01791a sz +n,a,x> —ma’x* (13)
depend on parameter a,. When a, =0 we have quadratic

equation and roots x, =-1, X, =+1. If a,=0.001 the
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X, =26.15+37.18i, x, =26.15-37.18i . If a,=0.2 then
X =-0.889, X, =1.118, X; =1.193+1.942i,
x, =1.193-1.942i . It can be shown that P(x)>0 if and
only if X, X< X,, S0. % = Xyins X, = Xae @Nd do not exist

real velocity solutions in other intervals. In Fig. 2 are de-
picted harmonic vibration dependence Eq. (8) and two ap-

proximations when a, and a’ are taken into account. The
cubic equation P(x)=0 is to be solved when the first

approximation is examined and all three roots are real if
a, <a, ~0.1831. Displacement x, is when velocity of

the beam X=X, and depends on the parameter a,. All
values x, <0 (Table 1). If upper amplitude A, =X, — X,
and lower amplitude A =X, — X, the ratio r, =A /A
approaches 1.5 when a; =0.15 even though the whole
displacement A +A =2A =2 for every a,. The dis-
placement average X, = (Xay
a,. When a, <0.1, difference between the first and the
second approximations is insignificant. If a, >1.5, differ-
ence between the oscillations being studied and harmonic

+ Xy )/ 2 s positive for all

roots of Eq.(13) are x =-0.993, x,=1.007, dependence of wvelocity on displacement is substantial.
Table 1
Dependence of average displacement x,, X, and ratio r, on a,
n=3 n=4
& Xo Xy A Xo Xy ra Pods
0.0100 0.0070 -0.0057 1.0257 0.0070 -0.0057 1.0256 0.0070
0.0200 0.0140 -0.0114 1.0520 0.0139 -0.0114 1.0519 0.0139
0.0500 0.0357 -0.0284 1.1361 0.0345 -0.0285 1.1343 0.0348
0.1000 0.0778 -0.0559 1.3005 0.0672 -0.0570 1.2820 0.0700
0.1500 0.1430 -0.0818 1.5326 0.0951 -0.0852 1.4364 0.104
0.2000 0.1148 -0.1130 1.5873
;‘?,] 4 4. Displacement as function of time
gl2;
If terms with a’ are neglected and a, <a, the
polynomial Eq. (13) P(X)=1,a, (X, —X)(X, —X)(Xx—X)
0.8 where all roots x,x,, %, are real. Eq. (12) then can be pre-
sented dx =1/770asﬂdt. Integration
\/(Xs =x)(% = X)(x=x)
0.4! yields [10,11] \fpaAt= 2 F(p k), where
R X=X
3 o
¢ . F(o k)= I% is elliptic integral of the first
ué I 0 a/l—ki sin” @,
2 ! L kind, 5in2¢)i:§~xz_x, K2=06,/8,, & =% —X,
44 " 51 X=X
8 =% —x. If F(@.k)=\nad, it/2=u then the in-
Fig. 2 Dependence of velocity on displacement in phase  \ers  function is the Jacobian elliptic ~ sine:
plane: 1 — harmonic oscillations, 2 — the first 5
approximation, 3 — the second approximation. Pa- sn(u,ki)zsin(pi _ |92 %X The displacement as
rameter a, =0.15 1 X=X

function of the time is deduced from this equation:



8,X,5N°U — 5, X . i
=187~ 7272 npitial values of the first two roots

o,sn*u-o,
can be -1,+1, the first iteration step yields
x1=—1+77°2_01as, x2=1+uas. The third root is

approximated X, =1/(,a,). Complete elliptic integral

2
K:1+k_i r_ 1.,.@ Z, u=|1+ 7705 M
4 )2 2 )2 2 )2
;2 ﬂ therefore the elliptic sine

snu = sin y-(1+ 4q; cos® y) where elliptic Jakobi’s pa-
11k _ma
21+ k' 2 '

K’ are complementary module and complete elliptic inte-
gral. Substitution to (14) yields the first approximation:

rameter ¢, =exp(-zK'/K)=~

X= a, +Cos At ,

8
5 (14)

the shifted harmonic oscillations. Applying given above
values we have 7, =2.532 and f3, = c,)/2=0.695,
S0 X, = f3, perfectly coincides with data given in Table 1
a,<0.02 and coincides satisfactory when
a, <0.10. But asymmetry of the real oscillations, dis-
played by x,,r, in Table 1, is not presented in Eq. (14).
The real values of X, </, and solution of the

second approximation (n=4) better corresponds to the
theoretical values, presented in Eq. (14).

The second approximation of the polynomial (13)
has four roots, two of which are complex numbers:

P(x)=ma’G(x),
G(x) =[(xr —x)2 +xi2](x2 —x)(x=x,),

X; =X +iX, X, =X —ix . Eq. (12) can be expressed [12]

when

where

X

dx

j = uF (¢ k) =amat, where
2B
4 =—\Jcos 9 cos S, /x; , ; =sin'91;'92 ,
tang, =2 tang, =2 %

_%t% X=X vi—onu (15)

2 2 1l-vcnu
a
where v, —tan 2= A g %S ;“91, U= WIZM,
Hi

cnu=cn(u,k; ) is Jacobian elliptic cosine. Dependence of

relative displacement x=q/q, on ratio time t and period
7, calculated from Eq. (15), is depicted in Fig. 3. The
dashed line discloses difference between harmonic oscilla-
tion and solution (15).
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Fig. 3 Dependence of relative displacement q/q, on time t
and period z ratio when a, =0.2

Relative velocities ¢/q, calculated from Eq. (12)
indicates the maximal velocity time t,. Ratio of the decel-
eration  duration to the acceleration  duration
I =(tw,—t)/(twx —t,) is presented in Table2 and
strongly depends on a,, while ratio of the whole period ©
with the period of harmonic oscillations z, is approxi-
mately constant. This corresponds with the first approxi-

mation (14). Dependence of the ratio r. on a, is even
greater than r, in Table 1.

Table 2

Dependence of ratio of periods z/z, on a,

as KN r,

0.01 1.000 1.031

0.02 1.001 1.073

0.05 1.003 1.187

0.10 1.009 1.398

0.20 1.044 1.764

0.30 0.950 2.000

5. Conclusions

When a single spanbeam is placed on cylindrical
surface the contact line and length of the beam are periodi-
cally alternating. Nonlinear equation of the beam motion is
reduced to linear parametric equation and solved in elliptic
functions. The first approximation is harmonic oscillations
about some center, elevated above the equilibrium posi-
tion. Period of the oscillations is almost the same as when
supports are hinges, but the half-periods and half-
amplitudes in the upper and lower portions of the motion
are significantly distorted. The level of distortion depends

on the product aq=2xru./I?, where r is radius of the
support cross section line, u. — amplitude of the beam
center oscillations, 1, — span in equilibrium position
(Fig. 1). Therefore, if radius r is big and surface of the
support cross section line is very close to straight line a
small amplitudes can cause significant distortion of oscilla-
tions.
In a similar manner distortions of the oscillation

regularity can appear when beam with fixed ends have
some support surfaces tangent to the beam.
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ANT CILINDRINIY ATRAMU PADETOS
DVIATRAMES SI1JOS SAVIEJI VIRPESIAI

Reziumé

Tiriami dviatramés sijos, laisvai padétos ant dvie-
ju apskrity cilindriniy atramy, savieji virpesiai. Sijos ir
atramy lietimosi taskas keicia savo padétj, todél sijos tar-
patramio atstumas taip pat kinta. Netiesiné virpesiy dife-
rencialiné lygtis transformuojama | tiesing diferencialing
lygti, kurioje nepriklausomas kintamasis yra nebe laikas,
bet poslinkis, ir pirmasis jud¢jimo integralas nustatomas
fazingje plokStumoje. Poslinkio priklausomybé nuo laiko
iSvedama integruojant antrajj kartg ir yra iSreikSta Jakobi
elipsinémis funkcijomis. Gautas visas virpesiy periodas yra
beveik toks pat, kaip ir sijai remiantis j lankstus, bet vir§u-
tinio ir apatinio pusperiodzio bei virSutiniosios dalies ir
apatiniosios judesio dalies amplitudés yra ryskiai pasikei-
tusios. Tokia virpéjimo proceso deformacija didesné, kai
yra didesné virpesiy amplitudé ir kai didesnis cilindriniy
atramy kreivumo spindulys. Ant cilindriniy atramy uzdétos
sijos virpesiy centras perstumtas j virSy, palyginus su tos
pat sijos, atremtos lankstais, virpesiais.

V. Kargaudas, N. Adamukaitis, M. Zmuida

NATURAL OSCILLATIONS OF SINGLE SPAN BEAM
PLACED ON CYLINDRICAL SUPPORTS

Summary

Oscillations of a single spanbeam placed on two
circular cylindrical supports are investigated. Contact line
of the beam and the support surface changes its location
therefore the span length also alternates. Nonlinear equa-
tion of motion is transformed to linear differential equa-
tion, where displacement instead of time is the independent
variable and the first integral in a phase plane velocity-
displacement is deduced. Dependence of displacement on
time is expressed in Jacobian elliptic functions in the sec-
ond integral. The complete period of the oscillations is
almost the same as when supports are hinges but the half-
periods and the half-amplitudes in upper and lower por-
tions of the motion are significantly distorted. The level of
the distortion is increasing when amplitude of oscillations
and radius of the support circle are growing. The beam,
placed on cylindrical supports, oscillates about a center
shifted up compared with the same hinged beam.

Keywords: natural oscillations, simply supported beam,
cylindrical support, nonlinear oscillations.
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