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An improved method for optimal shakedown design of circular plates
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1. Introduction

The paper focuses on the methodology for deter-
mining the distribution of the optimal limit bending mo-
ment M, of an elastic-plastic circular plate subjected to
variable repeated loading at shakedown. The behaviour of
materials is described by an ideal elastic plastic model; a
possible unloading phenomenon of a cross section is ig-
nored (variable repeated loading is defined only by its
upper and lower bounds). In the previous paper [1], the
optimization of the plates was performed applying Rozen’s
gradient projection method [2] which is not very conven-
ient for a direct use of the influence matrices H and G of
residual displacements #, and forces S, when nonlinear von
Mises yield criterion is applied. Newly derived compatibil-
ity conditions for residual deformations @, improve the
quality of the mathematical model of the optimization
problem and avoid a direct use of the abovementioned
influence matrices. A new algorithm, along with MATLAB
nonlinear optimization tools [3], substantially improved the
numerical implementation of a shakedown plate optimiza-
tion problem and allowed for a more distinct interpretation
of the results in terms of ultimate and serviceability limit
states. These qualities of optimization are important in civil
and transport engineering where round plates under cyclic
loading are commonly designed.

The paper formulates the analysis problem of the
internal residual forces of the structure at shakedown
(when loading and limit moments of the plate are known)
as a convex nonlinear mathematical programming prob-
lem. The interpolation functions of the internal forces of
equilibrium finite elements strongly agree with the discre-
tization of differential equilibrium equations [4, 5].

A complete system of equations for the shake-
down state of the elastic-plastic structure is obtained when
Kuhn-Tucker optimality conditions [2] are applied for the
analysis problem. If an appropriate optimality criterion is
chosen, the system becomes the basis for the optimization
problem of plate optimization at shakedown [6-11]. Then,
the prime unknowns are limit bending moments of plate
finite elements M, , self-balanced residual moments M,

and plastic multipliers 4 (terms and notations are the same
as those in our earlier works [1, 12]).

The methodology is illustrated with a numerical
example of circular plate optimization. The obtained re-
sults are based on the assumption of small deformation.

2. Discrete model of a circular plate at shakedown

The geometry of the plate under consideration is
known, and the actual load process F(f) is described via
time-independent upper F,,, and lower F, variation

sup in

bounds (F,, < F(t) < F,,). The discrete model is de-

sup
rived dividing the plate into s finite elements, every of
which contains v nodal points. Thus, the total number of
sections in the discrete model of the plate is = sxv . The

stress-strain field of the discrete model is described by (-

size vectors of bending moments M = [ MM, M JT

and deformations @ = [01 0, .. QJT. The equilibrium

and geometric equations for the plate are [4, 12]:

DAM =F or AM=F ; (1)
k

Alu-D M, =0 or A"u—DM =0; @
k=12,..s; keKk,

where A (mxn) is the matrix of the coefficients of equi-
librium equations, m is a degree of freedom of the discrete
model of the plate, » is the number of internal forces;
D(nxn) is a block-diagonal matrix of elemental flexibil-
ities D, = _[ N, (p)d,N,(p)dAd and u=[u, u, ... u,

Ay

T

is the global displacement vector. The interpolation func-
tion of bending moments applying the finite element k

shape function N, (p) is M, (p)=N,(p)-M,; d, is
the matrix of the physical regularities (elasticity coeffi-
cients) of an element. Von Mises nonlinear yield condition
will be verified in all nodal points i =12, ...,{ (iel):

@ =(My) ~MITM, >0 2)

or
oy y v 1 -0.5 Mpi >0 3
Q= ( (),‘) _I: pi oi ] -0.5 1 Mgi o ( )

Limit bending moment M, is assumed to be
constant per finite element area. Radial M, and circular

M, bending moments describe the stress state of the cir-



cular plate.
It is convenient to pick out residual bending mo-
ments M, , displacements #, and strains &, =DM, +0,

when analysing the plate at shakedown. If the
j=L2,..,p (jeJ) vertices of the elastic force F ()
locus exist, then, the combinations of elastic bending mo-
ments M, and displacements u, are determined by equa-
tions M,=aF,, u,=BF,, where a and B are the in-
fluence matrices of elastic response. When omitting de-

tailed investigation into loading history, yield conditions
(2) take a form:

2
b= (Moi) _Mi]:fni Mi’j 20; 4)
M, =M, +M, ;icl; jeJ. (5)

In this case, equilibrium (1) and geometrical
Error! Reference source not found. equations are:

AM, =0 (6)

and

A'u, =DM, +0,, (7)

T . . .
where @, = (Qpl.) is a vector of plastic strains. For each

cross-section, @, is equal to:

0, =234, 1M, )
J

where 4,,20,iel, jeJ are plastic multipliers.

3. Complete set of equations for the analysis problem of
the plate

The analysis problem defines the determination of
the stress-strain state of the plate when physical parameters
and variable repeated loading is known in advance. The
problem of static formulation represents the principle of
minimum complementary energy: of all statically admissi-
ble vectors M, of residual bending moments, the actual

one corresponds to the minimum of complementary de-
formation energy of the structure at shakedown. The
mathematical model of the problem stated on the basis of
above-mentioned principle, reads:

find
min %MfDMr; ©)
subject to
AM, =0 (10)
p,=(M,) -T(M]\IIM,; >0; (11)
M, =M, +M,; M,=aF;; jeJ. (12)

The optimal solution to the problem (9)-(12) is re-
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sidual bending moments M that ensure the state of

shakedown; a possibility of determining sections where
plastic deformations @, appear opens up. Block-diagonal

matrix II(nxn) consists of blocks II,. Operator

r (M /.T ) arranges the components of vector M j.T in such

a way, that yield conditions (3) would be verified in every
section 7 of the discrete model.

The constraints (10)-(12) of the problem (9)-(12)
along with Kuhn-Tucker conditions constitute the com-
plete system of equations defining the stress-strain state of
the plate at shakedown:

AM =0, (13)

(M, ~T(M;+M,) (M +M,)20;  (14)

DM +2Y NI (M +M, ) %, — A"u, =0;(15)
J

/1/.7[(M0)2_F(Mj+Mej)TH(M,T+Me/.)}=0;(16)
T

220500 =[Ay Ay o Ag, ] a7

M,=aF,; F,, <F <F,; jeJ. (18)

The components of vector /l/.T under conditions

(15) are arrayed so that plastic deformations in every sec-
tion i would be obtained according to Eq.(8):

@p,. = 221}.1 ; nm, ; - Recall that Kuhn-Tucker conditions
J

state that solution M is global if multipliers 2,20

(jeJ) and displacements u,, satisfying conditions (15)-
(17), exist [2].

4. Transformations of the mathematical optimization
model

The problem of determining the distribution of
T
M 0s ]
is relevant to practical design. The problem of an optimal
shakedown design of a circular plate is formulated as fol-
lows: for given load variation bounds F;,, F;,; the vector
of limit forces M, satisfying optimality criterion

min f(M,) and the constraints of shakedown and stiff-

optimal limit bending moment M =[ M, M, ..

0>

ness, should be found [13]. A general mathematical model
of plate optimization reads:

find

min f(MO); (19)
subject to

AM, =0 (20)

o, = (. ~r(, o, ) (01,400, 0521

DM, +2Y OI'" (M, +M, ) ) - A'u, =0; (22)
J



T . .
49;=0; 4,20, (23)
MO,min S MO S MO,max ’ (24)
u, < u,+u, <u,.; (25)
M,=aF,; u,=pF;; jeJ. (26)

The objective function (19) can express the opti-
mal distribution of limit forces (for example, min L' M,
where L is a vector of element areas) or an optimal volume
of the structure. It is a problem of continuous optimization
where unknowns include M,, M,, u,, 4. The multi-

extremity of the problem is determined by complementary
slackness conditions for mathematical programming (23).
According to Eurocode [14] requirements, the ultimate
limit state is secured byEq. (21) while serviceability limit
state — by Eq. (25). A shortcoming of the model (19)-(26)
is incapability to determine an unloading phenomenon, i.e.
a vector of residual displacements u, determined by the
non-monotonic process of plastic deformations in the
shakedown state may be non-unique.

The model (19)-(26) can be transformed by elimi-
nating residual displacements #. from geometric Eq. (22):

407 DO o
ATll), ZDMr +@p; W u = m M},+ @_/?2) :27)
]7
-1 -1
u =(A") DM, +(A) O, (28)
where AY7  is a sub-matrix of the matrix

T
A" =[A“) A(Z)J that has an inverse matrix (corre-

sponds to the sub-matrix D of the flexibility matrix D
and to sub-vector 0;1); selection method of the lines for
sub-matrix A"7 is based only on the existence of its in-
verse matrix). Then, geometric Eq. (22) are interchanged
with compatibility equations for residual deformations
(number of these equations equals to the static indetermi-
nacy of the structure k, =n—m):

407 [(Amr )"(Dms +@<1>)} - DOS L2
r P r p

|:A(2)T ( 407 )" Do —D(z):ls,, _ |:_A<2>T (Aa)r )"; I]@ )

p°

BS. =B,0,. (29)

where B,=|:A(2)T ( A(I)T )—1D(I) —D(z)} and

B :[_A(zw(A(l)T )*‘. I}
g .

Then, the optimization problem (19)-(26) be-
comes:

find

min f (M), (30)
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subject to
AM, =0, (31

0, = (M)~ (M, 00, (M, M) 0.

BS,=B0O,; (33)
6,=23 HI"(M,+M,)"4,: (34)
J
T . .
g =0, 4,20, (35)
MO,min < MO < MO,max; (36)
u,, <u, +[(A“)T ) (DM, +@§,‘>)} <u_: (37)
M,=aF;; u,=pF; jeJ. (38)

The unknowns of the problem (30)-(38) are M|,
M, , 2. The structure of plastic deformation vector 8, is
T T
as follows: @, = [@ ] = [QPI 0, .. @pn] .

The further rearrangement of the problem (19)-
(26) is possible by the elimination of equilibrium equations
AM . =0:

(1) @(2)

P p

M,=BM?” =B/ M? . (39)

_(Au))’l e
1

equilibrium equations AVM" + APM® =0 (M? are

the unknowns of the force method). Then, the problem (30)
-(38) is simplified even more in terms of unknowns:

find

Matrix B:{ } is derived from

min f(MO); (40)
subject to
=(M,) -Ir(BM® +M,) 11(BM®+M_)>0: (41
9, =(M,) r T My ;A M,; ) 205 (41)
@ _ .
BBM? =B 0O, ; (42)
@,=23 I (BMP +M,; )" ), ; (43)
~
T . .
A, =0;2,20; (44)
MO,min < MO < MO,max; (45)
< AT (DYBM® +0M) | < - (46
umin_uej+ ( 1 ) ( r + P ) - umax’ ( )
M,=aF;; u,=BF;; jeJ. 47

The unknowns of the problem (40)-(47) are limit
bending moments M, only a part of residual moments

M? and plastic multipliers Z;. The problem is solved in

an iterative manner. Regarding the solution to the problem
(40)-(47) of the initial data (initial matrix D), the vector of



limit moments M, is obtained with the help of which, a

new flexibility matrix is formed, i.e. new influence ma-
trixes @, B and B, are formed and new elastic forces

M,
The iterative process is continued until the change of the
values of consecutive solutions is within desirable preci-

sion.

aF; and displacements u, = fF, are calculated.

5. Numerical example of a circular plate optimization

The circular plate of radius R=0.9 m hinge-
supported at its outer contour is under consideration
(Fig. 1). The plate is subjected to a symmetrically and uni-
formly distributed load varying in the range of
—95 kN/m® < ¢(¢) <100 kN/m*> and constant uniformly
distributed bending moment M =36.25 kN applied to the
outer contour of the plate. The material modulus of elastic-
ity is £=210 GPa, yield stress — o, =210 MPa, Pois-

son’s ratio — v =1/3 and the initial thickness - 7 =0.03 m.
MO‘k 4

k=12,.,6 are to be found. The moments directly deter-

Optimal limit bending moments of elements

mine the thickness of the plate: M, =0, % /4 .

M q(?) A
'};HHHHHH\@.@.@.@.@.@

| R (RI6 RI6, RI6, RI6, RI6 RI6,

Fig. 1 Loading and discrete model of the circular plate

The discrete model of the structure is constituted
of six uniformly distributed finite elements possessing
three nodes each. Positive directions of internal forces are
shown in Fig. 2.

0, +do,

Fig. 2 The finite element of a plate

The polar coordinate system is located in the cen-
tre of the plate, and therefore it is enough to investigate
only the radius of the plate, because internal forces and
displacements do not depend on the angular coordinate.

Elastic bending moments M, (j=1,2) are cal-
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culated applying influence matrix a. The optimal distribu-
tion of limit bending moments of the plate at shakedown is
calculated using the mathematical model (30)-(38). An
admissible plate deflection in the centre is bounded to
-0.03m<u,, +u,, <0.03 m. The results of optimization
are presented in Table. The optimal thicknesses of the plate

are indicated in the last row of the table. The optimal solu-
tion is achieved when the problem converges (Fig. 3).

117.791

L'M, =117.711 kNm

2
N \
*—d

L 4

L 4
L 4

Objective function

9 10 11 12

Iterations

Fig. 3 The convergence of the objective function

Table

The convergence of limit bending moments (kN) and
optimal plate thickness

Iter. | M,, M,, M, M,, M, s My
52.402 | 52.395 | 51.178 | 48.930 | 45.134 | 40.829
53.134 | 53.222 | 52.391 | 49.681 | 44.831 | 39.871
53.623 | 53.779 | 52.189 | 49.462 | 45.562 | 39.473
10 52.410 | 52.414 | 52.444 | 50.041 | 45.810 | 39.166
11 52.411 | 52.415 | 52.445 | 50.038 | 45.810 | 39.166
12 52.411 | 52.415 | 52.445 | 50.038 | 45.810 | 39.166
t,mm| 31.6 31.6 31.6 30.9 29.5 27.3

6. Conclusions

1. Compatibility conditions for residual deforma-
tions allow finding efficient solutions to optimization and
analysis problems of circular plates at shakedown with
reference to nonlinear von Mises yield criterion.

2.The new improved methodology reduces the
number of unknowns and provides successful convergence
of the iterative optimization problem of the circular plate
with realistic geometric and physical parameters.

3. The presented methodology is suitable for prac-
tical applications of steel plate design problems (cover
requirements for ultimate and serviceability limit states).
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G. Blazevicius, L. Rimkus, J. Atkocitinas

PAGERINTA PRISITAIKANCIU APVALIU PLOKSCIU
OPTIMALAUS PROJEKTAVIMO METODIKA

Reziumé

Straipsnyje nagrinéjamas prisitaikanciy tampriai
plastiniy apvaliy ir Ziediniy lenkiamy ploks¢iy ribinio mo-
mento optimalaus pasiskirstymo uzdavinys. Plokstés geo-
metrija Zinoma, kintama-kartotiné apkrova apibiidinama
tik vir§utinémis ir apatinémis nuo laiko nepriklausanciomis
kitimo ribomis (galimas skerspjiiviy nusikrovimas jgnoruo-
jamas). Diskretizacijai pasitelkti pusiausviri baigtiniai ele-
mentai, plokS§tés saugos ribinj biivj apsprendzia netiesiné
Mizeso takumo salyga, tinkamumo — jlinkiy ribojimo rei-
kalavimai. Konstrukcijos jrazy ir deformacijy skai¢iavimo
(analizés) uzdavinys formuluojamas kaip pilnutiné tamp-
riai-plastinés plokstés prisitaikomumo biivio lygéiy siste-
ma. Liekamyjy deformacijy darnos lygciy ir MATLAB
komplekso netiesiniy uzdaviniy sprendimo galimybiy pa-
naudojimas jgalino sukurti pagerintg prisitaikanc¢iy ploks-
¢iy optimizavimo uzdavinio matematinj modelj, o kartu ir
patobulinti sprendimo algoritma. Tyrimai atlikti ir skaitiniy
eksperimenty rezultatai gauti, laikantis mazy poslinkiy
prielaidos.

G. Blazevicius, L. Rimkus, J. Atkocitnas

AN IMPROVED METHOD FOR AN OPTIMAL
SHAKEDOWN DESIGN OF CIRCULAR PLATES

Summary

The paper analyzes the problem of distributing an
optimal limit bending moment of elastic-plastic circular
and annular plates subjected to variable repeated loading at
shakedown. The geometry of the plate is known and vari-
able repeated loading is defined by time-independent upper
and lower bounds (unloading phenomenon of a cross sec-
tion is ignored). Equilibrium finite elements are applied for
a discrete model. The safety of the plate is described with
reference to nonlinear von Mises yield criterion while ser-
viceability — by displacement limitations. The analysis
problem of internal forces and deformations is formulated
as a complete system of equations for an elastic-plastic
plate in the shakedown state. The implementation of com-
patibility conditions for residual displacements and MAT-
LAB nonlinear optimization tools allowed creating an
improved mathematical model for optimizing the plate and
its effective numerical realization. Research methods and
numerical results are based on the assumption of small
deformations.

Keywords: optimal shakedown design, plates, finite equi-
librium elements, energy principles, mathematical pro-
gramming, MATLAB.
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