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1. Introduction

A proposal of mathematical algorithm using in
order to modelling and testing of torsional vibrating
mechatronic system is presented in this work. A mechani-
cal subsystem is a shaft. On the shaft an sectional, cylin-
drical piezoelectric transducer is glued [1]. A dynamic
flexibility of the mechanical subsystem was calculated
twice using an exact Fourier and approximate Galerkin
method. It is impossible to use the exact method of separa-
tion of variables in order to analyse mechatronic systems,
this is why only the approximate method was used in this
case. The approximate method was first verified [2, 3].
Obtained results were juxtaposed and presented on charts.

Nowadays, a lot of applications of both direct and
reverse piezoelectric effects are known. Benefits of using
piezoelectric transducers for control or damping of vibra-
tions are broad band of transmitted signals and high effi-
ciency of conversion of mechanical energy into electrical
energy and in the opposite direction. The possibility of
designing and produce the piezoelectric transducer with
any shape, suitable for the application is also important as
well as simplicity of this type of systems, especially in case
of passive vibration damping. In the presented case of tor-
sional vibrating mechatronic system with piezoelectric
transducer used as the vibration actuator, application of the
sectional, cylindrical transducer is proposed [1]. Using
such kind of innovate solutions it is possible to use piezo-
electric materials in new, designed technical devices. It is
also possible to obtain development of their effectiveness
and less energy consumption, what is consistent with the
direction of the current activities of constructors [4].
Knowledge of the dynamic characteristics of the designed
systems is essential for the proper operation and should be
taken into consideration during the design phase as well as
verified during operation of the system [5].

Presented paper is a part of research works real-
ized by scientists from Gliwice related with analysis and
synthesis of mechatronic systems [2, 3, 6-11]. Works are
realized using classical and non-classical methods and also
computer aided [12]. Both discrete and discrete — continu-
ous systems were being taken into consideration [13, 14].
Proposed methods can be successfully used to the analysis
of various piezoelectric materials, including composite
transducers, as it was presented in the previous papers
[2, 3]. The presented work is an introduction to the synthe-
sis of considered, complex, vibrating mechatronic systems
with piezoelectric transducers.

2. The dynamic flexibility of the mechanical subsystem
using the approximate method

Galerkin method is an approximate method of
solving problems with continuous operators. The purpose
is to bring to the weak variational form, function space
discretization and receiving a system of linear equations. A
solution of differential equation of motion was assumed as
a product of eigenfunctions of displacement and time
[2, 3]
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In agreement with the approximate method the ei-
genfunction of displacement was assumed as:
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Boundary conditions were written as follows:
Ao(x,t)
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where A denotes an amplitude of vibration. Taking into
account boundary and initial conditions the assumed equa-
tion of displacement can be written down as:

(D(X,t)=isin(kx)cos(a)t). 4)

n=l1

In order to simplify the notation in the rest of the
paper the sum sign is omitted. Vibrations are result of a
externally applied torque M(7) = Mycos(wt), and the shaft
displacement was assumed in accordance with the phase of
extortion. The differential equation of motion was written
down as:
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Dirac delta function d(x —L) was introduced to
describe a distribution of externally applied torque. By



substituting Eq. (4) in the Eq (5), after simplification the
vibration amplitude can be calculated:

B M,S(x—L)
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Taking into account obtained amplitude (7)
Eq. (4) can be written down as:

M6 (x—L)cos(wr)
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The dynamic flexibility Y; can be calculated in
agreement with definition:

o(x.1) =Y M(1) ©)
and written down as:
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In order to analyse mechanical subsystem it is
possible to use the exact method. In case of mechatronic
systems it is impossible, this is why the approximate
method is used. It is important to verify accuracy of the
approximate method by juxtaposed results of the mechani-
cal subsystem analysis using both methods. The process of
the dynamical flexibility calculation using the exact
method of separation of variables is well known and not
presented in this work.

A value of the coefficient ¢ was selected to draw
the dynamic flexibility. The characteristic was calculated
using different values and obtained results were juxtaposed
on charts with results obtained using the exact method. The
value of coefficient ¢ was selected to obtain the most simi-
lar results. Results obtained using obtained using exact and
approximate methods - the dynamic flexibility of the me-
chanical subsystem is presented in Fig. 1. The optimal
value of the coefficient ¢ was assumed in this case. One
can see that obtained results are very similar for both
methods. In Fig. 2 and Fig. 3 results obtained for different
values of coefficient ¢ and geometric coefficient x are pre-
sented. They are also juxtaposed with results obtained us-
ing the exact method. In order to more precise results pres-
entation an absolute value of the system’s dynamic flexi-
bility is presented. In presented figures results obtained for
the mechanical subsystem using the exact method are pre-
sented by using a continuous line, while for the approxi-
mate method a dotted line is used.

It was proved that the approximate Galerkin method
is very precise and can be successfully used to analyse
mechatronic systems. It should be mentioned that inexact-
ness of the Galerkin method depends of the analysed sys-
tem’s form of vibration and the method of fixing the sys-
tem [2, 3].
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Fig. 1 Juxtaposed results obtained using exact and ap-
proximate methods, when x = 0.1L, ¢ = 0.05
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4. Characteristic of the mechatronic system

The analysed system was created by development
of the mechanical subsystem. The sectional, cylindrical
piezoelectric transducer is glued on the shaft surface. Ob-
tained system is a one-dimensional, discrete — continuous
torsional vibrating mechatronic system. It was assumed
that the transducer is perfectly bonded to the shaft surface
— influence of a glue layer was neglected. Deformation of
the transducer is equal to the shaft surface’s deformation.
The considered system with bonded cylindrical piezoelec-
tric transducer is presented in Fig. 4.



Fig. 4 Scheme of the considered mechatronic system —
place of the transducer application

Equation of motion was written down taking into
consideration arrangement of torques acting in the system:

2 2 ﬁM st
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ot ox x
where:
Gl (13)
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M,(x, t) denotes torque generated by the trans-
ducer and M(x, f) externally applied torque. The Heavis-
ide’s function was introduced into Eq.(14) to carb the
working space of the piezoelectric transducer to partition
from x; to x,:

2’p(x,1) 2 o (x,1) ~

o ox*
0
- L () H (x) [+ aM (1), (14)
where:
H(x)=H(x-x)-H(x-x,). (15)

In this work it was assumed that the transducer is
used as actuator this is why the externally applied M(x, f)
torque was eliminated. The system is excited by the torque
generated by the transducer so Eq. (14) can be simplified
and written down as:

L Polud) o[M,(x0H ()]
ox* ox '

é’z(p(x,t)

ot (16)

In this case characteristic Y, that describe rela-
tions between externally applied electric voltage and angle
of rotation of the mechanical subsystem. This relation can
be described by the equation:

go(x,t):YpV(t). (17

The angular displacement of the piezoelectric

transducer was written as [1]:

L[’
B =R_d15E ,

4

(18)

where L, denotes length of the transducer, E the electric
field intensity, d;s is the piezoelectric constant and R, de-
notes the outer radius of the cylindrical transducer. The
process of power supply of the transducer and its deforma-
tion is presented in Fig. 5 [1].
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Fig. 5 Construction and interactions in the cylindrical pie-
zoelectric transducer [1]

In Fig. 5 are presented respectively:

a) an electric field vector E is perpendicular to the
vector of the residual polarization P, what causes stress S5
described as:

S, =dE; (19)

b) The piezoelectric element in the form of a
segmented ring in which segments are supplied alternately.
The polarization inside the ring is represented by arrows.
Depending on the set electric voltage the upper side will
turn clockwise or counter-clockwise relative to the bottom
by an angle £ [1].

By rearranging Eq. (16) taking into account
Eq. (4), after similar transformations as in case of me-
chanical subsystem analysis it can be written down:

—Aw’® sin(k x) cos(a)t) =—c?Ak? sin(k x) cos(a)t) -
1 | M, (x.1) AH (x)

ol o )M, ()= (20)

Using the properties of the Heaviside’s function:

:é'(x),

é’H(x)

21
s (21)
where d(x) is the Dirac delta function and assuming that
characteristic will be calculated when x = L it can be writ-
ten down:

—Aw’® sin(k x) cos(a)t) =—c?Ak? sin(k x)cos(a)t) -

1
——M (x,t)0(x). (22)
M, (30)2(x)
The torque generated by the piezoelectric trans-
ducer can be described by formula [1]:

n (R‘ -R )
Mp(x,t)—#

Sa4

. (23
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where R; and Ry denote outer and inner radius of the cy-
lindrical transducer, n, is the number of transducer’s seg-

ments, s;, is the elastic constant determined at zero/cons-

tant electric field. It was assumed that externally applied
voltage is:

V(t)=V,cos(wt). (24)



Vibration amplitude can be calculated similarly as
in the previous case:

n, (R, - R, )disV,R.5(x)

A=
sin(k x)(l’czc2 -’ )plosﬁ

; (25)

where R, denotes the average value of the radius of the
transducer. In accordance with the Eq. (4) angle of rotation
can be written down as:

n,(R, - Ry, )d\sR,5(x)

(k2c2 —a)z)plosf4 (26)

p(x,1)= cos(wt),

and characteristic of the considered mechatronic system
can be described by the equation:

y - n, (RZ —RW)dISRaé‘(x)
(kzc2 -’ )plosﬁ

P
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Obtained results — characteristic of the considered
mechatronic system excited by cylindrical piezoelectric
transducer is presented in Fig. 6. In presented case the
characteristic was calculated when length of the transducer
L, =L/3. This characteristic describes relation between

value and frequency of electric voltage that supplies the
piezoelectric actuator and an angle of rotation of the shaft,
measured in rad/V. Results are juxtaposed with the dy-
namic flexibility of mechanical subsystem, measured in
rad/Nm, obtained using the exact method. One can observe
that the biggest values of the angle of rotation can be ob-
tained in resonance zones.

It should be mentioned that in this work very sim-
ply mathematical model was used. There was no influence
of the glue layer between the transducer and surface of the
mechanical subsystem on the obtained characteristic. In the
future work more precise model will be used. Obtained
results should be also verify and juxtaposed with results of
the experimental tests. It will be presented in future works.
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Fig. 6 Comparison of characteristic of mechatronic system
excited by piezoelectric transducer (approximate
method — the dotted line) with dynamic flexibility of
the mechanical subsystem (exact method — the
continuous line)

5. Conclusions

Due to the growing interest in the use of piezo-
electric materials in modern technical devices, as well as
works to develop new non-classical piezoelectric transduc-
ers the process of modelling and testing of such systems
also becomes very essential issue. This paper is a proposal
to use approximate Galerkin method for the determination
of characteristics of vibrating systems containing non-
classical, composite transducers. Using the proposed
mathematical algorithm it is possible to determine the de-
sired characteristics as well as analyse the effects of the
parameters of the individual elements of the system on
those characteristics including both the geometric and ma-
terial parameters. It should be noted that in the assumed
mathematical model of the considered torsional vibrating
system significant simplifications were assumed. This is
why in the future works more precise models will be pro-
posed. Designing of technical systems containing piezo-
electric transducers is a complex process, due to the phe-
nomena occurring in them. A correct description of the
given device in the form of a mathematical model, already
in its design phase, is a fundamental condition for its
proper functioning. It is very important to develop mathe-
matical models of vibrating systems with piezoelectric
transducers that can be used as actuators or vibration
dampers, to allow an accurate description of the phenom-
ena occurring in them with the maximum simplification of
the calculations. It will significantly contribute to the de-
velopment of this field of technology and facilitate the im-
plementation of technical devices with piezoelectric trans-
ducers.
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A. Buchacz, M. Ptaczek , A. Wrobel

CILINDRINIU PIEZOELEKTRINIU DAVIKLIU
SISTEMU MODELIAVIMAS IR TYRIMAS

Reziumée

Straipsnyje aprasomas virpancios mechatroninés
sistemos tyrimo ir modeliavimo matematinis algoritmas.
Velenas yra tiriamos sistemos mechaniné posistemé. Ziedo
formos piezoelektrinis daviklis pritvirtintas prie veleno.
Projektuojant sistema, reikia Zinoti jo dinamines charakte-
ristikas.

Dél to autoriai pristaté metoda, kuris naudingas
analizuojant tokio tipo sistemas. Norint apskai¢iuoti me-
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chatroninés sistemos charakteristikas, pirmiausia buvo
tirlamas mechaninis posistemis. Mechaninio posistemio
dinaminis lankstumas apskaiciuotas naudojant tiksly ir
apytikslj metodus. Kadangi mechatroninés sistemos anali-
zei tiksly metoda taikyti nejmanoma, buvo naudotas apy-
tikslis Galerkino metodas taikomas sistemos su piezoelekt-
rine pavara analizei. Darbe pateikiama besisukanti vibruo-
janti mechatroniné sistema su piezoelektriniu davikliu.
Tiriama sekcijiné piezoelektriné pavara, kurios cilindrinis
daviklis maitinamas iSorine harmoniskai kintancia jtampa.
Gauty mechaniniy posistemiy ir mechatroniniy sistemy
charakteristiky palyginamas atvaizduotas diagramoje.

A. Buchacz, M. Placzek, A. Wrdbel

MODELLING AND ANALYSIS OF SYSTEMS WITH
CYLINDRICAL PIEZOELECTRIC TRANSDUCERS

Summary

Paper presents a proposal of mathematical algo-
rithm used in order to modelling and testing of vibrating
mechatronic systems. A shaft is the mechanical subsystem
of the considered system. A ring piezoelectric transducer is
bonded on the shaft’s surface. Knowledge of the dynamic
characteristics of the designed systems is essential for the
proper operation and should be taken into consideration
during the design phase as well as verified during opera-
tion of the system. This is why authors decided to present a
method that can be very useful for analysis of such kind of
systems. In order to calculate the characteristic of mecha-
tronic system a mechanical subsystem was analysed in the
first step. The dynamic flexibility of mechanical subsystem
was calculated using the exact and approximate methods. It
is impossible to use the exact method in order to analyse
mechatronic systems this is why the approximate Galerkin
method was used to analyse the system with piezoelectric
actuator. An exactness of the approximate method was
verified. In the presented work a torsional vibrating mecha-
tronic system with piezoelectric transducer used as the
vibration actuator is presented. The considered piezoelec-
tric actuator is the sectional, cylindrical transducer sup-
plied by the external harmonic electric voltage. Obtained
results — characteristics of mechanical subsystem and
mechatronic system are juxtaposed on charts.

Keywords: modelling, analysis, vibrating mechatronic
systems, piezoelectric transducer.

Received March 27, 2013
Accepted February 11, 2014



