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1. Introduction 

 

Multi‒layer structural elements (MSEs) are made 

of two or more materials (phases) with different properties 

and clear boundaries between them. Subjected to external 

loads the MSEs deform like a single body. MSEs can be 

considered as hybrid materials, although they differ not 

only from homogenous, but from composite materials as 

well. Sometimes MSEs also are referred to as mac-

ro‒composites. 

The major advantage of MSEs is the capacity to 

obtain new structural properties by varying layers material 

and their arrangement [1]. Each layer in MSEs serves a 

specific purpose. The external ones protect from the envi-

ronmental impact: mechanical damage, moisture and ultra-

violet (UV) radiation. The layers from porous materials 

reduce weight and material consumption. Reinforcement 

reduces strain, creep and increases strength. The layers 

limiting the diffusion of liquids and gases, as well as in-

creasing thermal resistance may be also used. Therefore 

MSEs are employed in different areas [1-3]. 

The change of temperature in MSEs, the layers of 

which have different coefficients of thermal expansion 

(CTE), produce thermal stresses (TS). TS can emerge ei-

ther during manufacturing processes, or during operation. 

In each case TS superimpose with stresses from external 

loads and thus the strength may be impinged [2]. TS can be 

moderated by selecting materials with similar values of 

CTE. Since layers in MSEs perform different functions, 

they are usually made of materials with very different 

properties: metals, plastics, ceramics and composites. 

Therefore, TS in MSEs can rarely be eliminated. Conse-

quently, it is essential to be able to estimate and consider 

TS in MSEs [3]. 

The free edge effect (FEE), when near at the edge 

regions stress states are qualitatively and quantitatively 

different from stresses farther away, manifests itself in 

MSEs [4, 5]. Often this is the main cause of fracture and 

delamination [5-7]. Some authors who analyse FEE and 

stresses in MSE’s propose to separate two distinctive 

zones, namely regular ant irregular ones [1, 4, 8-10]. 

Sometimes they are also called zones of nominal and 

anomalous stress distribution. Stresses in regular zone 

(RZ) along the layer can be considered as constant. In Ir-

regular Zone (IZ), on the contrary they change rapidly, and 

complex stress/strain state arises [1, 4]. 

Different methods for the strength and stress as-

sessment in RZ and IZ therefore should be used. Tech-

niques intended for stress estimation in RZ cannot be used 

even for a rough estimate of the stresses in IZ. Otherwise, 

not only significant errors arise, but false stress states are 

portrayed [8-10]. In order to apply such techniques, the 

extent of IZ should be at least approximately settled, and 

effecting factors identified.  

The objective of the research presented was to ex-

amine the extent of IZ in a solid, two-layer, cylindrical 

bars subjected to the change of temperature, to assess the 

boundaries of its variation, determine the dominant factors, 

and find a set of parameters which are intrinsic for the bars 

with a long IZ and a short one. 

 

2. Methods 

 

In experimental terms strains inside MSEs can by 

examined by means of strain gages (SG). The gage length 

can be as small as a couple of tenths of millimetres, so they 

can be used in research of FEE in MSEs [11, 12]. Howev-

er, this method is not very attractive for the research of IZ 

extent. Firstly, in order to evaluate the influence of various 

factors and their possible interactions a couple of dozens of 

different combinations should be examined (Eq. (1)). Since 

strains in each sample should be measured at a couple of 

points, experimental approach quickly will become cost 

ineffective and time consuming. On the other hand, the SG 

and their wiring will have influence on strains, especially 

when the values of the Young’s modulus are low [13]. Un-

certainties due temperature, transvers sensitivity of SG and 

other effects should be estimated. 

Other experimental techniques cannot be used for 

strain measurement inside of material or if they are, strains 

are obtained in a relatively large (in order of centimetres) 

basis [14]. Measurement of strains at the external surface 

of MSEs is not a good recourse, either. Delamination and 

fracture usually starts at the contact of the layers, so strains 

at the external surface would not be very expedient [15]. 

Regarding this state of affairs, the method of finite ele-

ments (FEM) as a convenient tool for research on the ex-

tent of IZ is adopted. 

The geometry of the layered bar and correspond-

ing FEM model in Fig. 1 are presented. The length of the 

bar L was taken as equal to four diameters D i.e.  

L = 4D. The mesh was generated in such a way that no less 

than 200 of finite elements along the distance of one diam-

eter would be assured (Fig. 1). Plane four node elements 

with the option of axial symmetry were used (Plane 182). 

Finite elements at a contact surface were bonded together 

without a slip. Materials were considered as homogeneous, 

isotropic and linearly elastic. Constrains which we used for 

a model are presented in Fig. 1. The load which induces TS 

was the change in layers temperature (ΔT = 1ºC). Simula-

tion was performed by FEA software package Ansys 13. 
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Fig. 1 The geometry (top) and corresponding FEM model 

(bottom) of the two-layer bar 

 

It can be suspected that the length of irregular 

stress distribution (IZ) will be influenced by mechanical 

properties, like Young’s modulus Ei, Poison’s ratio νi and 

by geometry of the layers. To estimate the influence of the 

latter, the ratio of the areas of layers Ai and MSEs A cross–

sections were used ψi=Ai /A. The difference between CTE 

of the layers αi was α2 – α1 = 1·10
-6

 1/ºC. While thermal 

strains are proportional to the change in temperature, TS 

induced in MSEs are proportional to the difference in CTE 

of the layers. So TS in MSE’s with different values of 

CTE’s can be easily recalculated. 

Young’s modulus of the two‒layer MSEs can be 

represented by one parameter, namely with a ratio between 

them ξ2,1 = E2/E1. Therefore, TS and the extent of irregular 

stress distribution will depend on five parameters of the 

bar: ξ2,1, ψ1, ψ2, ν1, ν2. For the two‒layer bars ψ2 = 1 - ψ1, 

therefore, the influence of four independent parameters 

was analysed. The total number of trials required to im-

plement a Full Factorial Design (FFD) is: 

4

1

3 81
S

j
j

N r q r r


   ,  (1) 

where r  is the number of replicates, S  is the number of 

different factors, jq  is  the number of levels in j-th factor. 

Since FEM in its nature is a deterministic one, it 

is sufficient to take only one replicate r = 1. For that same 

reason the order of the specimen’s simulations was not 

randomized.  

The simulations were carried out with the follow-

ing levels of parameters: ξ2,1 (0.1, 1.0, 10.0); ψ1 (0.1, 0.5, 

0.9); ν1 (0.19, 0.34, 0.49); ν2 (0.19, 0.34, 0.49). By increas-

ing the number of levels, the number of tests raises drasti-

cally (Eq. (1)).  

Usually two‒level experimental designs with 

“high” and “low” values of each parameter are used [16, 

17]. Here we are interested in those cases, where corre-

sponding parameters between the layers are equal, as well. 

Therefore, the factorial design where each parameter has 

three levels was used, even if the total number of trials in 

comparison to the two-level design were approximately 5 

times higher. Three level designs also enable to estimate 

the nonlinearity effects.  

The range of each parameter variation was select-

ed as quite wide in order to get clear differences between 

the levels. The limit values of parameters ψ1 and νi were 

chosen near to the maximum possible. 

To define the length of IZ (L
IZ

) the range of stress 

variation |σmax - σmin| and coefficient k were used (Fig. 2). 

Here we take k equal to 5 per cent. Stress variation in 5% 

is quoted as small to assume that the stresses in that region 

are constant.  

 

 
Fig. 2 Separation between the zones of regular and irregu-

lar stress distribution 

 

IZ defined in such a way can be applied even 

when the stresses in the zone of regular stress distribution 

are equal to zero. On the other hand, this definition esti-

mates not only the stress change from its maximal value 

(σmax), but its change in comparison to the stress variation. 

It can be noted that when k = 100 %, L
IZ

 is equal 

to the length of the maximal stress value from the end of 

the bar. When k = 0 %, L
IZ

 is equal to length of the bar (L). 

The values of the stresses along the axis 0z was obtained 

by Ansys command PATH. 

The length of IZ was defined as a ratio: 

 

IZ

j,i,kk

j ,i

L

D
  ,  (2) 

where j  denotes the component of the stress state; i is the 

number of the layer. 

 

3. Results 

 

The results of IZ calculated by means of FEM are 

presented in Table 1. In the columns denoted “Code” fac-

tors and their levels are encoded. Numbers 1, 2 and 3 cor-

respondingly signify the “low”, “medium” and “high” val-

ues of each parameter. The numbers in the first and second 

positions encode the ratios of Young’s modulus and layers 

cross‒sectional areas. The numbers in the third and last 

positions indicate the values of Poisson’s ratio in the inter-
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nal and external layers. For example, the code 1231 repre-

sents the construction where: ξ2,1 = 0.1, ψ1 = 0.5, ν1 = 0.49, 

ν2  =  0.19. In each row, the values of the IZ lengths Φ for 

different components of the stress state are given: normal 

(along or, oθ and oz directions), shear τ and von Mises e. 

Table 

The extent of irregular stress distribution 
 

Code Φr,1 Φθ,1 Φz,1 Φτ,1 Φe,1 Φr,2 Φθ,2 Φz,2 Φτ,2 Φe,2 Code Φr,1 Φθ,1 Φz,1 Φτ,1 Φe,1 Φr,2 Φθ,2 Φz,2 Φτ,2 Φe,2 

1111 0.80 0.88 1.16 1.04 1.04 0.80 0.80 0.96 1.04 1.00 2231  0.52  0.72  0.80  0.64  0.64  0.52  0.76  0.64  0.64  0.72 

1112  0.76  0.84  1.28  1.08  1.08  0.76  0.52  0.84  1.08  0.96 2232  0.44  0.76  0.88  0.68  0.68  0.40  0.76  0.76  0.68  0.80 

1113  0.68  0.80  1.36  1.12  1.12  0.68  0.28  0.76  1.12  0.84 2233  0.24  0.80  0.96  0.72  0.72  0.24  0.80  0.96  0.72  0.88 

1121  0.80  0.96  1.16  1.04  1.04  0.80  0.96  0.96  1.04  1.00 2311  0.16  0.76  0.48  0.40  0.40  0.32  0.76  0.48  0.36  0.64 

1122  0.72  0.96  1.24  1.08  1.08  0.72  0.72  0.84  1.08  0.92 2312  0.44  0.80  0.52  0.44  0.44  0.52  0.72  0.52  0.40  0.64 

1123  0.64  1.00  1.36  1.12  1.12  0.60  0.24  0.76  1.12  0.80 2313  0.56  0.84  0.52  0.44  0.44  0.68  0.68  0.56  0.44  0.64 

1131  0.76  1.08  1.12  1.00  1.00  0.76  1.08  0.96  1.04  1.00 2321  0.16  0.64  0.48  0.36  0.36  0.16  0.72  0.48  0.36  0.60 

1132  0.72  1.20  1.24  1.04  1.04  0.68  0.84  0.84  1.08  0.88 2322  0.44  0.64  0.48  0.40  0.40  0.48  0.64  0.48  0.36  0.60 

1133  0.56  1.12  1.36  1.08  1.08  0.48  0.48  0.76  1.12  0.76 2323  0.52  0.68  0.52  0.44  0.44  0.64  0.64  0.52  0.40  0.60 

1211  0.56  0.68  0.48  0.60  0.60  0.52  0.60  0.56  0.60  0.56 2331  0.28  0.52  0.44  0.32  0.32  0.16  0.64  0.44  0.32  0.56 

1212  0.52  0.68  0.44  0.64  0.64  0.52  0.60  0.64  0.64  0.44 2332  0.40  0.56  0.44  0.36  0.36  0.40  0.60  0.44  0.32  0.56 

1213  0.48  0.72  0.40  0.68  0.68  0.48  0.56  0.56  0.68  0.28 2333  0.52  0.56  0.48  0.40  0.40  0.56  0.56  0.48  0.36  0.56 

1221  0.52  0.68  0.44  0.56  0.56  0.52  0.60  0.56  0.56  0.56 3111  0.32  0.56  0.44  0.36  0.36  0.32  0.64  0.48  0.36  0.56 

1222  0.52  0.72  0.44  0.60  0.60  0.52  0.60  0.60  0.60  0.48 3112  0.32  0.60  0.48  0.36  0.36  0.32  0.60  0.48  0.36  0.44 

1223  0.48  0.76  0.40  0.64  0.64  0.48  0.56  0.56  0.68  0.32 3113  0.32  0.64  0.52  0.36  0.36  0.32  0.24  0.48  0.36  0.24 

1231  0.52  0.64  0.44  0.56  0.56  0.52  0.60  0.52  0.56  0.56 3121  0.36  0.28  0.40  0.40  0.40  0.36  0.72  0.48  0.44  0.68 

1232  0.52  0.64  0.40  0.60  0.60  0.52  0.60  0.60  0.60  0.48 3122  0.36  0.28  0.40  0.40  0.40  0.36  0.68  0.48  0.44  0.68 

1233  0.48  0.68  0.36  0.64  0.64  0.48  0.56  0.52  0.64  0.32 3123  0.36  0.28  0.40  0.40  0.40  0.36  0.64  0.48  0.44  0.64 

1311  0.12  0.56  0.36  0.16  0.16  0.12  0.44  0.32  0.12  0.36 3131  0.48  0.44  0.48  0.60  0.60  0.48  0.76  0.48  0.60  0.68 

1312  0.12  0.60  0.36  0.16  0.16  0.12  0.36  0.32  0.16  0.44 3132  0.48  0.44  0.48  0.60  0.60  0.48  0.80  0.44  0.60  0.72 

1313  0.12  0.64  0.36  0.20  0.20  0.12  0.36  0.32  0.16  0.52 3133  0.48  0.44  0.48  0.60  0.60  0.48  0.88  0.44  0.60  0.76 

1321  0.08  0.44  0.36  0.16  0.16  0.12  0.40  0.32  0.12  0.32 3211  0.80  0.76  0.48  0.72  0.72  0.76  0.80  0.88  0.72  0.80 

1322  0.12  0.44  0.36  0.16  0.16  0.12  0.32  0.32  0.16  0.40 3212  0.76  0.72  0.52  0.76  0.76  0.76  0.80  0.88  0.76  0.80 

1323  0.12  0.48  0.36  0.20  0.20  0.12  0.32  0.32  0.16  0.48 3213  0.76  0.72  0.60  0.76  0.76  0.72  0.80  0.84  0.76  0.84 

1331  0.08  0.36  0.32  0.16  0.16  0.12  0.36  0.32  0.12  0.24 3221  0.76  0.64  0.48  0.80  0.80  0.76  0.88  0.96  0.76  0.92 

1332  0.08  0.40  0.36  0.16  0.16  0.12  0.28  0.28  0.12  0.36 3222  0.76  0.60  0.56  0.80  0.80  0.76  0.88  0.96  0.80  0.96 

1333  0.08  0.40  0.36  0.16  0.16  0.12  0.28  0.28  0.16  0.48 3223  0.76  0.32  0.60  0.80  0.80  0.76  0.92  0.96  0.80  0.96 

2111  0.68  0.72  0.64  0.60  0.60  0.68  0.72  0.64  0.60  0.28 3231  0.88  0.56  0.68  0.96  0.96  0.88  1.08  1.28  0.96  1.08 

2112  0.68  0.72  0.68  0.60  0.60  0.64  0.60  0.64  0.60  0.40 3232  0.88  0.64  0.72  1.00  1.00  0.88  1.16  1.32  0.96  1.16 

2113  0.68  0.72  0.76  0.60  0.60  0.64  0.28  0.60  0.60  0.44 3233  0.92  0.72  0.80  1.00  1.00  0.92  0.92  0.92  0.92  0.92 

2121  0.60  0.68  0.56  0.56  0.56  0.56  0.76  0.64  0.56  0.52 3311  0.88  0.84  0.80  0.80  0.80  0.84  0.88  0.84  0.80  0.88 

2122  0.56  0.68  0.64  0.60  0.60  0.56  0.68  0.64  0.60  0.28 3312  0.84  0.84  0.80  0.84  0.84  0.84  0.92  0.88  0.84  0.92 

2123  0.56  0.72  0.72  0.60  0.60  0.52  0.52  0.60  0.60  0.40 3313  0.84  0.80  0.80  0.88  0.88  0.84  0.92  0.92  0.84  0.96 

2131  0.52  0.68  0.48  0.56  0.56  0.52  0.76  0.64  0.56  0.40 3321  0.80  0.88  0.80  0.80  0.80  0.76  0.92  0.80  0.76  0.96 

2132  0.24  0.68  0.56  0.56  0.56  0.24  0.76  0.64  0.56  0.44 3322  0.80  0.88  0.80  0.80  0.80  0.80  0.96  0.84  0.80  0.96 

2133  0.24  0.68  0.64  0.60  0.60  0.24  0.68  0.64  0.60  0.16 3323  0.80  0.84  0.84  0.88  0.88  0.80  1.00  0.92  0.84  1.00 

2211  0.56  0.76  0.96  0.72  0.72  0.56  0.76  0.96  0.72  0.80 3331  0.72  0.84  0.76  0.76  0.76  0.72  0.92  0.76  0.72  0.88 

2212  0.48  0.76  0.88  0.76  0.76  0.20  0.76  0.88  0.76  0.80 3332  0.76  0.88  0.80  0.80  0.80  0.72  0.92  0.80  0.76  0.92 

2213  0.24  0.76  0.36  0.80  0.80  0.24  0.72  0.76  0.80  0.76 3333  0.76  0.88  0.84  0.84  0.84  0.76  0.96  0.88  0.84  0.96 

2221  0.56  0.76  0.88  0.68  0.68  0.52  0.76  0.80  0.68  0.84 Q-1 0.35 0.60 0.44 0.40 0.40 0.32 0.59 0.48 0.43 0.47 

2222  0.44  0.76  0.96  0.72  0.72  0.20  0.76  0.96  0.72  0.84 Q-2 0.52 0.72 0.52 0.60 0.60 0.52 0.72 0.64 0.60 0.68 

2223  0.24  0.80  0.84  0.76  0.76  0.24  0.76  0.84  0.76  0.84 Q-3 0.76 0.80 0.80 0.80 0.80 0.72 0.80 0.84 0.80 0.88 
 

Notes: The extent of IZ is obtained by using k = 5%; blue colour denotes „short“, green and pink respectively „medium“ 

and „long“ IZ. 

 

From Table we see that the length of IZ varies 

from 0.08 to 1.36, or approximately from 0.1 to 1.4 of the 

external diameter D of the bar. The ratio between the 

shortest and longest IZ is equal to 17, i.e. differs approxi-

mately 20 times. That is a very large variation, so it is im-

portant to determine the underlying causes. 

By examining the results presented (Table), we 

see that the extents of IZ are distributed unevenly. To esti-

mate the scattering of the results, quartiles Q instead of 

standard deviation were used as a less affected by outliers 

(robust statistics). Considering the values of the first Q‒1 

and the third Q‒3 quartiles, we define the length of IZ as 

“short”, when Φ < 0.4 and „long“, when Φ > 0.8, for the 

axial, shear and von Mises stresses. For the stresses in ra-

dial direction those limits are 0.33 and 0.73 and for the 

hoop stresses they are correspondingly 0.6 and 0.8. 

Marking “short”, “medium” and “long” IZ by dif-

ferent colours (Table) we see that there is no clear distinction 

between those three cases. Short IZ usually are obtained in the 

bars with codes “ 31_ _” (here instead of each dash any of 

numbers 1, 2 or 3 can be used) and long in with codes “33_ 

_”. A clear trend towards the long IZ shows in bars “11_ _” 

and in less extent in bars “32_ _”. While bars “21_ _” and 

“12_ _” can be considered as having medium lengths of IZ. 
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Fig. 3 The extent of IZ in internal (left) and external (right) layers with the different values of Poisson‘s ratios: ○ – Φr,i ,   

□ – Φθ,i ,  – Φτ,i , ◊ Φe,i  
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Fig. 4 The extent of IZ in internal (left) and external (right) layers with the different values of ratios of Young’s modulus: 

○ – Φr,i ,  □ – Φθ,i ,  – Φτ,i , ◊ Φe,i  
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Fig. 5 The extent of IZ in internal (left) and external (right) layers with the different values of areas cross-sections: ○ – Φr,i,  

□ – Φθ,i ,  – Φτ,i , ◊ Φe,i  

 

An interesting distribution can be observed in 

bars encoded “22_ _”. Here “short”, “medium” or even 

“long” IZ can be obtained. Obviously, the extent of IZ in 

this case strongly depends on the values of Poisson’s ra-

tios or their interaction with the ratios of Young’s modu-

lus and the layers cross‒sectional areas. However, this is 

more likely an exception than a rule, since in all the other 

cases the values of Poisson’s ratios has very little effect 

on IZ (Fig. 3). In Figs. 3-5 the black–dashed line signifies 

the average of all the results in Table (equal to 0.63D). 

The black solid lines signify the averages within each 

group. X marks denote the average of IZ in each stress 

component. It should be noted that in Figs. 3-5 the varia-

bles in horizontal axis are discrete, not continuing. 

Although the average lengths of IZ between the 

groups with different values of Poisson’s ratios are insig-

nificant, the differences in data scattering are noticeable 

(Fig. 3). This means that the influence of Poisson’s ratios 

to the extent of IZ manifests itself in interaction with ξ2,1 

and ψ1. Despite of this, the stress state in some loading 

conditions can be affected by Poisson‘s ratios [18, 19].  

Φj,1 Φj,2 

ν1 0.49 0.34 0.19 ν1 0.49 0.34 0.19 

ξ2,1 10.0

0 

1.0 0.1 ξ2,1 10.0 1.0 0.1 

ψ1 0.9 0.5 0.1 ψ1 0.9 0.5 0.1 

Φj,1 Φj,2 

Φj,1 
Φj,2 
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Fig. 6 Stress distribution along the axis in bars „13_ _“ at the internal (left) and external (right) layers: ▬ σr,i , ▬ σz,i ,  

▬ σθ,i , ▬ τ , ▬ σe,i  
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Fig. 7 Stress distribution along the axis in bars „11_ _“ at the internal (left) and external (right) layers: ▬ σr,i , ▬ σz,i ,  

▬ σθ,i , ▬ τ , ▬ σe,i  

 

The influence of Young’s modulus and the areas 

of layers cross–sections are much more pronounced  

(Figs. 4 and 5). These graphs also show that the length of 

IZ depends not only on the Young’s modulus and the ratios 

of area cross–sections (average), but also on their interac-

tions (variation). 

In general, referring to the previous results we can 

suggest that when the values of Young’s modulus and ratio 

of cross‒sectional areas are simultaneously relatively high 

or low (in comparison with another layer). IZ tends to be 

short (13_ _, 31_ _). Similarly, those zones are short if 

Young’s modules are similar and the cross‒sectional area 

of the internal layer is much higher than that of the internal 

one (23_ _). The longest IZs are obtained when Young’s 

modulus of the internal layer is relatively high and the 

cross‒sectional area small (11_ _). Similarly IZs are long 

when Young’s modulus of the internal layer is low and the 

cross–sectional areas are similar or higher than that of the 

external one (32_ _, 33_ _).  

If Young’s modulus and the cross–sectional areas 

of both layers are similar, then the extent of IZ varies quite 

widely (22_ _). When the internal layer is stiff (high E1) 

and the cross‒sectional area is similar to the external one, 

we arrive to the IZ with a moderate length (12_ _).  Like-

wise IZ are moderate if Young’s moduli are similar, but 

the cross‒sectional area of the internal layer is relatively 

small (21_ _). The stress distribution along the bar axis at 

the layers contact for the bars with long and short IZ’s are 

presented respectively in Figs. 6 and 7. 

 

4. Discussion  

 

As we see from Table, the extent of irregular 

stress distribution for radial stresses in both layers are not 

identical. This is also true and for shear stresses. Those 

differences can be explained in part by the uncertainty of 

FEM, in part by the fact that the stresses were taken by a 

small distance (0.01% of contact surface radius) away from 

the contact between the layers, to avoid averaging effect. 

In the previous section some recommendations 

for forecasting of the extent of IZ were given. Let’s exam-

ine how accurate they are. For the lack of space, let us con-

sider only the lengths of normal stresses in the axial direc-

tion (oz) i.e. Φz,i. All 81 constructions were subdivided into 

four categories. The bars with “long”, “moderate”, “short” 

and “unstable” lengths of IZ as a box‒whisker plots are 

presented (Fig. 8). Here the plus sign signifies the outliers. 

From Fig. 8 we see that the guidance given is not 

very accurate, since some overlap exist. However, they can 

serve as a rough estimation for the extent of IZ quite well. 

By using them we can predict how wide the irregular zone 

will be before obtaining the actual TS acting in MSEs lay-

ers.
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Fig. 8 The box‒whisker plots of Φz,i of internal (left) and external (right) layers for normal stresses in the axial direction 

 

4. Conclusions  

 

1. Examination of thermal stresses in two‒layered 

cylindrical bars, induced demonstrated that stresses varies 

along its axis. The stress distribution can be arbitrary separat-

ed in two distinctive parts, namely regular and irregular stress 

distribution zones. In regular stress distribution zone stresses 

can be considered as invariable along the axis. 

2. By analysing results from 81 structures with a dif-

ferent values of Young’s modulus, Poisson’s ratios and 

cross‒sectional ratios of the layers was founded, that the 

length of IZ for separate stress components are different. It 

varies from 0.1D to 1.4D. By average the longest IZ was ob-

tained for hoop and axial stresses 0.7D, ranging from 0.3D to 

1.4D. The shortest IZ was attained for radial stresses with 

average 0.5D, varying from 0.1D to 0.9D. The total average 

of all results vas equal to 0.6D. 

3. Presented results indicates that extent of the IZ is 

most affected by values of Young’s modulus and cross-

sectional areas of the layers. The influence of Poisson’s ratios 

manifests itself only in interaction with those parameters. 

Therefore if all parameters remain fixed, except the Poisson’s 

ratios of the layers, the extent of IZ remains practically unal-

tered. 

4. Based on presented results we proposed all lay-

ered bars arbitrary subdivide in to four different groups. Each 

of them can be characterized as hawing “long”, “moderate”, 

“short” or “unstable” length of IZ. When the values of 

Young’s modulus and ratio of cross‒sectional areas are simul-

taneously relatively high or low. IZ tends to be short. Similar-

ly, those zones are short if Young’s modules are similar and 

the cross‒sectional area of the internal layer is much higher 

than that of the internal one. The longest IZ are obtained when 

Young’s modulus of the internal layer is relatively high and 

the cross‒sectional area small. Similarly IZ are long when 

Young’s modulus of the internal layer is low and the 

cross‒sectional areas are similar or higher than that of the 

external one. If Young’s modulus and the cross‒sectional 

areas of both layers are similar, then the extent of IZ varies 

quite widely. When the internal layer is stiff and the 

cross‒sectional area is similar to the external one, we arrive to 

the IZ with a moderate length. Likewise IZ are moderate if 

Young’s moduli are similar, but the cross‒sectional area of 

the internal layer is relatively small. 

5. In bars with “long” IZ parameter Φ varies from 

0.24 to 1.36 with average 0.86. Similarly for those with 

“short” IZ varies from 0.08 to 0.88 and average 0.41. For 

those attributed to “moderate” IZ length respectively 0.16, 

0.76 and 0.57. 
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N. Partaukas, J. Bareišis 

IREGULIARINĖS ĮTEMPIŲ ZONOS ILGIO TYRIMAS 

DVIEJŲ SLUOKSNIŲ CILINDRINIUOSE 

STRYPUOSE, VEIKIANT TEMPERATŪROS 

POKYČIUI  

R e z i u m ė 

Temperatūros pokytis sluoksniuotuose konstruk-

cijose paprastai sukelia terminius įtempius, kurie įtakoja jų 

stiprumą. Šie įtempiai nėra pastovūs, tačiau kinta išilgai 

sluoksnio per viso elemento ilgį, ypač ties konstrukcijos 

pakraščiu. Sąlyginai galima išskirti dvi zonas: reguliarinę – 

su pastoviu (tolygiu) bei ireguliarinę – su netaisyklingu 

(netolygiu) įtempių pasiskirstymu. Darbe pateikiami iregu-

liarinės įtempių zonos ilgio tyrimo rezultatai dviejų 

sluoksnių pilnaviduriuose cilindriniuose strypuose veikia-

muose temperatūros pokyčio. Rezultatai gauti baigtinių 

elementų metodu. Buvo ištirta aštuoniasdešimt viena 

konstrukcija su skirtingomis medžiagų tamprumo modulio, 

Puasono koeficiento ir sluoksnių skerspjūvio plotų vertė-

mis. Nustatyta, kad ireguliarinės zonos ilgis kinta maždaug 

nuo vienos dešimtosios iki vieno ir keturių dešimtųjų stry-

po išorinio diametro.  Šis ilgis labiausiai priklauso nuo 

tamprumo modulių ir sluoksnių skerspjūvio plotų santykių. 

Nustatytos konstrukcijos parametrų kombinacijos, kurioms 

esant gaunama minimalaus/maksimalaus ilgio ireguliarinė 

zona. Šioms ireguliarinės zonos ilgių vertėms pateikti 

įtempių komponentų pasiskirstymai sluoksnių kontakte 

išilgai strypo ašies. 

 

N. Partaukas, J. Bareišis 

THE EXTENT OF IRREGULAR STRESS 

DISTRIBUTION IN A TWO-LAYER CYLINDRICAL 

BARS SUBJECTED TO THE CHANGE OF 

TEMPERATURE  

S u m m a r y 

The change of temperature in layered structures 

usually induces thermal stresses, which affect their 

strength. Furthermore, those stresses are not fixed along 

the layer, but vary especially near the edges. Consequently, 

two zones with a steady and variable stress distribution can 

be virtually distinguished. Here the results on the length of 

irregular stress distribution in two–layered, solid cylindri-

cal bars subjected to change of temperature are presented. 

The results were obtained by means of finite element anal-

ysis. Eighty–one structures with different values of geome-

try and mechanical properties were analyzed. It was found 

that the length of irregular stress distribution zone varies 

approximately from one–tenth to one and a four tenths of 

the bar external diameter. The length depends mainly on 

the values of the Young’s modulus and on the areas of lay-

ers cross–section. A set of design parameters which mini-

mizes/maximizes the length of irregular stress distribution 

are identified. Some representative stress distributions 

along the axis at the layers contact are also presented. 

 

Keywords: thermal stress, stress distribution, free edge 

effect, layered structures, cylindrical bars, FEA. 
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