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1. Introduction

The adaptive vibration control (AVC) problem of
flexible plate structures has attracted considerable attention
during the last two decades. Many researchers proposed
different control strategies for the purpose of AVC of
flexible plate structures. Hu et al [1] applied LMI (Linear
Matrix Inequality)-based H , robust control for AVC of a

flexible plate structure. They used specific transformations
of Lyapunov variable with appropriate linearizing trans-
formations of the controller variables, which give rise to a
tractable and practical LMI formulation of the vibration
control problem. Based on LMI, a H_ output feedback

controller was designed to suppress the low-frequency vi-
brations caused by external disturbances. The simulation
results showed that the proposed robust active control
method is efficient for active vibration suppression. Other
research on the effectiveness of the robust H_ control for

AVC of the flexible structures has been addressed in [2-4].

Based on the previously outlined literature, there
is no published report in which the adaptive iterative learn-
ing MIMO control is used for the purpose of intelligent
AVC of a flexible rectangular plate system. In this re-
search, an adaptive iterative learning MIMO control strat-
egy is applied to the problem of AVC of a rectangular
flexible rectangular plate. First, the flexible rectangular
plate system is modeled using the FEM method and new
modeling method. Then, the validity of the obtained new
model is investigated by comparing the plate natural fre-
quencies, mode shape, static analysis and forced vibration
response analysis predicted by the finite element model
with the calculated values obtained from new model. After
validating the model, adaptive iterative learning MIMO
controller is applied to the plate dynamics via the
MATLAB/Simulink platform. The algorithms were then
coded in MATLAB to evaluate the performance of the
control system. Disturbances were employed to excite the
plate system at different excitation points and the control-
ler ability to attenuate the vibration of observation point
was investigated. The simulation results clearly demon-
strate an effective vibration suppression capability that can
be achieved using adaptive iterative learning MIMO con-
troller.

2. Modelling of flexible rectangular plate system

Cartesian coordinate system (X, y, z) is introduced,
consider a thin flexible rectangular plate of length a along
x-axis, width b along y-axis and thickness % along z-axis.
This condition is illustrated in Fig. 1.
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Fig. 1 A flexible rectangular plate
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Fig. 2A discrete flexible rectangular pléte

The quality and flexibility of plate structure is a
continuous distribution, the system has an infinite number
of degrees of freedom. To simplify the research and facili-
tate the calculation, construct spring-mass system and
make the system discrete, the system is simplified as multi
DOF vibration system. After the process of discrete, the
flexible rectangular plate is shown in Fig. 2.
Where  m, (i=12,n; j=12,+k) are masses;
k,(s=12,-,n+1; t=12,- k+1) are stiffness coef-
ficients; ¢, (r=1,2,--n+1; p=1,2,-- k+1.) are

damping coefficients.
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Fig. 3 A flexible cantilever plate

Considering the boundary conditions, take the
modeling of cantilever flexible rectangular plate as an ex-
ample so as to elaborate new flexible rectangular plate
modeling method. Consider a thin cantilever flexible rec-



tangular plate of length a along x-axis, width b along y-
axis and thickness / along z-axis. This condition is illus-
trated in Fig. 3. After the process of discrete, the cantilever
flexible rectangular plate is shown in Fig. 4. Where

m; (i=123p; j=1,2,3) are masses; k ,(s=123,4,5;

t=1,2,3) are stiffness coefficients; ¢ (r=1,2,3,4,5;,

rp

p=1,2,3) are damping coefficients.
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Fig. 4 A discrete flexible cantilever plate

F, is a concentrated force which is applied to
m,, , @ is generalized coordinate, L is the length between
the adjacent mass; V'L is the variable value of L;y is the

elastic displacement of mass. This condition is illustrated
in Fig. 5.

m, VL
Fig. 5 Dynamic analysis of deformed plate
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We now apply Newton’s second law of motion to
the mass m; =m i,j=12,3,--,7,we have

Mllj}ll +C11 [3).’11 _ylz _j’21]+

+K, [3y =y -y ]=F, (23)
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+K (490 = v0 = Vs~ Vn ] = Fy (26)
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As a convention, we denote a dot as a first deriva-
tive with respect to time (i.e., y=dx/dt), and a double
dot as a second derivative with respect to time (i.e.,
y=d’y/dt’). Let n, be a number of degrees of freedom
of the system (linearly independent coordinates describing
the finite-dimensional structure), let » be a number of out-
puts, and let s be a number of inputs. A flexible structure in
nodal coordinates is represented by the following second-
order matrix differential equation

(M J+[PI[Y J+ K] =[L][F)

In this equation X isthe n, x1 nodal displace-

(32)
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ment vector; Y is the 1, x1 nodal velocity vector; ¥ is the
n, x1 nodal acceleration vector; F is the sx1 input vec-
tor; [M] is the mass matrix, n, xn,; [P] is the damping
matrix, n, xn, ; [K] is the stiffness matrix, n, xn, ; [L]
is input matrix, n, xs . The mass matrix is positive definite

(all its eigenvalues are positive), and the stiffness and
damping matrices are positive semidefinite (all their eigen-
values are nonnegative).

3. Modelling of flexible cantilever plate system
Finite element analysis for 10x10m plate,

p =7800 kg/m’. Thickness is 0.001 m. This condition is
illustrated in Fig. 6.
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Fig. 6 Finite element model
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Considering flowchart of modeling method
(Fig. 7), we have [M], [P], [K], [L].

4. Validity of the new model

4.1. Natural frequency comparison analysis

The results of natural frequency comparison
analysis are shown in Table.

Table
Contrastive analysis results
Natural frequency 1 2 3 4 5
FEA result 0.17 | 041 | 1.06 | 135 | 1.54
New model of the 023 |044 | 1.12 | 141 1.97
natural frequency
Absolute error 0.06 | 0.03 | 0.06 | 0.06 | 0.43
Natural frequency 6 7 8 9
FEA result 2.71 3.19 3.32 3.70
New model of the 2.82 2.94 3.29 3.61
natural frequency
Absolute error 0.11 0.11 0.03 0.09

4.2. Forced vibration response analysis

When system is excited by a harmonic force, the
vibration response of 39th node is shown by Fig. 8.
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Fig. 8 Vibration response of flexible rectangular plate sys-
tem (acting point of force is 39th node): a - result of
FEM model; b - result of new model

5. Adaptive iterative learning control design

Using the Lagrangian formulation, the equations
of motion of an degrees-of-freedom rectangular plate sys-
tem may be expressed by

M (g ()i (1) + C(qc (1), 44 (1)) g (1) + K (g (1)) =

=7, (t)+d, (1) (33)
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where ¢ denotes the time and the nonnegative integer,
k € Z, denotes the operation or iteration number. The sig-

nals ¢, e R", g, € R" and g, € R" are the node position,
node velocity and node acceleration vectors, respectively,
at the iteration k . M(g,)eR"™ is the inertia matrix,

C(4,,4,)q, € R™" is damping matrix. K (g, )e R"" is the
stiffness matrix. z, € R" is the control input vector con-

taining the forces to be applied at each node. d, (1) € R" is

the vector containing the unmodeled dynamics and other
unknown external disturbances.

Assuming that the node positions and the node
velocities are available for feedback, our objective is to

design a control law 7, () guaranteeing the boundedness
of q,(1),Vt€[0,T] and Vs e Z, , and the convergence of
q,(¢) to the desired reference trajectory g, () for all
1e[0,T] when k tends to infinity.

Throughout this paper, we will use the 7, norm

defined as follows

. (Hl @) " it pefos),

() )

(34

pe

sup if p=ow

0<7<t

where ||x(t)|| denotes any norm of x, and ¢ belongs to the

finite interval [0,7]. We say that xe ¢, when ||x(t)||

pe
exists (i.e., when ||x(t)|| is finite).
pe
We assume that all the system parameters are un-
known and we make the following reasonable assump-

tions.
(A1) The reference trajectory and its first and sec-

ond time-derivative, namely ¢, (¢), ¢, (¢) and g, (¢), as
well as the disturbance d, (¢) are bounded V¢ €[0,7] and
VkeZ, .

(A2) The resetting condition is satisfied, i.e.,
4, (0)_% (0) =4 (0)_qk (O) =0, VkeZ, .

We will also need the following properties, which
are common to rectangular plate system.

(P1) M(gq,)eR"™ is symmetric, bounded, and
positive definite.

(P2) The matrix x"M (g, )x=0, VxeR".

(P3) K(qk )+ C(Clk,qk )q.d (t) = W(qk»l?k)f(t),
where [5] ¥(g,,¢,)eR™"" is a known matrix and

£()e R" is an unknown continuous vector over [0,T].

P4) [C (g )| < ki | (4.)] <,
Vt€[0,T] and Vre Z, , where k, and k, are unknown

positive parameters.
Adaptive iterative learning controller design.
Theorem 1. Consider system (33) with properties
(P1-P3) under the following control law

7 ()= K4, (6)+ Ky (6)+ (4006184 )6, (1) (39)

and

4+
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with
0,(t)= 0, (1) + 10" (q,.4,-4, ) 4 (1) (36)

where é-l (1)=0, 4, (1)=q,(t)-q,(¢) and d, ()=
=G, (t)=G; (¢). The matrix ¢(q,,q;,d; )€ R™" is defined

as ¢(qk7q.k7q;k ) = [T(Qk:‘ik )ngl(é):| , Where Sgn(q;/{ ) is
the vector obtained by applying the signum function to all
The matrices K, € R™", K, € R"™" and
I’ e R™™ are symmetric positive definite. Let assumptions
(A1-A2) be satisfied, then §,(¢)el.., § (¢)el..,
7 (1)et,, for all keZ, and limg,(1)=1limg,(1)=0
vte[0,T].

The proof of this theorem is in three parts. The

first part consists of taking a positive definite Lyapunov-
like composite energy function, namely W, , and show that

elements of g, .

this sequence is nonincreasing with respect to & and hence
bounded if W, is bounded. In the second part, we show

that W, (¢) is bounded for all e[0,7]. Finally, in the
third part, we show that limq,(r)=limg,(t)=0,
te [O,T ] .

Proof. Part 1: Let us consider the following
Lyapunov-like composite energy function

Wk(‘lk( IRAGR (t)):Vk(q;k(t)"?k(t))Jr

+51,0 () 1776, (v)dz (37)

with G, (¢)=6(t)—6, (t), where 6(¢) = [(ST (1) ﬂ]T eRr”

and 0(1)=[&" (1)
6(t). The unknown vector &(¢) is defined in (P3) and the
unknown parameter £ is obtained according to (P1) and
(A1) such that |M(q,)d,—d,|<pB . vte[0,T] and
VkeZ, .

The term V((?k (t),c]k(t)) in (37) is chosen as

A T
B, (t)} is the estimated value of

follows
~ ~ 1 ~ ~ 1 ~ ~
Vld(0)4,(0)) =28 M (9,4, + 0 Ked 38)
The difference of W, is given by

W =W =W, =V =V +

+% [[(@/rg,-0r,rd, Yz =

[
=V, -7V, 1_Ejo(e{r '0, -6, .0, Jdr (39)

where 6, =6, —0,_, . On the other hand, one can rewrite ¥,
as follows

V(@ ()G (1) =V (4. (0),d, (0))+
+f! [q*i Mg, +%c§f Mg, + éfKPcider (40)

Now, using (33) and (P2, P3) we have

q~kTMq~k :‘Z(TM(%_%):

:‘?/{qu_é: (_qu_K+Tk+dk) (41)
1.

EqZM(qk) =0 (42)

From known conditions we can have

Gl (M(q.)d,~d,)<|t|B=d Bsen(d)  @3)
T(kaq.k)éﬂ +ﬂsgn(§k):|:¥/(%’%)sgn(q ):I

r . (44)
|:§T ﬂ:| :¢(qkaqk:qk)9

Eq. (40) leads to

Vi@ ()4, (1) =7, (4 (0).: 0))+

+[ 14 MG, -G (-C4, K+, +d,)+§ K, [ =
=7, (2.(0).4,(0))+

+[ 41 Mg, +Cay + K —7, ~d, + K, W7 <
<7,(4(0).4,(0))+

+, [é (Bsen(d.)+ ¥ (a:4.)¢)+di (—Tﬁ&%)}drﬁ
<V (4(0).4,(0))+

+j |: (¢ kaq“qk )a_fk +K,q, :|d7 (45)
Now, substituting (35) in (45) we obtain

V(6 (0. (0) <74 (6 (0., (0)) ¢
[0 (0(0000060)) 8 7, + Ko, e (46)

Using Eqgs. (36), (46) and (A2), Eq. (39) leads to
AW, <=V, _,

__j Qk( ka%n%c F¢ (qk!q.k!qu)_FZKD) (47)

G,dr <0

Hence W, is a nonincreasing sequence. Thus if
W, is bounded one can conclude that /¥, is bounded. In

Part 2 of the Proof we will show that /¥, is bounded for
allz €[0,7]. Henceg, (), g, (¢)and I 0 (t)I'0,(v)dr
are bounded for all k € Z, and all 1 €[0,T]. Since 6(¢)is
[0,7], the boundedness of

continuous  over
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I )dr implies the boundedness of

EAC
that z',(( )e ,, forall keZ, .
Part 2: Now, we will show that W, () is bounded

)dz' Consequently, one can conclude

over the time interval [O,T ] . In fact, considering (37) with

k =0, the time-derivative of W, can be bounded as fol-
lows

: 2 . AN\A Z | QP —
W, < qg (¢<‘Ioa%:%)‘90 _KD%)+500TF ] 0 (48)
Since é’_1 (#)=0, one has
6,(t)=T¢" (qo,qo,cio)q;o (#). Hence
Wos_% D% (9 = 9 jr_]éo (49)
Using Young’s inequality, we have
e a1
00, <x| 6, +E”9"2 (50)
for any x> 0. Hence
. JRTe ~12 1
W, <-p, "qo” P "90" +E”‘9"2 (51)
with p, =4, (K,), p, ~La (r)-xi, (r") and

2
0<x<A,, (r)/24, ("), where A, (*)(4,,(*)
denotes the minimal (maximal) eigenvalue of (*). Since
6 is continuous over [0,T], it is clear that it is bounded
over [0,T], ie.,|d|_ <6,,. Hence, one can conclude
from (51) that W,(¢)<@’, /(4x) ,which implies that
W, (1) is uniformly continuous and thus bounded over
[0,7].

Part 3: Note that W, can be written as follows

W, =Ww,+ ZLAW/. . Hence, using (37), one has

M»

13 3
<W,- 22 g Kpg,, - ZCJ,I (9,1)d,, (52
=1
Which implies that
k
3]+ DM (4,1)d, <20, 1)< 2(53)
Jj=1 Jj=1

Hence lim g, ()= l{mq} (t)=0, vee[0,T].

Note that under properties (P1-P3) the control law
(35)-(36) involves m iterative parameters, where m is

generally larger than the number of degrees-of-freedom # .
It also requires the knowledge of the matrix ¥(q,.q, ).

However, by using (P4) instead of (P3), the knowledge of
the matrix ¥ (g,,q,) is not required anymore and the

number of iterative parameters is reduced to two as stated
in the following theorem.

6. Simulation example

Considering [M],[P],[K],[L] and letting
M(q)=[M].C(q.9)=[P].K(q)=[K][Y].7 =[L][F],
®(q.4,.9.4,)=[L]

400 400 |
i 400 400 400 400 400 400
400
(200 200 |
‘- 200 200 200 200 200 200
200
(200 200 |
. 200 200 200 200 200 200
200

The desired joint trajectory is given by
ql _d=sin2[It); q2 d= cos(2Ilt); ¢3_d=sin(2lt);
q4 _d = cos(2IIt); qg5_d = sin(2I1f),
q6_d = cos(2Ilt); q7 _d=sin(2[lf); g8 _d= cos(2Ilt);
q9 _d = sin(2I1t);
The displacements and velocities are chosen as

B R TN N TN VIS VRS T A R TR VR AV (A

The initial displacements and velocities are cho-
sen as
x0 =10;1;1;0;0;1;1;0;0;1;1;0;0;1;1;0;0;0]

desired trajectory
actual trajectory

5 0.5

= .05

position-tracking-57
o
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o
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o

-
o

“o 05 1 0 05
time(s) time(s)

0.5 1
time(s)
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o o
o o o

position-tracking-41
- o =

position-tracking-43
- o =

[
o

o 05 1 0 05
time(s) time(s)

0.5
time(s)

[

position-tracking-21
o

position-tracking-23
o

position-tracking-25
o

-1

5 05 1 2 05 1 5 05 1
time(s) time(s) time(s)
Fig. 9 Position tracking error of 57th node, 59th node, 61th
node, 39th node, 41th node, 43th node ,21th node,

23th node, 25th node respectively

o



Using control laws (35), (36),Fig.9 shows Posi-
tion tracking error of 57th node , 59th node, 61th node,
39th node, 41th node, 43th node, 21th node, 23th node,
25th node respectively.

7. Conclusions

Adaptive iterative learning MIMO control strat-
egy for the active vibration control of a flexible rectangular
plate structure was developed. It was shown that the new
modeling method is a kind of development with respect to
the plant modeling theory of current control theory. It pro-
vides theoretical basis for low order controller design of
high order plant with unknown parameters, adaptive con-
troller design and intelligent controller design. It also
brings about great convenience for engineering design. The
first nine natural frequencies, mode shapes, static analysis
and forced vibration response analysis of the flexible rec-
tangular plate structure considered in this study were pre-
dicted accurately and compared by the FEM method and
new modeling method and thus, the validity of the pro-
posed new model was confirmed. An adaptive iterative
learning MIMO controller was then employed to attenuate
the unwanted vibration of a rectangular flexible plate sys-
tem simulated using the MATLAB/Simulink platform. The
simulation results demonstrate the effectiveness of the pro-
posed control technique. Future works will be directed
towards the development of an experimental rig to validate
the theoretical results obtained in the study.
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Jingyu Yang, Guoping Chen

ADAPTYVUS PRIARTEJIMO BUDU APSIMOKANTIS
LENKIAMOS STACIAKAMPES PLOKSTES
VIBRACIJU VALDYMAS

Reziumé

Siame straipsnyje naudojant valdymo teorija nag-
rinéjama lenkiamos staciakampés plokstés aktyvi svyravi-
my kontrolé. Lenkiamos sta¢iakampés plokstés sistema yra
modeliuojama naudojant baigtiniy elementy metoda ir nau-
ja modeliavimo biida. Tam naudotas erdvinis modelis su-
darant erdvinio judesio lygtis, kurios yra efektyviai naudo-
jamos analizuojant sistema ir kuriant valdymo algoritma.
Naujo sudaryto modelio skai¢iavimo rezultatai naudojami
lyginant plokstés savuosius svyravimus, ju tipa, atliekant
statisting analize ir reakcija i priverstinius svyravimus su
rezultatais gautais atlikus skai¢iavimus baigtiniy elementy
metodu. Patikrinus, adaptyvusis pasikartojantis MIMO
kontroleris  pritaikytas  plok$tés  dinamikai  tirti
MATLAB/Simulink programa. Imitavimo rezultatai paro-
dé efektyvu svyravimy slopinima, kurj galima gauti naudo-
jant adaptyvyji MIMO kontroler;.

Jingyu Yang, Guoping Chen

ADAPTIVE ITERATIVE LEARNING CONTROL FOR
VIBRATION OF FLEXURAL RECTANGULAR PLATE

Summary

In this paper, we developed an approach for active
vibration control of flexible rectangular plate structures
using control theory. The flexible rectangular plate system
is firstly modeled and simulated via a finite element
method; and secondly, a new type of modeling method,
and the state—space model are involved in the development
of the equation of motion in state—space, which is effi-
ciently used for the analysis of the system and design of
control laws with a modern control framework. Then, the
validity of the obtained new model is investigated by com-
paring the plate natural frequencies, mode shapes, statical
analysis and forced vibration response analysis predicted
by the finite element model with the calculated values ob-
tained from new model. After validating the model, adap-
tive iterative learning MIMO controller is applied to the
plate dynamics via the MATLAB/Simulink platform. The
simulation results clearly demonstrate an effective vibra-
tion suppression capability that can be achieved using
adaptive iterative learning MIMO controller.
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