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1. Introduction 
 

Analytically, lubrication which belongs to field 
problems is governed by Reynolds equation. The solution 
of this well-known equation provides the distribution of 
the pressure field generated in the fluid during working. 
This, allows us to determine both static and dynamic cha-
racteristics in solving Reynolds equation numerically using 
the variational principle [1-3].  

Many Finite Element and Finite Difference 
methods along with analytical and experimental proce-
dures have been successfully used in the study of hydro-
dynamic lubrication. Most papers focused on the computa-
tion of stiffness and dumping coefficients. Indeed, Wood-
cock and Holmes [4] and Glienicke [5] used experimental 
procedure in order to establish dynamic coefficients. Rao 
[6] employed analytical approach to predict past whirl or-
bits and dynamic coefficients as well. In addition to the 
above work, other authors used the Finite Differences 
method to solve the problem. 

On one hand, Subiah et al [7] using the FD 
method, computed dynamic coefficients. On the other hand, 
EDF and LMS, developed a computer code EDYOS [8] to 
determine static and dynamic performance along with sta-

bility prediction. 
Stability is also a fundamental criterion in journal 

bearing analysis. For more details about stability analyses, 
the reader is referred to references [9-15]. 

By modelling the fluid film acting as a lubricant 
between the journal and bearing, by means of Finite Ele-
ments, this paper has been organised as fellows. Firstly, 
stiffness and damping coefficients have been numerically 
established and compared to those of other methods en-
compassing, Finite differences results and experimental 
data. Secondly, a limited parametric study in which the 
effect of rotor dimensions, as well as relative eccentricity 
on the stability of a rotating machine have also been ex-
amined. 

 
2. Basic lubrication theory 
 

The lubrication analysis is an important problem 
in tribology. It deals with the contact study of two surfaces 
in relative movements. These areas are separated by a fluid 
film, which plays the role of lubricant. In this study let us 
consider a circular plain journal bearing represented by 
Fig. 1. 

 
Fig. 1 Geometry of plain journal bearing 

 
2.1. Reynolds equation 
 
  The differential equation governing the pressure 
generation in hydrodynamic lubrication is due to Reynolds 
(1886) and is derived from conservation equations of mass 
and momentum. The general Reynolds equation of lubrica-
tion [16] is given as  

  t
hhh

z
Ph

z
Ph

R

33

∂
∂

θ∂
∂ω

∂
∂

μ∂
∂

θ∂
∂

μ∂θ
∂

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
2
1

1212
1

2 (1)
 

 
where P is the pressure filed in lubricant, R is shaft radius, 
h is film fluid thickness, ω is the angular velocity of the 
shaft, μ is the viscosity of lubricant and h t∂ ∂  is the 

L - journal bearing length 

D= 2R - shaft diameter  
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squeeze film term taken into account in dynamic case es-
pecially to calculate dynamic coefficients. 

In the static case the rotation axis of the shaft is 
constant and the squeeze film term vanishes. The boundary 
conditions associated to the pressure distribution, so-called 
Reynolds conditions, are 
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where sθ  is failure angle in fluid film. 
 
3. Dynamic analysis 
 

For dynamic operating state it is important to take 
the flexibility of bearing lubricant films into account by 
evaluating effective stiffness and damping coefficients. 
These parameters have a significant effect on system criti- 

cal speeds, on forced response and on system stability. 
This may be done by considering the changes in both car-
rying pressure ∆P and film thickness ∆h due to change of 
the applied loads [7]. These changes may be obtained from 
Taylor series as follows: 

 
 x y x yP P x P y P x P yΔ Δ Δ Δ Δ= + + +   (3a) 
 

 θΔθΔΔ sinycosxh +=   (3b) 
 
where , , andx y x yΔ Δ Δ Δ  represent the changes on dis-
placement and velocities along x and y directions respec-
tively. 

Indeed, for small perturbations around the static 
position of the journal, the pressure and the thickness of 
the fluid film may be expressed, by neglecting higher order 
terms, as follows: 

 
 0 x y x yP P P x P y P x P yΔ Δ Δ Δ Δ= + + + +   (4a) 
 

 0h h x cos y sinΔ θ Δ θ= + +   (4b) 

 
a          b 

 

Fig. 2 Dynamic operating system: a - dynamic modeling, b - dynamic displacements 
 
 
 Substituting Eqs. (4a) and (4b) into Reynolds 
Eq. (1) and arranging terms according to 

yandxy,x, ΔΔΔΔ     respectively, one obtains the fol-
lowing equations [7]: 
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( ) 12xL P cosθ=   (8) 

 

 
( ) 12yL P sinθ=    (9) 

 
where L(F) is an operator applied to a function F and 
defined by 
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 The dimensionless quantities are defined by: 
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where, h0 is film thickness, c is the clearance of journal 
bearing, μ is the fluid viscosity and N is the rotational 
speed, rpm. 
 
4. Finite element modelling and Reynolds equation 

resolution 
 
 As far as accuracy in modelling is concerned it is 
always desirable to search for powerful numerical methods. 
The finite element method is among the robust methods 
applied in mechanical engineering. In the present work, 
this widely used method is employed to resolve the Rey-
nolds equation in order to obtain bearing characteristics. 
 As the fluid film is extremely thin, it is possible to 
consider its developed form (Fig. 3, a) for numerical 
analysis purpose. Hence, the fluid film is discretized into a 
set of six-noded Finite Elements in both circumferential 

and axial directions (Fig. 3, b). This type of element has a 
quadratic field of pressure, and consequently it constitutes 
a well compromise between complexity and accuracy. The 
shape functions associated to this element (Fig. 3, c) are: 

- at corner nodes 1, 2, and 3: 
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- at mid-side nodes 4, 5 and 6: 
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a    b     c 

 

Fig. 3 Finite element modelling: a - developed journal bearing, b - F.E. Mech of fluid film, c - six nodded element 
 
 According to the variational principle, the varia-
tional form of Reynolds equation is given by [1]: 
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where A is the resolution of Reynolds equation in static 
case yields the pressure field in the film lubricant. The 
loading capacity components are given by 
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 The loading capacity W whose components are 
given by Eq. (14), can be put in a dimensionless form as  
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 Sommerfield number which characterises the di-
mensionless load is written as 
 

  1S
Wπ

=  (16) 

 
 The equivalent variational forms of Eqs. (6) to (9) 
are respectively 
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 12yf sinθ=     (24) 
 
 Eq. (5), which is simply Eq. (1) for the static case, 
must be resolved primarily according to boundary condi-
tions (2). Then by solving Eqs. (6) to (9), it becomes easy 
to obtain pressures , , andx y x yP P P P  respectively and 
then deduce bearing characteristics. 
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5. Dynamic characteristics 
 
 The bearing features to be taken into account in 
dynamic analysis of rotors are the eight lubricant film 
stiffness and damping coefficients. These quantities may 
be expressed as follows [16]: 

- stiffness coefficients:  
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- damping coefficients: 
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 In dimensionless forms dynamic coefficients are 
given as: 
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6. Validation of the finite element results 
 
 In order to verify the validity of the finite element 
results presented in this work, the comparison was made 
with another numerical method carried out by (EDF and  
LMS) [8],   and  with  experimental work achieved by 

(Woodcock and Holmes) [4]. Hence, EDF used Finite Dif-
ference method to analyse dynamic performance of finite 
journal bearing. 
 Fig. 4 show the evolution of stiffness coeffi-
cients , , ,xx xy yx yyK K K K  against the eccentricity ratio for 
a journal bearing of L/D = 0.5, on one hand ad makes 
comparison between the results of the three types of analy-
sis on the other hand. 
 Three important points can be drawn from the 
examination of Fig. 4. Firstly, while the cross-coupling 

yxK  presents an excellent agreement between the three 
types of analyses, a quite good accordance is observed for 
the three other stiffness coefficients in the range of eccen-
tricity ratio between 0.1 and 0.5. Secondly, FE results 
slightly underestimate stiffness coefficient beyond the 
value of eccentricity ratio equal to 0.5. 

 In addition to the examination of stiffness coeffi-
cient it is convenient and useful to consider damping coef-
ficient for comparison. Hence, the damping coefficients 

,xyxx C,C ,yx yyC C corresponding to a journal bearing of 
L/D = 0.5, are plotted against the eccentricity ratio in 
Fig. 5.  

As it can be seen from this Figure, the agreement 
between the Finite Elements values of damping coefficient 
and those of the FD method is quite good for almost the 
entire range of eccentricity ratio. However, a slight dis-
crepancy is observed between results of the present work 
and those of the experimental procedure.  

It can be concluded from the accuracy of the 
above comparisons that the current analyses are convenient 
for parametric study that can present computational results 
which might be used in both practical and academic pur-
poses.   
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c       d 

 

Fig. 4 Variation of stiffness coefficients with eccentricity ratio: yyyxxyxx K,K,K,K  -d -c -b -a  
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a      b 

 

 
  c       d 

 

Fig. 5 Variation of damping coefficients with eccentricity ratio: yyyxxyxx C,C,C,C   -d -c -b -a  
 

7. Parametric study  
 

In addition to their dependence on the eccentricity  

ratio, the stiffness ad damping coefficients depend on the 
bearing ratio L/D as well. 
 In this section a limited parametric study has been

 

 
a      b 

 

Fig. 6 Stiffness coefficients for different values of L/D: a - , b - xx yyK K  
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Fig. 7 Damping coefficients for different values of L/D: yyxx C,C  -b -a  
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undertaken to see the influence of L/D on the variation of 
stiffness coefficients yyxx K,K  and damping coefficients 

yyxx C,C  with the eccentricity ratio. 
 Hence, three bearing ratios were chosen namely: 
L/D = 1, L/D = 1.5 and L/D = 2, in order to represent a 
wide range of engineering applications. Fig. 6, shows the 
effect of L/D on the stiffness coefficients andxx yyK K , 
whereas Fig. 7 illustrates the effect of the same parameter 
on the damping coefficients andxx yyC C . As it can be seen 
from both Figures, there is practically no influence of L/D 
on stiffness and damping coefficients for almost the entire 
range of the eccentricity ratio. However, a slight effect of 
L/D on the coefficient yyC  is observed for the small val-
ues of the eccentricity ratio in Fig. 7, b. 
 
8. Stability analysis 
 
 We consider in this section a symmetric and rigid 
rotor of mass 2M carried by two identical journal bearings. 
The linear system governing its behaviour is given by 
 

 { } { } { } 0ij ij
x x xM K Cy y y+ + =   (28) 

 
where x and y are the displacement components of the 
shaft centre starting from static equilibrium position. 
 According to Routh-Hurwitz criterion [11, 16], 
the whirl frequency sω  and the critical mass cM are ex-
pressed in terms of dynamic coefficients by the following 
equations: 
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 In order to have a wide sight, it has been judged 
useful to consider four slenderness ratios namely L/D = 05, 
L/D = 1, L/D = 1.5 and L/D = 2. 
 Indeed, Fig. 8 illustrates the evolution of the 
critical mass with the increasing Sommerfield number for 
the considered L/D values. 
 On the light of a close examination in this Figure, 
three important points can be drawn. Firstly, we notice that 
the stability is secured for higher eccentricities (> 0.75). 
This means for lower values for Sommerfiled number. 
Secondly, it is clearly seen that, the larger Sommerfiled 
number becomes, the smaller the critical mass gets for all 
slenderness ratios considered. Thirdly, for low eccentrici-
ties (high values of Sommerfield number), Reynolds 
boundary conditions are no longer valid. Consequently, the 
journal bearing becomes instable. 
 

 
Fig. 8 Variation of cM with S 

 
9. Conclusions 
 
 As far as accurate computation of dynamic coef-
ficients is concerned, the Finite Element method is the 
natural choice for the dynamic analysis of journal bearings. 
In the present paper, this versatile and powerful method 
has been applied to compute bearing characteristics, espe-
cially stiffness and dynamic coefficients.  
 After a brief presentation of lubrication theory, 
the different governing equations deduced from the discre-
tization by finite elements were presented. Then, FE results 
were compared to another robust method, which is the FD 
approach, as well as with experimental data. Indeed, the 
evolution of stiffness as well as damping coefficients 
against the eccentricity ratio was thoroughly examined. 
The results of comparison were satisfactory. On the basis 
of that the numerical approach had showed its ability to 
predict accurate coefficients, a very limited parametric 
study involving the effect of slenderness ratio on the evo-
lution of dynamic coefficients, has been undertaken. Re-
sults of the analysis were then discussed. 
 The presented problem of dynamic characteriza-
tion of journal bearings using the FEM, has both a practical 
and theoretical significance. The practical significance is 
obvious and the theoretical significance is that the present 
computational results can be used to validate other nu-
merical methods. 
 
References 
 
1. Hubner, K.H. 1975. The Finite Element Method En-

gineers, John Wiley and sons. 
2. Rao, S.S. 1982. The Finite Element Method in Engi-

neering. Pergamon press. 
3. Allaire, P.; Cnicholas, J.; Gunter, E.J. 1977. Systems 

of finite elements for finite bearings, Journal of Lubri-
cation Techn. Trans ASME: 187-197. 

4. Woodcock, J.S.; Holmes, R. 1970. Determination and 
application of the dynamic proprieties of turbo-rotor 
bearing oil film. Proc. Inst. Mech engrs, vol 184(32): 
111. 

5. Glienicke, J. 1967. Experimental investigation of the 
stiffness and damping coefficients of turbine bearing 
and their application to instability prediction. Proc. Inst. 
Engs, vol 181 (3B): 116. 

6. Rao, T.V.L.N.; Biswas, S.; Hirani, H.; Athre, K. 

instable 

    stable 

cM

1

10

100

0.01 0.1 1 10
S

L/D = 0.5
L/D = 1
L/D = 1.5
L/D = 2

Sommerfiled number S 



 509

2000. An analytical approach to evaluate dynamic co-
efficients and nonlinear transient analysis of hydrody-
namic journal bearing, Tribology Transactions 43(1): 
109-115. 

7. Subiah, R.; Bhat, R.B.; Sankar, T.S. 1985. Rotational 
stiffness and damping coefficients of fluid film in finite 
cylindrical bearing, ASLE 29: 414-422. 

8. EDF, LMS. 2004. (France), Software EDYOS.  
9. Rho, B.H.; Kim, K.W. 2002. A study of stability 

characteristics of actively controlled hydrodynamic 
journal bearings, JSME International Journal, serie C, 
Vol.45(1). 

10. Menh, N.C. 2008. The influence of elastic base on 
stability of rotor-oil film bearing systems, Technische 
Mechanick, band 28, heft 3-4: 194-203. 

11. Swanson, E. 2005. Fixed-geometry, hydrodynamic 
bearing with enhanced stability characteristics. Tribol-
ogy Transactions 48: 82-92. 

12. Tuma, J.; Bilosova, A.; Simek, J.; Svoboda, R. 2008. 
A simulation study of the rotor vibration in journal 
bearing, Engineering Mechanics 15(6): 461-470. 

13. Husben, G.B.; Rattan, S.S.; Mehta N.P. 2007. Effect 
of L/D ratio on the performance of a four-lobe pressure 
dam bearing, Word Academy of Science, Engineering 
and Technology 32. 

14. Andres, S.L.; Santiago, O. 2005. Identification of 
journal bearing force coefficients under high dynamic 
loading centred static operation, Tribology Transac-
tions 43(9): 9-17.  

15. Jang, G.H.; Yoon, J.W. 2003. Stability analysis of a 
hydrodynamic journal bearing with rotating herring-
bone grooves, Journal of Tribology 125(4): 291-300. 

16. Frene, J.; Nicolas, D.; Dgueurce, B.; Berthe, D.; 
Godet, M. 1990. Lubrification hydrodynamique – pa-
liers et butées. Eyrolles. 

Dj. Boukhelef, A. Bounif, Dj. Amar Bouzid 

HIDRODINAMINIŲ SLYDIMO GUOLIŲ DINAMINIS 
ĮVERTINIMAS IR STABILUMO ANALIZĖ TAIKANT 
BAIGTINIŲ ELEMENTŲ METODĄ 

R e z i u m ė 

Kadangi išsidėvėjimas yra vienas iš svarbiausių 
sukimosi mašinų pažeidimo tipų, reikia, o gal net privalu, 
nustatyti slydimo guolių charakteristikas, būtinas saugiam 
mašinų darbui. Tepalai, pavyzdžiui, skysčio plėvelė, reika-
linga tam, kad būtų išvengta sukimosi mašinų rotoriaus ir 
statoriaus kontakto. Tokių mašinų darbo metu skystyje 
sukuriamas slėgis radialiniam krūviui išlyginti. Pagrindinis 
šio darbo tikslas – taikant baigtinių elementų metodą apri-
boti apskritiminių slydimo guolių dinamines charakteristi-
kas. Taigi šis straipsnis remiasi skaitiniu Reynoldso lygties, 
išreiškiančios slėgio pasiskirstymą skysčio plėvelėje, 
sprendimu. BE rezultatai gerai sutapo su kitais gautais 
metodais rezultatais. Ribota parametrinė studija, naudojant 
dinaminių charakteristikų santykio (L/D) efektą, bus atlikta 
vėliau kartu su stabilumo analize. 
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DYNAMIC CHARACTERIZATION AND STABILITY 
ANALYSIS OF HYDRODYNAMIC JOURNAL 
BEARING USING THE FEM 

S u m m a r y 

As wear is considered among one of the main 
weakness factors of rotating machines, it is becoming 
compulsory if not mandatory to determine the characteris-
tics of journal bearings required to insure a successful 
working of the machine. Lubricants, such as fluid films are 
needed to avoid rotor and stator contact in rotating ma-
chines. During the working of the latter, a pressure is gen-
erated within the fluid in order to equilibrate the radial 
loads. The main objective of this paper is to address the 
dynamic characterization problem of finite circular journal 
bearings using the Finite Element Method. Hence, the pre-
sent study is based on the numerical resolution of Reynolds 
equation which describes the pressure profiles in the fluid 
film. The comparison of FE results and those of other 
methods reported in the literature showed a good agree-
ment. A limited parametric study involving the effect of 
slenderness ratio (L/D) on the dynamic properties, a long 
with a stability analysis have been carried out.  
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