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1. Introduction 

With the rapid development of the manufacturing 
industry, there is an urgent demand for the high efficiency 
and high precision of CNC machine tools. However, the 
improvement of the efficiency and the precision is often 
restricted by the structure of the machine tools [1]. The 
high speed machining (HSM) requires machine tool feed 
drive systems to achieve a great feedrate in a limited travel 
distance with a huge acceleration [2].  

Ball screw feed drive systems that are widely 
used in CNC machine tools transform rotary motion of 
motor into rectilinear motion of table (or cutter) utilizing 
the complicated screw-ball-nut transmission structure. In 
the course of the motion transformation, slender screw may 
be induced torsional, axial, and bending deformations and 
vibrations. Especially in high speed and high acceleration, 
the dynamic behavior of the transmission framework will 
depress the machining quality and efficiency of the CNC 
machine tools, which is a new challenge for conventional 
design and control theories and methods. Therefore, many 
researchers have devoted their efforts to the research into 
the dynamics of the ball screw feed drives. 

For example, Poignet et al. [3] considered the feed 
drive model with lumped springs and lumped masses, 
where the model consisting of 8 masses and 7 springs 
(8M7S) were presented as a transmission axis example. 
Chen et al. [4] built the dynamic model of the ball screw 
feed drives using the Lagrange method and proposed a 
topology structure optimization method to reduce the mov-
ing weight. Erkorkmaz et al. [5, 6] built and identified the 
dynamic model of the ball screw feed drives, and compen-
sated for the torsional vibrations and axial vibrations with 
notch filter and sliding mode controller respectively. Zaeh 
and Oertli [7] established the whole FEM model of ball 
screw feed drive systems and simulated the axis control 
system. Varanasi and Nayfeh [8] developed a low-order 
dynamics model of lead-screw system that accounts for the 
distributed inertia of the screw, the compliance, damping 
of the thrust bearings, nut, and coupling. Whalley and 
Ebrahimi et al. [9] used distributed-lumped parameter 
techniques for the dynamic analysis of machine tool sys-
tems. Uchiyama [10] presented a new controller design for 
feed drive systems with adaptive feed-forward and feed-
back controllers according to a fourth-order dynamic 
model which considers the compliance of the lead-screw 
drive. Okwudire and Altintas [11] presented a hybrid finite 
element model of the screw-nut interface, which includes 
the effects of the coupled lateral, torsional, and axial de-
formations.  

However, the present dynamic investigations of 

the feed drive systems are usually on the status to select the 
practical moving (changeable position) table in a specified 
fixed position, such as the middle of ball screw, which 
could not reflect the real time dynamic characteristics of 
the drives during the machining process. Actually, the ta-
ble position is continuously changeable and the workpiece 
often has high metal removal quantity in the machining 
process. The researches indicate that the time-varying table 
position has a distinct influence on the torsional dynamics 
of the lead-screw feed drives [12]. 

Here, we give a sensitivity analysis of the axis vi-
bration characteristic giving a full consideration of the 
time-varying position of moving table and the changeable 
workpiece mass in the lead-screw feed drive system on the 
basis of the finite element and lumped parameter methods. 
In the following section, the axial dynamic model of feed 
drive framework is built and the main formulae employed 
in the theoretical model are introduced. The predictions of 
the first three natural frequencies and vibration modes of 
the axial vibration are shown in Section 3. Finally, some 
conclusions of this research are remarked in Section 4. 

2. Axial dynamic model of lead-screw feed drive with 
time-varying framework 

The sketch of axial dynamic model of the ma-
chine tool rotor-screw system is shown in Fig. 1. To ana-
lyze the dynamic characteristic of the mechanical system, 
here, finite element and lumped parameter models are de-
veloped, where the rotor-screw system is divided into some 
axial elements additional to the coupling ones of input 
component and output component. For the in-time change 
of table and nut, we consider them as lumped masses and 
the effects of the contact stiffness between the table and 
guide rails are neglected. Moreover, the axial stiffness of 
each bearing is regarded as lumped stiffness. 

In Fig. 1, krf is the axial stiffness of the front rotor 
bearing;  krb is the axial stiffness of the back rotor  bearing;  
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Fig. 1 Sketch of machine tool rotor-screw system physical 

model 
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kca is the axial stiffness between the coupling in put com-
ponent and output component; ksf is the axial stiffness of 
the front screw bearing; ksb is the axial stiffness of the back 
screw bearing; ksn is the axial stiffness between the nut and 
the screw, and mt is the aggregate mass of the table and the 
nut, which will include the mass of the workpiece and the 
clamp if they are considered. 

2.1. Element matrixes of mass and stiffness 

Divide the rotor-screw into n equal elements 
along its length. Assume that each element has length of l. 
Denote the axial displacement by u(x,t). Then we have the 
node unknowns at each element being ui(t) and ui+1(t) 
(Fig. 2). Here the subscript i indicates the node number. By 
means of the linear interpolation, we can get the formula to 
express the axial displacement inside the element relevant 
to the node displacements in the form 
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Fig. 2 A axial element in FEM 

 
where Ni(x) and Ni+1(x) are the shape functions as shown in 
Fig. 2, and they are explicitly formulated by 
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l
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For simplicity, we compact Eq. (1) by the following matrix 
form 

 ( , ) ( ) ( )iu x t x t= N u   (3) 

In the form, N(x) =[1-x/l,x/l], ui(t)=[ui(t), ui+1(t)]T, where 
the superscript T represents the transpose of a matrix or 
column. 

Let the mass per unit length of the axial element 
be ml. Then, the kinetic energy of the element i at instant t 
can be expressed by 
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here Mi  is the element mass matrix that is formulated by 
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Denote the elastic modulus of the axial element 

by E, and its cross-sectional area by A. Then, the deformed 
potential energy in the element at instant t can be calcu-
lated by 
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in which Ki is the element stiffness matrix that is formu-
lated as  
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For the element that joins the bearing, the bearing 
can be simplified the axial spring that is applied to the 
middle of the element (Fig. 3). 
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Fig. 3 Element that joins the bearing 
 

Let the stiffness of the spring be kx. Then, the de-
formed potential energy in the element at instant t can be 
calculated by 

 1( ) ( )( ) ( )
2

T
i i i x iV t t t′ = +u K K u   (8) 

where 
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2.2. System dynamic equations 

Integrating the analytic result of each element, 
and assembling the element mass matrix and the element 
stiffness matrix, respectively, one can get the whole mass 
matrix M and the whole stiffness matrix K. 

Here, the axial stiffness of the coupling is consid-
ered as lumped stiffness kca, then, the assembling method is 
as following. The two elements joint by kca can form an 
element subsystem as shown in Fig. 4. Thus, the deformed 
potential energy in the subsystem at instant t can be calcu-
lated by 
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Denote the displacement column vector by 
ui’(t) = [ui(t), ui+1(t), ui+2(t), ui+3(t)]T, then, Eq. (10) can be 
rewritten by 
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Fig. 4 Element subsystem with lumped stiffness of cou-

pling 
 

The lumped mass mt is adopted for the table and 
the nut, and the lumped stiffness ksn is regarded as the axial 
stiffness between the nut and the screw. Then, the lumped 
mass mt and the screw element joint by ksn can form an 
element subsystem as shown in Fig. 5. 
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Fig. 5 Element subsystem with lumped parameters of the 
table and the nut 

 
Let the number of the screw element that connect 

with the nut be j and the number of the element of the table 
and the nut be k. Then, the kinetic energy of the subsystem 
at instant t can be expressed by 
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T
t j j j t kT t t t m u t= +u M u     (13) 

Denote the displacement column vector by 
uj’(t) = [uj(t), uj+1(t), uk(t)]T, then, Eq. (13) can be rewritten 
by 

 1( ) ( ) ( )
2

T
t j j jT t t t′ ′ ′= u M u   (14) 

in which 

 

0
3 6

0
6 3
0 0

l l

l l
j

t

m l m l

m l m l

m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥′ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M     (15) 

The deformed potential energy in the subsystem at 
instant t can be calculated by 
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where 
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In the actual calculation, the number of the table 
and the nut is often taken as the last number. Thus, the 
mass matrix and the stiffness matrix should be assembled 
in the corresponding row and column. 

Take the node displacements as the generalized 
coordinates qi, and the corresponding generalized forces as 
Qi, where I = 1, 2, …, n (n is the amount of the independ-
ent nodes considering the boundary conditions of the dy-
namic system). Then, by means of the FEM using the La-
grange dynamic equation, we can get the solvable system 
dynamic equations in the matrix form 

 Mq + Kq = Q         (18) 

in which q = [q1, q2,…, qn]T, Q = [Q1, Q2,…, Qn]T. 
For the analysis of free vibration of the system, 

we have Q = 0. Thus, the system dynamic equations can be 
expressed by 

 0=Mq + Kq    (19) 

The position of translation components and the 
workpiece mass vary with time in machining process, and, 
especially in the manufacture of aircraft components, it is 
common for the workpiece mass to change substantially 
[12]. Therefore, the global mass matrix and the global 
stiffness matrix change with time too, i.e., M = M(t) and 
K = K(t), which will result in the change of natural fre-
quencies and modes in the dynamic system with time too. 

3. Numerical results and discussions (case study) 

In this section, we display some results of the nu-
merical analysis proposed in previous section. An axial 
dynamic finite element analysis program for lead-screw 
feed drive is written in the MATLAB programming lan-
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guage. To show the effect of changeable position of trans-
lation components on the dynamic characteristic of the 
system when the time-varying position is taken into ac-
count, here, a case study is employed. Table 1 lists the 
geometrical parameters of the X-axis feed drive system of 
a machine tool and Table 2 lists the lumped parameters 
that are considered.  

For the free vibration analysis to the dynamic sys-
tem at the following, first of all, let us consider that the 
motion travel or position x of the table is specified from 
0.15L to 0.85L (here, L is the length of lead-screw) and the 
workpiece mace is changed from 700 to 200 kg. Fig. 6 
exhibits the characteristic curves of the first three natural 
frequencies of the dynamic system varying with the table 
position and the workpiece mass. When the workpiece 
mass is 200kg and the table position is 0.15L, 0.5L and 
0.85L, the mode shapes of the first three orders of vibration 
are shown in Fig. 7. 

 
Table 1 

Geometrical parameters of the X-axis feed drive system 

 Length, 
mm 

Outer diame-
ter, mm 

Inner diame-
ter, 
mm 

Lead, mm

Rotor 220 150 0 / 
Motor 
shaft 120 40 0 / 

Coupling 101 104 40 / 
Lead-
screw 3500 50 0 20 

 
Table 2 

Lumped parameters that are considered 
 Axial stiffness, N/m Mass, kg 
Front rotor bearing 3.7×106 / 
Back rotor bearing 1.9×106 / 
Front screw bearing 1.5×109 / 
Back screw bearing 2.8×106 / 
Coupling 8.0×105 / 
Table + Nut 6.3×107 550 

 
In Fig. 6 the natural frequency of the first mode 

varies in the range of [29.26 Hz, 44.26 Hz] and the varia-
tion relates to both the table position and workpiece mass; 
the natural frequency of the second mode keeps an invari-
ant value 68.47 Hz; the natural frequency of the third mode 
varies in the range of [387.58 Hz, 455.77 Hz] and the 
variation mainly relates to the table position. The results 
indicate that the natural frequency of the first mode is sen-
sitive to both changeable table position and workpiece 
mass to a certain extent, and that the natural frequency of 
the second mode is unsensible to them, and the natural 
frequency of the third mode is sensitive to the table posi-
tion whereas unsensible to workpiece mass. 

According to Fig. 7, one can find that the relative 
amplitude of the table is maximal in the first mode, the 
motor rotor in the second mode and the back end of the 
screw in the third mode, which indicates that the first mode 
is focused on table vibration, the second mode on rotor 
vibration and the third mode on screw vibration. 
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Fig. 6 The characteristic curves of the first three natural 
frequencies vary with the table position and the re-
duced workpiece mass: a - first mode; b - second 
mode; c - third mode 

 
Moreover, considering that the axial stiffness ksb 

of the back bearing of the screw is enhanced, we can get 
the curves of the first three natural frequencies varying 
with the table position for the different ksb, as shown in 
Fig. 8. From Fig. 8, it is found that the enhancement of the 
axial stiffness of the back bearing can effectively depress 
the sensitivity of the first nature frequency on the change-
able table position; the second nature frequency is invari-
ant on the whole; the third nature frequency increases with 
enhancement of the axial stiffness of the back bearing, but 
the trend of the curves has little change. 
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Fig. 7 The mode shapes of the first three orders of free vibration when the table is located different position of the lead-
screw: a - first mode; b - second mode; c - third mode 
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Fig. 8 The curves of the first three natural frequencies vary with the table position for the different ksb: a - first mode;  
b - second mode; c - third mode 

 
4. Conclusion 

1. An axial dynamic model of lead-screw feed 
drive with time-varying framework is built by using the 
finite element and lumped-parameter methods. 

2. A numerical analysis to the axial vibration of 
lead-screw feed drive system is presented to get an insight 
into the effect of in-time moving position of the table and 
changeable workpiece mass on the free vibration character-
istic of the system. The results obtained demonstrate that 
the natural frequency of the first mode focusing on table 
vibration is sensitive to both changeable table position and 
workpiece mass to a certain extent; the natural frequency 
of the second mode focusing on rotor vibration is unsensi-
ble to changeable table position and workpiece mass; the 
natural frequency of the third mode focusing on screw vi-
bration is sensitive to the table position whereas unsensible 
to the workpiece mass.  

3. Enhancing the axial stiffness of the back screw 
bearing was analyzed, which indicates that the enhance-
ment of the axial stiffness of the back screw bearing can 
effectively depress the sensitivity of the first nature fre-
quency on the changeable table position. 
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PASTŪMOS SRAIGTO SU LAIKE KINTANČIA 
POZICIJA AŠINIŲ VIBRACIJŲ PARAMETRŲ 
JAUTRUMO ANALIZĖ 

R e z i u m ė 

Straipsnyje pateiktas nuosavų ašinių svyravimų 
dinaminis tyrimas rotoriaus – jėgos sraigto sistemai. Nau-
dojant baigtinius elementus, sukurtas rotoriaus - jėgos 
sraigto dinaminis modelis ir analizuota kintamos stalo pa-
dėties bei darbinės masės įtaka pirmosioms trims ašinėms 
nuosavų svyravimų modoms. Rezultatai rodo, kad pirmas 
nuosavasis dažnis atspindi stalo svyravimus, yra iki tam 
tikro dydžio jautrus stalo padėčiai ir detalės masei. Antra-
sis modos nuosavas dažnis atspindi rotoriaus svyravimą ir 
yra nejautrus stalo padėčiai. Trečiasis modos nuosavas 

dažnis atspindi sraigto svyravimus ir yra jautrus stalo pa-
dėčiai, bet nejautrus detalių masei. Antroje tyrimo dalyje 
buvo didintas sraigto galinio guolio standumas. Gauti re-
zultatai parodė, kad sraigto galinio guolio standumo didi-
nimas efektyviai sumažino pirmosios modos nuosavųjų 
svyravimų jautrumą stalo padėties kitimui. 
 
 
Yong Zhou, Fangyu Peng, Xiaohua Cao  
 
PARAMETER SENSITIVITY ANALYSIS OF AXIAL 
VIBRATION FOR LEAD-SCREW FEED DRIVES 
WITH TIME-VARYING FRAMEWORK 

 
S u m m a r y 
 

This paper establishes a dynamic model of lead-
screw feed drives by means of the finite element and 
lumped-parameter and analyzes the effects of changeable 
table position and workpiece mass on the first three axial 
modes of the free vibration. The results indicate that the 
natural frequency of the first mode focusing on table vibra-
tion is sensitive to both changeable table position and 
workpiece mass to a certain extent; the natural frequency 
of the second mode focusing on rotor vibration is unsensi-
ble to changeable table position and workpiece mass; the 
natural frequency of the third mode focusing on screw vi-
bration is sensitive to the table position whereas unsensible 
to the workpiece mass. In the second stage of research, the 
results display that the enhancement of the axial stiffness 
of the back screw bearing can effectively reduce the sensi-
tivity of the first nature frequency on the changeable table 
position. 
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